

Mathematics UNIT 16

Name:

Class:

Contents Page

1 Recurring Decimals
2 Bounds and Error intervals
3 Circle Theorems
4 Construction and Loci

Please see unit 16 course on drfrostmaths.com

Unit 16

PR Recurring Decimals
Recurring Decimals
PR Bounds and Error Intervals
Bounds and Error Intervals
PR basic circle theorems
Basic Circle Theorems
Constructions and Loci
Revision

PR - converting a fraction into a decimal

Recall from earlier - definition of a RATIONAL NUMBER

A rational number is any number that can be written as $\quad \begin{array}{ll}\underline{a} & \text { where } a \text { and } b \text { are integers. }\end{array}$
Rational numbers can be located exactly on the number line. These numbers are rational:

	-3	$-1 \frac{1}{2}$	0	$3 / 4$	3	$51 / 2$	6.4
i.e.	$\frac{-3}{1}$	$\frac{-3}{2}$	$\underline{0}$	$\frac{3}{4}$	$\frac{3}{1}$	$\frac{11}{2}$	$\frac{64}{10}$

as they can be written in the form a / b

	Fraction	Factorised	The Law of Cancellation	Simplest Form	Factors of Denominator	Kind of Decimal
(i)	$\frac{8}{12}$					
(ii)	$\frac{3}{16}$					
(iii)	$\frac{9}{27}$					
(iv)	$\frac{12}{30}$					
(v)	$\frac{7}{32}$					
(vi)	$\frac{15}{21}$					
(vii)	$\frac{3}{10}$					
(viii)	$\frac{3}{18}$					
(ix)	$\frac{6}{33}$					
(x)						

Recurring Decimals to fractions

Examples: how do we write the following using 'dot' notation:
(a) 0.5555...
(b) 0.1111...
(c) $0.121212 \ldots$
(d) 0.363636...
(e) $0.919191 \ldots$
(f) $0.727272 \ldots$
(g) 0.125125...
(h) 0.621621...
(i) 0.204204...

Recurring Decimals to Fraction - Algebraic Proof

How do we ELIMINATE the recurring part of a decimal.
Take for example $x=0.17$ (or $0.17171717171717 \ldots$...)

We can scale up x to $10 x, 100 x, 1000 x \ldots$.

Which if these would have the same recurring part after the decimal point?

So how do we eliminate the recurring part?

What about $x=0.017$ (or $0.017171717171717 \ldots$...)

ACTIVITY: go back a page and do the above for all the questions
\(\left.\begin{array}{|c|c|c|}\hline Worked Example \& Thinking \& Your Turn

\hline Express as a simplified fraction: \& \& 0.777777777 ···

0.2222222 ···\end{array}\right]\)| |
| :---: |
| |
| |
| |
| |
| |

Worked Example	Thinking	Your Turn
Express as a simplified fraction: $0.4949494949 \ldots$		
		Express as a simplified fraction:
$0.5454545454 \ldots 27272727$		

Worked Example	Thinking	Your Turn
Express as a simplified fraction:		$0.837837837837 \ldots$
$0.365365365365 \ldots$	Express as a simplified fraction:	
$0.279279279279 \ldots$		

Worked Example	Thinking	Your Turn
Express as a simplified fraction:		$4.747474747474 \ldots$.
$1.4545454545 \ldots$		
$2.3737373737 \ldots$		

Worked Example	Thinking	Your Turn
Express as a simplified fraction: $2.34545454545 \ldots$		$7.57979797979 \ldots$
		Express as a simplified fraction:
$3.78989898989 \ldots$		

Worked Example	Thinking	Your Turn
Express as a simplified fraction:		$7.530930930930 \ldots$
$2.3456456456456 \ldots$	Express as a simplified fraction:	
$3.7654654654654 \ldots$		

Worked Example	Thinking	Your Turn
Write the fraction $0.1 \dot{3} \dot{6} \times 0 . \dot{5}$ as a		Write the fraction $0.6 \dot{8} \dot{1} \times 0 . \dot{1}$ as a fraction in its simples form fraction in its simples form

Exam-style question 1

Exam-style question 2

Show that $1 . \dot{9}=2$
a) Write $\frac{5}{14}$ as a decimal.
b) Write $0.0 \dot{5} \dot{7}$ as a fraction.

Exam-style question 3

Challenge

Can you find the value of this infinite sum?

$$
\frac{1}{10}+\frac{1}{100}+\frac{1}{1000}+\frac{1}{10,000}+\ldots
$$

Write your answer as a fraction.

Extra Notes

Pre Requisite Work

See Skills and Exam Qs to check below:

Unit 16

PR Recurring Decimals
Recurring Decimals
PR Bounds and Error Intervals
Bounds and Error Intervals
Basic Circle Theorems
Constructions and Loci

BOUNDS OF ACCURACY

Introduction

When someone says that a distance is 50 metres, what do they mean? Measurements in real life can never be made with absolute accuracy - there is always a certain amount of error. So 50 metres could be accurate to the nearest metre, or to the nearest 10 metres, for example. Knowing within what interval the true distance lies can be very important in many applications of mathematics. When measurements are combined in a calculation, and each value has a certain amount of error, things can get complicated - and sometimes the result can be counterintuitive.

