

Year 10 Mathematics Unit 17

(adapted for 2022 year 10)

Name:

Class:

Contents Page

- 1 Non-Linear Graphs
- 2 Direct and Inverse Proportion

See unit 17 course on drfrostmaths.com

Unit 17

Non-Linear Graphs PR Direct and Inverse Proportion Direct and Inverse Proportion

1 Non-Linear Graphs

Interpreting Quadratic Graphs

- *y*-intercept where the graph intercepts the *y*-axis
- *x*-intercept or root or solution where the graph intercepts the *x*-axis
- Turning point or vertex or minimum/maximum where the graph stops decreasing and starts increasing or vice-versa

- a) Complete the table and draw the graph of $y = x^2 + 2x$ for x = -4 to x = 2
- b) Write down the equation of the line of symmetry of your graph
- c) Use your graph to find:
 - i) the value of y when x = 0.5ii) the values of x when y = 6
- Here is a table of values for $y = x^2 + 2x$.

x	-4	-3	-2	-1	0	1	2
y	8		0	-1			8

a) Complete the table and draw the graph of $y = x^2 - 2x - 4$ for x = -2 to x = 4

Worked Example

- b) Write down the equation of the line of symmetry of your graph
- c) Write down the values of *x* where the graph crosses the *x*-axis

Here is a table of values for $y = x^2 - 2x - 4$.

x	-2	-1	0	1	2	3	4
y		-1	-4			-1	

1. Here is a table of values for $y = x^2 - 2$.

x	-3	-2	-1	0	1	2	3
y	7		-1	-2			7

a) Complete the table of values.

b) On the grid, draw the graph of $y = x^2 - 2$ for x = -3 to x = 3.

of white down are equation of are into or cyninion y or your gra

d) Write down the coordinates of the minimum point.

2. Here is the table of values for $y = 3 - x^2$.

x	-3	-2	-1	0	1	2	3
y	-6		2	3		-1	

Fluency Practice

a) Complete the table of values.

b) On the grid, draw the graph of $y = 3 - x^2$ for x = -3 to x = 3.

c) Write down the coordinates of the maximum point.

d) Write down the values of *x* where the graph crosses the *x*-axis.

Common Mistakes

The parabola does not have a clearly defined minimum or maximum point.

Drawing line segments between each coordinate pair suggest the relationship between them is linear which it is not.

A coordinate pair is either calculated or plotted incorrectly.

The graph is does not pass through each of the coordinate pairs to form a clear defined and smooth parabola.

Use this graph to solve these equations:

a) $x^2 - 2x - 2 = 0$ b) $x^2 - 2x - 5 = 0$

Use this graph to solve these equations: $a_1 = a_2^2 + a_3 = a_4$

Use this graph to solve these equations:

a)
$$x^2 = 2x + 3$$

b) $x^2 = x + 4$

b)
$$x^2 = x +$$

Use this graph to solve these equations:

c)
$$x^{2} + x - 1 = 0$$

d) $x^{2} - 2x - 1 = 0$

x	-5	-4	-3	-2	-1	0	1	2
y	6	0		-6		-4		

a) Complete the table of values.

b) On the grid, draw the graph of $y = x^2 + 3x - 4$.

Fluency Practice

5. The graphs $y = x^2 - 3x - 2$ and y = x - 2 are shown below.

Worked Example	Worked Example	
a) Complete the table and draw the graph of $y = x^3 - 4$ f b) Use the graph to find the value of y when $x = 4$ Here is a table of values for $y = x^3 - 4$.	for $x = -4$ to $x = 4$ a) Complete the table and draw the graph of $y = x^3 - 4x^2 + 5$ for $x = x = 5$ b) Use your graph to find the solutions to: i) $x^3 - 4x^2 + 5 = 0$ ii) $x^3 - 4x^2 - x + 5 = 0$ Here is a table of values for $y = x^3 - 4x^2 + 5$.	÷ −2 to
x -4 -3 -2 -1 0 1 2 3 4	x -2 -1 0 1 2 3 4 5	
у П	y -19 5 -4 5	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$	

