Year 10
 Mathematics Unit 17

(adapted for 2022 year 10)

Name:

Class:

Contents Page

1 Non-Linear Graphs
2 Direct and Inverse Proportion

See unit 17 course on drfrostmaths.com

Unit 17

Non-Linear Graphs
PR Direct and Inverse Proportion
Direct and Inverse Proportion

1 Non-Linear Graphs

$$
\begin{array}{cc}
y=a x^{2}+b x+c & y=a x^{2}+b x+c \\
\text { When } a>0 & \text { When } a<0
\end{array}
$$

The line for a quadratic equation is known as a parabola.

Interpreting Quadratic Graphs

- \boldsymbol{y}-intercept - where the graph intercepts the y-axis
- $\quad \boldsymbol{x}$-intercept or root or solution - where the graph intercepts the x-axis
- Turning point or vertex or minimum/maximum - where the graph stops decreasing and starts increasing or vice-versa

Worked Example

a) Complete the table and draw the graph of $y=x^{2}+2 x$ for $x=-4$ to $x=2$
b) Write down the equation of the line of symmetry of your graph
c) Use your graph to find:
i) the value of y when $x=0.5$
ii) the values of x when $y=6$

Here is a table of values for $y=x^{2}+2 x$

x	-4	-3	-2	-1	0	1	2
y	8		0	-1			8

a) Complete the table and draw the graph of $y=x^{2}-2 x-4$ for $x=-2$ to $x=4$
b) Write down the equation of the line of symmetry of your graph
c) Write down the values of x where the graph crosses the x-axis

Here is a table of values for $y=x^{2}-2 x-4$

\boldsymbol{x}	-2	-1	0	1	2	3	4
\boldsymbol{y}		-1	-4			-1	

Fluency Practice
Fluency Practice

1. Here is a table of values for $y=x^{2}-2$.

x	-3	-2	-1	0	1	2	3
y	7		-1	-2			7

a) Complete the table of values.
b) On the grid, draw the graph of $y=x^{2}-2$ for $x=-3$ to $x=3$.

c) Write down the equation of the line of symmetry of your graph.
d) Write down the coordinates of the minimum point.
2. Here is the table of values for $y=3-x^{2}$.

x	-3	-2	-1	0	1	2	3
y	-6		2	3		-1	

a) Complete the table of values.
b) On the grid, draw the graph of $y=3-x^{2}$ for $x=-3$ to $x=3$

c) Write down the coordinates of the maximum point.
d) Write down the values of x where the graph crosses the x-axis.

Fluency Practice

Fluency Practice

3. Here is a table of values for $y=2 x^{2}+1$.

x	-3	-2	-1	0	1	2	3
y		9		1	3	9	

a) Complete the table of values
b) On the grid, draw the graph of $y=2 x^{2}+1$ for $x=-3$ to $x=3$.

c) Use your graph to find:
i) the value of y when $x=-2.5$
ii) the two values of x when $y=6$

b) Use your graph to:
i) write down the values of x when the graph crosses the x-axis
ii) draw in and write down the equation of the line of symmetry.

Common Mistakes

The parabola does not have a clearly defined minimum or maximum point.

Drawing line segments between each coordinate pair suggest the relationship between them is linear which it is not.

A coordinate pair is either calculated or plotted incorrectly.

The graph is does not pass through each of the coordinate pairs to form a clear defined and smooth parabola.