A number has been rounded to 30 to the nearest 10 .
What could the number be?

What is the lowest and highest possible value it could be?

Upper and Lower Bounds

This smallest possible value is called the lower bound. The largest possible value is called the upper bound.

When a measure is expressed to a given unit, the maximum error is half of this unit.

For a value x, the error interval is:
least possible value $\leq x<$ greater possible value

Upper and Lower Bounds (1)		
1 DO	WE DO	YOU DO
60 has been rounded to the nearest 10 . Use the number line to work out what the lowest and highest values could be.	1200 has been rounded to the nearest 100. Use the number line to work out what the lowest and highest values could be.	Use the number line to work out what the lowest and highest values could be in each of the following cases. 60 has been rounded to the nearest 10 . 2700 has been rounded to the nearest 100 .
0.4 has been rounded to the nearest 0.1. Use the number line to work out what the lowest and highest values could be.	2.73 has been rounded to the nearest 0.01 . Use the number line to work out what the lowest and highest values could be.	3.7 has been rounded to the nearest 0.1.
		8.13 has been rounded to the nearest 0.01 .

Value	Rounded To	Lower Bound	Upper Bound	Error Interval
6000	Nearest 1000			
6000	Nearest 100			
600	Nearest 100			
600	Nearest 10			
6000	Nearest 10			
60	Nearest 10			
60	Nearest Whole			
6000	Nearest Whole			
600	Nearest Whole			

Upper and Lower Bounds (2)		
I DO	WE DO	YOU DO
For each of the following: a) Use the number line to work out what the lowest and highest values could be. b) Write your answer to part a) as an inequality (error interval)		
4.3 rounded to 1 dp .	10.36 rounded to 2 dp .	ANSWER IN YOUR BOOKS a) 4.8 rounded to 1 dp b) 5.8 rounded to 1 dp . c) 11.6 rounded to 1 dp . d) 11.61 rounded to 2 dp . e) $\quad 11.16$ rounded to 2 dp . f) 14.16 rounded to 2 dp . g) $\quad 14.162$ rounded to 3 dp . h) 14.160 rounded to 3 dp .

Extension: Determine the error intervals (as an inequality) for each of the I Do, We Do, You Do questions in Upper and Lower Bounds (1)

| Upper and Lower Bounds (3) | | |
| :--- | :---: | :---: | :---: |
| I DO | WE DO | YOU DO |
| For each of the following:
 a) Use the number line to work out what the lowest and highest values could be.
 b) Write your answer to part a) as an inequality (error interval) | | |
| 8 rounded to 1 sf. | 8.2 rounded to 2 sf. | ANSWER IN YOUR BOOKS |

Intelligent practice

Value	Rounded To	Place Value	$+/-$	Lower Bound	Upper Bound	Error Interval
400	1 Significant Figure					
400	3 Significant Figures					
400	2 Significant Figures					
40	2 Significant Figures					
4	2 Significant Figures					
0.4	1 Significant Figure					
0.3	1 Significant Figure					
30	1 Significant Figure					
0.03	2 Significant Figures					

Try these Complete the following table:
Measurement Largest possible error Upper bound Lower bound Height of a tree 50 m to the nearest m Mid-day temperature $28^{\circ} \mathrm{C}$ to the nearest degree Weight of a letter 32 g to the nearest g Time to complete task 40 minutes to the nearest minute Length of caterpillar 3.4 cm to 1 decimal place Patient's temperature $38.6^{\circ} \mathrm{C}$ to 1 decimal place Weight of parcel 2.9 kg to 1 decimal place Time to reach 60 mph 6.2 seconds to 1 decimal place Length of shelf 2.75 m to 2 decimal places Weight of fish 1.64 kg to 2 decimal places Sprint time 10.27 seconds to 2 decimal places Height of a hill 480 m to the nearest 10 m Width of drive 560 cm to the nearest 10 cm Weight of cake 1200 g to the nearest 10 g Weight of cake 1200 g to the nearest 100 g Length of a runway 1900 m to 2 significant figures Length of a runway 1900 m to 3 significant figures Weight of an aircraft 170000 kg to 2 significant figures Weight of an aircraft 170000 kg to 3 significant figures

Calculating with Upper and Lower Bounds (1)

1 DO			WE DO			YOU DO		
Two numbers a and b have been rounded. a is 300 to the nearest 100 . b is 80 to the nearest 10 . Complete the table below.			Two numbers c and d have been rounded. c is 6000 to the nearest 1000 . d is 50 to the nearest 10 . Complete the table below.			ANSWER IN YOUR BOOKS Four numbers e, f, g and h have been rounded. e is 4000 to the nearest 1000 . f is 200 to the nearest 100. g is 120 to the nearest 10 . h is 70 to the nearest 10 . Copy and complete the table below		
LB		UB	LB		UB			
	$\begin{gathered} a \\ 300 \end{gathered}$			$\begin{gathered} c \\ 6000 \end{gathered}$				
	$\begin{gathered} b \\ 80 \end{gathered}$			$\begin{gathered} d \\ 50 \end{gathered}$		LB		UB
What would the LB and UB be for$a+b$			What would the LB and UB be for$c+d$				f	
				g				
				h				
			$\begin{gathered} e+f \\ e+h \end{gathered}$	$\begin{aligned} & \mathrm{e} \text { the } \\ & 2 e \end{aligned}$	$\begin{aligned} & g+2 f \\ & \vdots \\ & 3 e+4 g \end{aligned}$			

Calculating with Upper and Lower Bounds (3)								
I DO			WE DO			YOU DO		
x is 6200 to the nearest 100 . y is 20 to the nearest 10 . Complete the table below.			$\begin{aligned} & x \text { is } 1200 \text { to } 2 \mathrm{sf.} \\ & y \text { is } 0.75 \text { to } 2 \mathrm{dp} . \end{aligned}$ Complete the table below.			x is 170 to the nearest 10 . y is 0.6 to 1 dp . Complete the table below.		
LB		UB	LB		UB	LB		UB
	$\begin{gathered} x \\ 6200 \end{gathered}$			$\begin{gathered} x \\ 1200 \end{gathered}$			x 170	
	y 20			$\begin{gathered} y \\ 0.75 \end{gathered}$			y 0.6	
What would the LB and UB be for $x y$			What would the LB and UB be for $x y^{2}$			What would the LB and UB be for $x y$		
$\frac{x}{y}$			$\frac{x}{y}$			$\frac{x}{y}$		

Upper and Lower Bounds with Geometry		
I DO	WE DO	
The height and width of the triangle below have been rounded to 1dp. Work out the LB and UB for the area of the triangle.	The dimensions of the cuboid below have been rounded	
to 2dp.		

Upper and Lower Bounds with Geometry	
YOU DO 1	YOU DO 2
The height and width of the rectangle below have been rounded to the nearest whole number. Work out the LB and UB for the area of the rectangle.	The height and width of the triangle below have been
rounded to 1dp.	
12 cm	
8 cm	

Upper and Lower Bounds with Geometry	
YOU DO 3	YOU DO 4
The height and width of the triangle below have been rounded as shown in brackets. Work out the LB and UB for the area of the triangle.	The height and width of the triangle below have been rounded as shown in brackets. Work out the LB and UB for the area of the triangle.

Upper and Lower Bounds with Geometry	
YOU DO 5	YOU DO 6
The dimensions of the cuboid below have been rounded as shown in brackets. Work out the LB and UB for the volume of the cuboid.	The dimensions of the cuboid below have been rounded as shown in brackets. Work out the LB and UB for the volume of the cuboid.

Upper and Lower Bounds with Geometry - Pythagoras' Theorem	
WE DO	YOU DO
Use Pythagoras' Theorem to find the UB of the hypotenuse below. All lengths are correct to $1 \mathbf{d p}$.	Use Pythagoras' Theorem to find the LB and UB of the missing sides below. All lengths have been rounded as shown in brackets.

Upper and Lower Bounds Revision

(a)	(b)	(c)	(d)
Find the upper and lower bounds of 286 metres to the nearest metre.	Find the upper and lower bounds of 21 cm to the nearest cm .	Find the upper and lower bounds of 7.8 cm to 1 decimal place.	Find the upper and lower bounds of 5.24 kg to 2 decimal places.
(e)	(f)	(g)	(h)
Find the upper and lower bound of 80 cm to 1 significant figure.	Find the upper and lower bound of 5.6 kg to 2 significant figures.	A square has a side length of 4.1 cm to 1 decimal place. Find the lower bound of the perimeter of the square.	A rectangle measures 10 cm by 15 cm , both to the nearest cm. Find the upper bound of the area of the rectangle.
(i)	(j)	(k)	(I)
$a=b-c$ $c=18$ correct to 2 significant figures. $b=4.7$ correct to 1 decimal place. Find the upper and lower bounds of a.	$p=\frac{q}{r}$ $q=20$ correct to 1 significant figure. $r=6.3$ correct to 1 decimal place. Find the lower bound of p to 3 significant figures.	$\begin{aligned} c & =\frac{d-e}{f} \\ d=46, e & =8.5, f=15, \text { all } \end{aligned}$ correct to 2 significant figures. Find the upper bound of c to 2 decimal places.	$\begin{aligned} x & =\frac{3 a}{g-b} \\ a=28, b & =12, g=18, \text { all } \end{aligned}$ correct to 2 significant figures. Find the lower bound of x to 3 significant figures.

Truncation

When we truncate a number, we find an estimate for the number without doing any rounding. To truncate a number, we miss off digits past a certain point in the number, filling in zeros if necessary to make the truncated number approximately the same size as the original number.

- To truncate a number to 1 decimal place, miss off all the digits after the first decimal place.
- To truncate a number to 2 decimal places, miss off all the digits after the second decimal place.
- To truncate a number to 3 significant figures, miss off all the digits after the first 3 significant figures (the first non-zero digit and the next two digits). Fill in any spaces with zeros to make the number approximately the same size as the original value.