Worked Example

Use this graph to solve these equations:
a) $\quad x^{2}-2 x-2=0$

Worked Example

Use this graph to solve these equations:
c) $x^{2}-2 x-2=x$

Worked Example

Use this graph to solve these equations:
a) $\quad x^{2}=2 x+3$
b) $x^{2}=x+4$

Worked Example

Use this graph to solve these equations:
c) $x^{2}+x-1=0$
d) $x^{2}-2 x-1=0$

Fluency Practice

Fluency Practice

1. Use this graph to solve the equations.

2. Use this graph to solve the equations.

3. Use this graph to solve the equations.

a) $6+2 x-x^{2}=0$
b) $4+2 x-x^{2}=0$
c) $6+2 x-x^{2}=x$
d) $3+3 x-x^{2}=0$

Fluency Practice
Fluency Practice
4. Here is a table of values for $y=x^{2}+3 x-4$.

x	-5	-4	-3	-2	-1	0	1	2
y	6	0		-6		-4		

a) Complete the table of values.
b) On the grid, draw the graph of $y=x^{2}+3 x-4$

c) Use your graph to solve the equation $x^{2}+3 x-4=2$.
d) By drawing a suitable straight line on your graph, solve the equation $x^{2}+3 x-4=x+1$.
5. The graphs $y=x^{2}-3 x-2$ and $y=x-2$ are shown below.

a) Show that the equation $x^{2}-3 x-2=x-2$ can be rewritten as $x^{2}-4 x=0$.
b) Solve the equation $x^{2}-4 x=0$.
c) The equation $x^{2}-2 x-4=0$ can be solved by drawing a suitable straight line on the graph. Find the equation of this straight line and solve the equation $x^{2}-2 x-4=0$.

Cubic Graphs

$$
\begin{array}{ll}
y=a x^{3} & y=a x^{3}+b x^{2}+c x+d \\
\text { When } a>0 & \text { When } a>0
\end{array}
$$

$y=a x^{3}$
When $a<0$

 When $a<0$

Worked Example

Worked Example
a) Complete the table and draw the graph of $y=x^{3}-4$ for $x=-4$ to $x=4$
b) Use the graph to find the value of y when $x=4$

Here is a table of values for $y=x^{3}-4$

x	-4	-3	-2	-1	0	1	2	3	4
y									

a) Complete the table and draw the graph of $y=x^{3}-4 x^{2}+5$ for $x=-2$ to $x=5$
b) Use your graph to find the solutions to:
i) $x^{3}-4 x^{2}+5=0$
ii) $x^{3}-4 x^{2}-x+5=0$

Here is a table of values for $y=x^{3}-4 x^{2}+5$.

x	-2	-1	0	1	2	3	4	5
y	-19		5			-4	5	

Fluency Practice

2. Here is the table of values for $y=x^{3}-5 x$.

\boldsymbol{x}	-4	-3	-2	-1	0	1	2	3	4
\boldsymbol{y}		-12			0	-4		12	44

a) Complete the table of values.
b) On the grid, draw the graph of $y=x^{3}-5 x$ for $-4 \leqslant x \leqslant 4$.

c) Use your graph to find the solutions to the equation $x^{3}-5 x=0$

Fluency Practice
3. Here is a table of values for $y=6 x+x^{2}-x^{3}$.

x	-3	-2	-1	0	1	2	3	4
y		0	-4			8	0	

a) Complete the table of values.
b) On the grid, draw the graph of $y=6 x+x^{2}-x^{3}$ for $-3 \leqslant x \leqslant 4$.

c) By drawing a suitable line on your diagram, solve the equation $6 x+x^{2}-x^{3}=x-2$

Fluency Practice
4. a) On the grid, draw the graph of $y=x^{3}+x^{2}-4 x-2$ for the values of x from -3 to 2 .

b) By drawing a suitable line on your diagram, solve the equation $x^{3}+x^{2}-5 x-2=0$.

Reciprocal Graphs

$$
\begin{array}{lll}
y=\frac{a}{x} & \begin{array}{l}
a \text { is a constant while } x \\
\text { is a variable, so we } \\
\text { might have } y=\frac{3}{x}
\end{array} & y=\frac{a}{x} \\
\text { When } a>0 & \text { When } a
\end{array}
$$

The lines $x=0$ and $y=0$ are called asymptotes. An asymptote is a straight line which the curve approaches at infinity.

Fluency Practice
Fluency Practice
|1. Here are some table of values for $y=\frac{4}{x}$.

x	0.2	0.4	0.5	1	2	4	5	8	10
y		10		4	2		0.8		

\boldsymbol{x}	-10	-8	-5	-4	-2	-1	-0.5	-0.4	-0.2
\boldsymbol{y}									

a) Complete the table of values.
b) On your additional sheet, draw the graph of $y=\frac{4}{x}$ for $-10 \leqslant x \leqslant 10$.
c) Use your graph to find an estimate for the solutions of $\frac{4}{x}=4-x$.
2. On your additional sheet, draw the graph of $y=-\frac{3}{x}$ for $-10 \leqslant x \leqslant 10$.
3. a) Here are some table of values for $y=\frac{8}{x+2}$.

\boldsymbol{x}	-12	-10	-7	-6	-4	-3	-1	0	2	3	6	8
\boldsymbol{y}												

b) On your additional sheet, draw the graph of $y=\frac{8}{x+2}$ for $-12 \leqslant x \leqslant 12$.
c) For which values of x is $y=\frac{8}{x+2}$ not defined?
4. a) Complete the table of values for $y=3-\frac{2}{x}, x \neq 0$.

\boldsymbol{x}	-3	-2	-1	-0.5	-0.1	0.1	0.5	1	2	3
\boldsymbol{y}										

b) On your additional sheet, draw the graph of $y=3-\frac{2}{x}$ for $-3 \leqslant x \leqslant 3$.
c) This graph approaches two lines without touching them. These lines are called asymptotes. Write down the equation of each of these two lines.

$y=a \times b^{x}$

The y-intercept is a because $a \times b^{0}=a \times 1=a$. (unless $a=0$, but let's not go there!)

Worked Example

a) Complete the tables and draw the graph of $y=3^{x}$ for $x=-3$ to $x=3$
b) Use your graph to estimate the solution to $3^{x}=20$

Here is a table of values for $y=3$

x	-3	-2	-1	0	1	2	3
y							

a) Complete the tables and draw the graph of $y=2^{-X}$ for $x=-4$ to $x=2$
b) Use your graph to estimate
i) the value of y when $x=0.5$
ii) the solution to the equation $2^{-x}=10$

Here is a table of values for $y=2^{-x}$

x	-4	-3	-2	-1	0	1	2
y							

Fluency Practice

Fluency Practice

1. Here is a table of values for $y=4^{x}$.

x	-2	-1	0	1	2
y					

a) Complete the table of values.
b) On the grid, draw the graph of $y=4^{x}$ for $-2 \leqslant x \leqslant 2$.

c) Use your graph to find an estimate for:
i) the value of y when $x=1.5$
ii) the value of x when $y=11$
2. Here is the table of values for $y=3^{-x}$.

x	-3	-2	-1	0	1	2
y						

a) Complete the table of values.
b) On the grid, draw the graph of $y=3^{-x}$ for $-3 \leqslant x \leqslant 2$.

c) Use your graph to find the solution to the equation $3^{-x}=7$.

Fluency Practice
3. The diagram shows the graphs of $y=3^{x}, y=2^{-x}, y=5^{x}$ and $y=\left(\frac{1}{4}\right)^{x}$.

Match each graph to its equation.
4. The number of rabbits, n, in a particular population grows at a rate given by the equation
$n=5 \times 2^{y}$ where y is the number of years.
a) How many rabbits were there initially (when $y=0$)?
b) How many rabbits are there after 6 years?
c) How many years will it take for the rabbit population to exceed 5000 ?

Extra Notes

2 Direct and Inverse Proportion

Direct Proportion

y is directly proportional to x
y is proportional to x
y varies directly to x
$y \propto x$
$y=k x$
k is called the constant of proportionality

The graph of $y=k x$ is a straight line that passes through the origin.