Examples

Truncate 3.784 to 1 decimal place and 2 decimal places

- 3.784 truncated to 1 decimal place is 3.7
- 3.784 truncated to 2 decimal places is 3.78

Truncate 63,854 and 0.04988 to 3 significant figures

- 63,854 truncated to 3 significant figures is 63800
- 0.04988 truncated to 3 significant figures is 0.0498

Worked Example	Your Turn
A number, x, when truncated to 1 decimal place, is equal to 123.4. a) Write the upper bound. b) Write the lower bound. place, is equal to 567.8.	
a) Write the upper bound.	
c) Write the error interval.	b) Write the lower bound.

Worked Example	Your Turn
A number, x, when truncated to 2 decimal places, is equal to 12.34. a) Write the upper bound. b) Write the lower bound.	A number, x, when truncated to 2 decimal places, is equal to 56.78.
c) Write the error interval.	a) Write the upper bound.
b) Write the lower bound.	
c) Write the error interval.	

Error Intervals
Video 377 on www.corbettmaths.com

Examples

Workout

Click here

Scan here

Question 1: The mass of a coin is 8 grams to the nearest gram.
 Complete the error interval for the mass of the coin

Question 2: The distance between two cities is 900 km to the nearest 100 km .
Complete the error interval for the distance
\qquad km \leq distance \qquad km

Question 3: Frank rounds a number, y, to the nearest ten.
His result is 20
Write down the error interval for y
Question 4: Lily rounds a number, y, to the nearest whole number. Her result is 5
Write down the error interval for y
Question 5: Freya rounds a number, y, to one decimal place.
Her result is 6.4
Write down the error interval for y
Question 6: Oscar rounds a number, y, to the nearest integer.
His result is 100
Write down the error interval for y
Question 7: A number, n, is rounded to 1 decimal place.
The result is 1.3
Using inequalities, write down the error interval for n.
Question 8: A number, n, is rounded to 2 decimal places.
The result is 6.27
Using inequalities, write down the error interval for n.

Question 9: Elliott weighs 56.2 kg .

This mass, m, is to the nearest 100 g .
Write the error interval due to rounding.

Examples

Apply

Click here

Question 1: India has pieces of ribbon, each measuring 7 cm to the nearest centimetre.
(a) find the least total length of 10 pieces of ribbon.
(b) find the greatest total length of 10 pieces of ribbon.

Question 2: Leon has four barrels, each with a mass of 30 kg to the nearest 10 kg .
(a) find the the minimum possible mass of the four barrels.
(b) find the maximum possible mass of the four barrels.

Question 3: A rectangle has a length of 14 cm and width of 5 cm , both to nearest centimetre.
Find (a) the maximum possible area and
(b) the minimum possible area. \qquad

Question 4: The classes in a primary school have 20 students to the nearest 10 . There are 7 classes in the primary school.
Work out the greatest possible number of students that attend the school.

Question 5: Harry and Peter take part in a race.
It took Harry 30 seconds to the nearest 10 seconds to finish the race.
It took Peter 43 seconds to the nearest second to finish the race.
Work out the minimum possible difference between their finishing times.

Question 6: An average orange weighs 131 g to the nearest gram.
A net contains 8 oranges.
The net weighs 10 g to the nearest gram
What is the maximum possible weight of the net of oranges?

Question 7: Megan has 2 litres of fruit juice to the nearest litre. She pours the fruit juice into glasses that hold 100 ml to the nearest 10 ml . Work out the lowest possible number of glasses she can fill.

[^0]Question 8: A rectangular football pitch has a width of 72 m , measured to the nearest metre. The length of the pitch is 105 m , measured to the nearest 5 metres.

Work out the lower bound for the perimeter of the pitch.

Question 9: The lengths of time taken for 4 people to complete a puzzle are listed below. Each time is given to one decimal place.
20.8 seconds
35.1 seconds
19.7 seconds
41.3 seconds
(a) Work out the greatest possible range
(b) Work out the smallest possible mean.

Question 10: Mr Rodgers wants to keep 28 new maths textbooks on a shelf in his classroom. Each book has a mass of 700 g correct to 1 significant figure.
The shelf can hold up to 20 kg to the nearest kilogram.
Can the shelf safely hold the textbooks?

Question 11: The base of a triangle is 30 cm , correct to 2 significant figures. The height of the triangle is 40 cm , correct to 1 significant figure. Calculate the upper bound for the area of the triangle

Question 12: Kelly drove a distance of 120 miles, to the nearest 10 miles, in a time of 2 hours, to the nearest hour.
Work out the difference between Kelly's greatest possible and lowest possible average speed.

Question 13: Rosie is buying strawberries, apples and grapes for a picnic.
She buys 4 kg of strawberries and 3 kg of grapes, both to the nearest kilogram. Rosie buys 50 apples to the nearest 10 apples.
A kilogram of strawberries costs $£ 1.20$ to the nearest 10 p
A kilogram of grapes costs $£ 1.30$ to the nearest 10 p
An apple costs 20p each to the nearest 10p.
Work out the upper bound for the amount of money Rosie would have to pay
Question 14: A circle has an area of $600 \mathrm{~cm}^{2}$ to 2 significant figures. Work out the lower bound of the radius.

Question 15: $w=a T$
Given a $=15$ correct to 2 significant figures and $w=700$ correct to 2 significant figures Calculate the upper bound for T
© CORBETTMATHS 2017

Exercise 1

1 If a time t was 27 seconds correct to the nearest second, determine:
(a) The lower bound.
(b) The upper bound.
(c) The error interval.

If a time t was 80 seconds correct to the nearest 10 seconds, determine the error interval of t.

[Edexcel GCSE(9-1) Nov 2017 3F Q23b, Nov 2017 3H Q5b] Jess rounds a number, x, to one decimal place. The result is 9.8 .
Write down the error interval for x.

[Edexcel GCSE(9-1) June 2017 3F Q23aii] Harley's house has a value of $£ 160000$ correct to 2 significant figures. Write down the greatest possible value of the house.

A weight measurement w is truncated to 24.35 kg to 2 decimal places. What is the upper bound of w ?

6 [Edexcel GCSE(9-1) Mock Set 3 Autumn 2017 3H Q8] Kiera used her calculator to work out the value of a number x. She wrote down the first two digits of the answer on her calculator. She wrote down 7.3. Write down the error interval for x.

A laser measures a distance and displays 3 metres to some given degree of accuracy. Find the lower and upper bound when the accuracy was:

To the nearest metre.
To the nearest cm.
To the nearest mm.

An Events Organiser planning a concert is told that a stadium has a capacity of 30,000, correct to 1 significant figure. The organiser wants to ensure that anyone he sells tickets to is guaranteed a seat. How many tickets can he sell?

A cube is $10 \mathrm{~m}^{3}$ correct to 1 significant figure. What is the maximum and minimum possible side length?

UPPER AND LOWER BOUNDS
EXAM-TYPE QUESTIONS

A1 Zoe weighs 62 kg , correct to the nearest kilogram. Write down the lower bound for Zoe's weight.	A2 The length of line $A B=8.3 \mathrm{~cm}$, correct to 2 significant figures. Write down the upper bound for the length of $A B$.	A3 Anu weighs 83 kg , correct to the nearest half kilogram. Write down the upper bound for Anu's weight.	A4 The length of line $C D=27 \mathrm{~cm}$, correct to the nearest 0.5 cm Write down the lower bound for the length of $C D$.
B1 Correct to the nearest millimetre, the length of a side of a regular hexagon is 3.6 cm Calculate the upper bound for the perimeter of the hexagon.	B2 The perimeter of a square is 24 cm , correct to the nearest half centimetre. Work out the lower bound for the length of a side.	B3 Correct to 1 significant figure, the area of a rectangle is $80 \mathrm{~cm}^{2}$. Correct to 2 significant figures, the length of the rectangle is 12 cm . Calculate the upper bound for the width.	B4 Correct to 2 significant figures the area of a square is $230 \mathrm{~cm}^{2}$. Calculate the lower bound for the perimeter of the square.
C1 $x=1.8$ correct to 1 decimal place. Calculate the lower bound for the value of $4 x+1$	C2 Correct to 1 significant figure, $a=20$ and $b=5$ Work out the upper bound of $5(a-b)$	C3 $\quad x=p(q-r)$ $p=42, q=24$ and $r=14$ all correct to 2 significant figures. Work out the lower bound for the value of x.	C4 Correct to 2 significant figures, $w=58, x=28$ and $y=18$ Calculate the upper bound of $\frac{w}{x-y}$
D1 Jada has 100 litres of oil, correct to the nearest litre. The oil is poured into tins of volume 1.5 litres, correct to one decimal place. Calculate the upper bound for the number of tins that can be filled.	D2 There are 300 sheets of paper in a pile, correct to the nearest 10 sheets. The height of the pile is 160 mm , correct to the nearest 10 mm . Calculate the upper bound for the thickness of one sheet.	D3 The distance to school is 2.8 km , correct to the nearest 0.1 km . Sam walks at a speed of $5 \mathrm{~km} / \mathrm{h}$, correct to the nearest km / h. Calculate the upper bound for the time Sam takes to walk to school.	D4 Correct to 2 decimal places, the volume of a solid cube is $42.88 \mathrm{~cm}^{3}$ Calculate the lower bound for the surface area of the cube.

Giving answer to "suitable degree of accuracy"

$$
m=\frac{\sqrt{s}}{t}
$$

$s=3.47$ correct to 2 decimal places. $t=8.132$ correct to 3 decimal places. By considering bounds, work out the value of m to a suitable degree of accuracy. You must show all your working and give a reason for your final answer.

Test Your Understanding

$$
q=\frac{r^{2}}{s}
$$

$r=2.87$ correct to 2 decimal places. $s=3.584$ correct to 3 decimal places. Work out the value of q to a suitable degree of accuracy, giving a reason for your answer.