Worked Example	Your Turn
y is proportional to x.	y is proportional to x. When $x=2, y=20$. When $x=4, y=20$. a) Find y when $x=5$. b) Find x when $y=90$. a) Find y when $x=5$. b) Find x when $y=90$.

Worked Example	Your Turn
y is directly proportional to x.	b is directly proportional to a.
When $y=20, x=2$.	When $\mathrm{b}=30, a=5$.
a) Find y when $x=5$.	a) Find b when $\mathrm{a}=2$.
b) Find x when $y=200$.	Find a when $b=3000$.

Worked Example	Your Turn
y is proportional to x^{2}.	y is proportional to x^{2}. When $y=90, x=3$. When $y=18, x=3$. Work out the value of: a) y when $x=5$. b) $\quad x$ when $y=160$. Work out the value of: a)y when $x=7$. x when $y=72$. b)

Worked Example	Your Turn
y is proportional to \sqrt{x}.	y is proportional to \sqrt{x}. When $y=20, x=16$. When $y=6, x=9$. Work out the value of: a) y when $x=16$. b) $\quad x$ when $y=10$. a)y when $x=36$. x when $y=20$. b)

Worked Example

a) y is directly proportional to $x+2$.

When $y=20, x=2$.
Find y when $x=5$.
b) y is directly proportional to $x^{2}+4$.

When $y=52, x=3$.
Find y when $x=5$.
a) y is directly proportional to $x+2$.

When $y=12, x=2$.
Find y when $x=8$.
b) y is directly proportional to $2 x^{2}$.

When $y=36, x=3$.
Find y when $x=5$.

Worked Example	Your Turn
A is directly proportional to B^{2}. Find the percentage increase in A when B is increased by 10%. A is directly proportional to B^{2}. Find the percentage increase in A when B is increased by 20\%. 	

y is inversely proportional to x
y varies inversely or indirectly to x
$y \propto \frac{1}{x}$
$y=\frac{k}{x}$
k is called the constant of proportionality
The graph of $y=\frac{k}{x}$ is a reciprocal graph.

Worked Example	Your Turn
y is inversely proportional to x.	y is inversely proportional to x.
When $x=2, y=50$.	When $x=5, y=50$.
a) Work out the value of y when $x=20$.	a) Work out the value of y when $x=10$.
b) Work out the value of x when $y=12.5$.	b) Work out the value of x when $y=25$.

Worked Example	Your Turn
y is inversely proportional to x.	b is inversely proportional to a.
When $y=5, x=2$.	When $\mathrm{b}=10, a=3$.
a) Find y when $x=5$.	a) \quad Find b when $\mathrm{a}=5$. b) Find x when $y=0.5$. b)

Worked Example	Your Turn
y is inversely proportional to $x+3$.	 When $y=52, x=3$. Find y inversely proportional to $2 x+1$. When $y=30, x=4$. Find y when $x=7$.

Fill in the Gaps

Type	Statement	k-Formula	k value $\mathrm{x}=2, \mathrm{y}=4$	Final Formula
y is proportional to x	$y \propto \mathrm{x}$	$y=\mathrm{kx}$		
x is proportional to y				
y is inversely proportional to x	$y \propto \frac{1}{x}$	$y=\frac{k}{x}$		
x is inversely proportional to y				
y is proportional to the square of x				
x is proportional to the square of y				
x is proportional to \sqrt{y}				
Y is inversely proportional to \sqrt{x}				
Y is proportional to x^{3}				
x is proportional to 3 more than y				

Graphs

Fluency Practice

y is proportional to the square of x

Which of the following could be the graph demonstrating between y and x ?
Which of the following could be the graph demonstrating between \boldsymbol{y} and \boldsymbol{x} ?

y is inversely proportional to the square of x
$\boldsymbol{y} \propto \sqrt{x}$
Which of the following could be the graph demonstrating between \boldsymbol{y} and \boldsymbol{x} ? Which of the following could be the graph demonstrating between \boldsymbol{y} and \boldsymbol{x} ?

Extra Notes