Extra Notes

Circle Theorems

Circle Theorems

Circle Theorems

Circle Theorems Involving Right Angles

Circle Theorems Involving Other Angles

"Angle between radius and tangent is 90° ".

"Angle in semicircle is 90°."
Note that the hypotenuse of the triangle MUST be the diameter.

"Angles in same segment are equal."

"Angle at centre is twice the angle at the circumference."

Tip: Remember the wording in the black boxes, because you are often required to justify in words a particular angle in an exam.

Find the missing angles.

CIRCLE THEOREMS AND TANGENTS PRACTICE GRID
Find the missing angles.

ANGLES FROM THE SAME SEGMENT PRACTICE GRID

Find the missing angles.

ANGLEAT THE CENTRE PRACTICE GRID
Find the missing angles.

Circle Theorems

Circle Theorems Involving Other Angles

Circle Theorems Involving Lengths

Radius is of constant length
Tip: When you have multiple radif, put a mark on each of them to remind yourself they are the same length.

Opposite angles of cyclic
quadrilateral add up to 180.

CYCLIC OUADRILATERALS PRACTICE GRID

Find the missing angles.

Non-Examples

Alternate Segment Theorem

This one is probably the hardest to remember and a particular favourite in the Intermediate/Senior Maths Challenges.

The angle between the
tangent and a chord...

Check Your Understanding

Not drawn accurately

Check Your Understanding

Source: IGCSE Jan 2014 (R)

Angle CAE =

Diagram NOT
accurately drawn

?

Give a reason:

Review
 moths

Examples

Workout

Question 1: Find the missing angles labelled in each of these circles

(d)

(e)

(i)

(k)

(1)

(c)

(f)

(i)

(m)

(p)

(s)

(n)

(q)

(w)

(o)

(r)

(u)

(x)

Question 2: Calculate the length of sides labelled in the circles below
(a)

(b)

(c)

Question 3: Calculate the length of sides labelled in the circles below
(a)

(b)

(c)

Question 4: Calculate the size of the missing angles
(a)

(b)

(c)
(g)

(j)

Question 5: State, with a reason, if $A B$ is the diameter in each circle below.
(a)

(b)

(c)

(h)
(i)

(k)

(c)

(e)

(f)

)

(1)

© CORBETTMATHS 2018
© CORBETTMATHS 2018

Corbett moths
(m)

(p)

(s)

(v)

Circle Theorems
Videos 64/65 on Corbettmaths
(n)

(q)

(t)

(w)
(x)

(o)
(r)
(u)

(d)

(g)

(j)

(b)

(e)
(f)

(h)

(k)

(c)

(i)

(1)

(m)
(n)

(o)

(q)

Question 8: Find the missing angles labelled in each of these circles

(d)

(b)

(c)

(e)

(f)

(h)
(i)

(j)

(m)
(k)

(n)
(o)
(1)

(p)

(q)

(4)

area ABDE ?

EXTENSION

check that:

$$
\begin{aligned}
& \sin \left(10^{\circ}\right)+\sin \left(50^{\circ}\right)=\sin \left(70^{\circ}\right) \\
& \sin \left(15^{\circ}\right)+\sin \left(45^{\circ}\right)=\sin \left(75^{\circ}\right) \\
& \sin \left(20^{\circ}\right)+\sin \left(40^{\circ}\right)=\sin \left(80^{\circ}\right)
\end{aligned}
$$

explain why the area of triangle $\mathrm{ABC}=$ area of triangle BDC
explain why $\sin \varnothing=\sin \left(180^{\circ}-\varnothing\right)$

EXAM STYLE QUESTIONS

Exam-style question 1

The diagram shows a circle with centre O . P and Q are points on the circle.

Angle OPQ is 54°.
Work out the size of angle POQ. You must give a reason for your answer.

Diagram NOT accurately drawn

Exam-style question 2

The diagram shows a circle with centre O .
Work out the value of x.
You must give a reason for your answer.

Diagram NOT accurately drawn

Exam-style question 3

The diagram shows a circle.
Work out the value of a.
You must give a reason for your answer.

Exam-style question 4

The diagram shows a circle with centre O .
Work out the value of y.
You must give a reason for your answer.

EXAM STYLE QUESTIONS

Exam-style question 5

The diagram shows a circle. ABCD is a quadrilateral whose vertices lie on the circumference of the circle.

Work out the size of angle BCD.
You must give a reason for your answer.

Exam-style question 6

The diagram shows a circle with centre O , a tangent to the circle at point X , a chord XY, and a further point on the circle labelled Z .
a) Write down the value of m.
b) Given that $\angle \mathrm{OXY}=36^{\circ}$, work out the size of $\angle \mathrm{XZY}$. You must give a reason for your answer.

Exam-style question 7

The diagram shows a circle with centre O , a tangent to the circle at point X , a diameter XZ , chords XY and YZ , and a point P on the tangent.
a) Write down the size of $\angle \mathrm{XYZ}$.
b) Without assuming the alternate segment theorem, prove that $\angle \mathrm{PXY}=\angle \mathrm{XZY}$

The diagram shows a circle with centre O .
M and N are points on the circle.
PM and PN are tangents to the circle.
a) Given that $\angle \mathrm{MPN}=77^{\circ}$, work out the size of $\angle \mathrm{MON}$. You must give reasons for your answer.
b) Show that triangle OMP is congruent

Diagram NOT accurately drawn

Exam-style question 8

 to triangle ONP.
EXAM STYLE QUESTIONS

Exam-style question 9

The diagram shows a circle with centre O. The points $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S are on the circumference of the circle.
$\angle \mathrm{POR}=120^{\circ}, \angle \mathrm{OPQ}=28^{\circ}$, and $\angle \mathrm{ORS}=60^{\circ}$
) a) Work out the value of x. You must give a reason for your answer.
b) Work out the value of y. You must give a reason for your answer.
c) Work out the value of z. You must give a reason for your answer.

Diagram NOT accurately drawn

Challenge

The diagram shows a circle, a tangent to the circle at point A , a cyclic pentagon ABCDE , chords AD and BE , and points P and Q on the tangent.
$\angle \mathrm{PAB}=40^{\circ}, \angle \mathrm{ABE}=30^{\circ}$, and $\angle \mathrm{BED}=45^{\circ}$
Find the size of $\angle \mathrm{DAE}$.

Diagram NOT accurately drawn

Exam-style question 10

The diagram shows a circle with centre O , a tangent to the circle at point A , point X on the tangent, diameter AB , and a line segment BX .
$\angle \mathrm{AXB}=54^{\circ}$
BX intersects the circle at two points: B and C.
a) Label the point C on the diagram.
b) Work out the size of $\angle \mathrm{BAC}$. Give reasons for your answer.

Diagram NOT accurately drawn

Compass constructions and Loci

To 'construct' something in the strictest sense means to draw it using only two things:

- Compass
- Straight Edge (Apart from where a length is specified, you are not allowed to measure lengths)
- Bisect means cut into two equal parts.
- Equidistant means equal distance from

Pre Requisite work - Standard constructions

Loci of Points a fixed distance from a given point

Instructions:

1. You will need a ruler, a pencil and a pair of compasses.

Pre Requisite work - Standard constructions

Perpendicular Bisector of a line

Instructions:

1. You will need a ruler, a pencil and a pair of compasses.

Common Losses of Exam Marks

- B

A

- B

Le Problemo:

Arcs don't overlap enough, so points of intersection to draw line through is not clear.

Pre Requisite work - Standard constructions

Drawing a Perpendicular to a Line through a Point

Instructions:

1. You will need a ruler, a pencil and a pair of compasses.

Exercises:

Draw a line and mark crosses on it to divide it into four sections of equal length. Use only a straight edge and compasses.

Roughly copy these diagrams. Then construct the perpendicular to each line that passes through the cross.

Pre Requisite work - Standard constructions

Bisecting an Angle

Instructions:

1. You will need a ruler, a pencil and a pair of compasses.

Exercises:

Use only a straight edge and compasses to divide this angle into four equal angles.

Fred is asked to bisect the reflex angle shown.

Fred says he can't do this because he only knows how to bisect angles that are less than 180°.

Explain why Fred does in fact have enough knowledge to bisect the reflex angle.

Fluency Practice

Q3 Construct the perpendicular bisector of the following lines through the given point.

Q4 Construct the perpendicular bisector of the following lines through the given point.

Q6 Construct the angle bisector of the following angles.

Q7 Construct the angle bisector of $\angle A B C$ for each of the following shapes..

Q9 Construct a $45^{\circ}{ }^{\circ}$ angle.

Constructing Triangles

You can construct a unique triangle when you know:
Two sides and the angle between them (SAS)
Two angles and a side (ASA)
Three sides (SSS)

SSS

Using a ruler and compass only, construct the following SSS triangle accurately.

1) Draw a 6 cm line with a ruler.
2) Draw two arcs with lengths 4 cm and 5 cm from each end of the line.
3) Join the ends of the line to the intersection.

6 cm

Worked Example

Construct a triangle with:

- A side length of 10 cm
- A side length of 6 cm
- A side length of 8 cm

Your Turn

Construct a triangle with:

- A side length of 5 cm
- A side length of 3 cm
- A side length of 4 cm

Fluency Practice

Q1 Use your compass and ruler only to construct the following SSS triangles.

SAS

Using a ruler, compass and protractor, construct the following SAS triangle accurately.

1) Draw a 7 cm line with a ruler.
2) Draw an arc with length 8 cm .
3) Measure an angle of 40°.
4) Draw a line through the angle to the arc.
5) Join up the end of the lines.

Worked Example

Construct a triangle with:

- A side length of 10 cm
- An angle of 30°
- A side length of 8 cm

Your Turn

Construct a triangle with:

- A side length of 5 cm
- An angle of 30°
- A side length of 4 cm

Fluency Practice
Q2 Use your compass and ruler only to construct the following triangles.

ASA

Using a ruler, compass and protractor, construct the following ASA triangle accurately.

1) Draw a 7.3 cm line with a ruler.
2) Measure both angles.
3) Draw a feint line through each angle and label them.
4) Draw a solid line over each feint line up to the intersection.

7.3 cm

Worked Example

Construct a triangle with:

- An angle of 30°
- A side length of 10 cm
- An angle of 45°

Your Turn

Construct a triangle with:

- An angle of 30°
- A side length of 5 cm
- An angle of 60°

Fluency Practice
Q3 Use your compass and ruler only to construct the following triangles.

Extension

Q4 Use the scale of $1 \mathrm{~cm}=50 \mathrm{~m}$, construct the following triangles.		Q5 Accurately draw two different isosceles triangles with an angle of 40°.
[a]	[b]	Q6 Construct an equilateral triangle with side length of 7 cm . By measuring its height, work out its area. Q7 Accurately draw the sectors below.
[c]	[d]	

Q8 Accurately construct the following quadrilateral and find the length of the missing side.

Q9 Use the information below to accurately construct a regular pentagon.

Everything in the GCSE specification

- Construct triangles including an equilateral triangle
- Construct the perpendicular bisector of a given line
- Construct the perpendicular from a point to a line
- Construct the perpendicular from a point on a line
- Construct the bisector of a given angle
- Construct angles of $600,90^{\circ}, 30 \circ, 450$
- Construct a regular hexagon inside a circle
- Construct:
-a region bounded by a circle and an intersecting line
- a given distance from a point and a given distance from a line
- equal distances from 2 points or 2 line segments
- regions which may be defined by 'nearer to' or 'greater than'

Extra Notes

A locus of points is a set of points satisfying a certain condition.

We can use our constructions from last lesson to

Loci involving:		find the loci satisfying certain conditions...	
Thing A	Thing B	Interpretation	Resulting Locus
Point	-	A given distance from point A	
Line	-	A given distance from line A	A
Point	Point	Equidistant from 2 points or given distance from each point.	
Line	Line	Equidistant from 2 lines	
Point	Line	Equidistant from point A and line B	

Regions satisfying descriptions

Loci can also be regions satisfying certain descriptions.

A goat is attached to a post, by a rope of length 3 m . Shade the locus representing the points the goat can reach.

A goat is now attached to a metal bar, by a rope of length 3 m . The rope is attached to the bar by a ring, which is allowed to move freely along the bar. Shade the locus representing the points the goat can reach.

Shade the region consisting of points which are closer to line

Common schoolboy error: Thinking the locus will be oval in shape. A than to line B.

Examples

I'm at most 2 m away from the walls of a building. Mark this region with R.

Examples

I'm 2 m away from the walls of a building.

Scale: $1 \mathrm{~m}: 1 \mathrm{~cm}$

Examples

My goat is attached to a fixed point A on a square building, of $5 m \times 5 m$, by a piece of rope 10 m in length. Both the goat and rope are fire resistant. What region can he reach?

Bonus question:

What is the area
of this region, is
in terms of π ?

Loci Exercises

1. Mr Dumpleton is 2 cm from shape Q. Shade the region he could be in.

2. Sketch the region in which you are at most 2 cm from shape A.
3. Sketch the region which is at most 5 cm from A and 3 cm from B.

4. Draw the locus representing points which are 1 cm from the edges of polygon M (this could include the inside).

.
A B
5. Find the locus for which the points are equidistant from lines A and B.

6. Draw the locus representing points which are equidistant from A and B .

- B

7. Mr Belemet is tied by a rope, of length 4 cm to a fixed point A . Shade the region in which Mr Belemet can graze.

8. Sketch the region at most 3 cm away from A and at most 2 cm away from B.

9. Sketch the region where you are at most 2.5 cm from A , at least 2 cm from B, and at most 1.5 cm from C.

. B
B
C. Closer to $A B$ than to $A D$, less than 4 cm away from A, and more than 1 cm away from CD.

d. Closer to $B C$ than to $A D$, more than 3 cm away from B, and closer to AB than to BC .

10. . For the following questions, calculate the area of the locus, in terms of the given variables (and π where appropriate). Assume that you could be inside or outside the shape unless otherwise specified.
e. x metres away from the edges of a square of length l.
f. $\quad x$ metres away from the edges of a rectangle of sides w and h.
g. x metres away from the edges of an equilateral triangle of side length y.
h. Inside a square ABCD of side x metres, being at least x metres from A, and closer to $B C$ than to $C D$.
i. Being inside an equilateral triangle of side $2 x$, and at least x away from each of the vertices.
j. Being attached to one corner on the outside of $x \times x$ square building (which you can't go inside), by a rope of length $2 x$.
k. At most x metres away from an L-shaped building with two longer of longer sides $2 x$ and four shorter sides of x metres.
I. Being attached to one corner on the outside of $w \times h$ square building (which you can't go inside), by a rope of length x (where $x<w+h$). You may wish to distinguish between the cases when $x<w$ and/or $x<h$ and otherwise.

Extra Notes

[^0]: © CORBETTMATHS 2017