Worked Example	Worked Example	
Complete the tables and draw the graph of $y = \frac{2}{x}$ for $x = -5$ to $x = 5$	Complete the tables and draw the graph of $y = -\frac{1}{x}$ for $x = -5$ to $x = 5$	
Here is a table of values for $y = \frac{2}{x}$.	Here is a table of values for $y = -\frac{1}{x}$.	
x 0.25 0.4 0.5 0.8 1 2 4 5	x 0.2 0.4 0.5 0.8 1 2 3 4 5	
	<i>y</i>	
x -0.25 -0.4 -0.5 -0.8 -1 -2 -4 -5	x -0.2 -0.4 -0.5 -0.8 -1 -2 -3 -4 -5	
	у	
	$\begin{array}{c} \begin{array}{c} & & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & $	

				W	/ork	ed	Exa
Comple	ete the	ables	and	draw	the gr	aph c	of $y =$
Here is a tal	ble of values	for $y = \frac{1}{x}$	4 - 1 [.]				
x	1.5	2	3	5	6	9	11
У							
x	0.5	0	-1	-3	-4	-7	-9
У							
			<i>y</i> ↑ 8-				
			7- 6-				
			5				
			4- 3-				
			2-				
-12 -10	-8 -6	-4 -2	0 2	2 4	6 8	10 12	ż
			1- 2-				
			3-				
			5-				
			6- 7-				
			8-				

	Fluency Practice												Fluency Practice											
1.	1. Here are some table of values for $y = \frac{4}{x}$.												3. a) Here are some table of values for $y = \frac{8}{x+2}$.											
	x	0.2	0.4	0.5	1	2	4	5	8	10		x	-12	-10	-7	-6	-4	-3	-1	0	2	3	6	8
	y		10		4	2		0.8				у												
	$\frac{x}{y} + \frac{x}{y} + \frac{x}$											 b) On c) For a) Co x y 	your ad	dition: alues	al sheet of x is $\frac{1}{-1}$	t, draw $y = \frac{8}{x+1}$	the grap $\frac{1}{2}$ not c r $y = 3$ $\frac{1}{2}$	ph of y defined? $-\frac{2}{x}, x$	$=\frac{8}{x+2}$	for – 12 0.5	<i>≤ x ≤</i> 7	12.	3	
	c) Use	your graph	to find a	n estimate	e for the s	solutions c	of $\frac{4}{x} = 4$ -	- <i>x</i> .					·				i	ļ.	ľ					
2.	2. On your additional sheet, draw the graph of $y = -\frac{3}{x}$ for $-10 \le x \le 10$.											b) On c) Thi Wr	your ad s graph te down	dition: appro the e	al sheet baches t quation	t, draw two line of eacl	the grap s withou h of the	ph of <i>y</i> ⁺ ut touch se two I	$= 3 - \frac{2}{x}$ ling ther ines.	for –3 s	$\leq x \leq 3$	re calle	d asymp	ototes.

Fluency Practice

1. Here is a table of values for $y = 4^x$.

X	-2	-1	0	1	2
У					

a) Complete the table of values.

b) On the grid, draw the graph of $y = 4^x$ for $-2 \le x \le 2$.

ii) the value of x when y = 11

2. Here is the table of values for $y = 3^{-x}$.

x	-3	-2	-1	0	1	2
У						

a) Complete the table of values.

b) On the grid, draw the graph of $y = 3^{-x}$ for $-3 \le x \le 2$.

Extra Notes

2 Direct and Inverse Proportion

Direct Proportion

y is directly proportional to xy is proportional to xy varies directly to x

 $y \propto x$

y = kxk is called the constant of proportionality

Worked Example	Your Turn
 y is directly proportional to x. a) Find the constant of proportionality (k). b) Find the missing value. c) Write an equation connecting x and y. 	 y is directly proportional to x. a) Find the constant of proportionality (k). b) Find the missing value. c) Write an equation connecting x and y.
x 1 2	x 12
y 5	y 30 72

Worked Example	Your Turn
 y is proportional to x. When x = 2, y = 12. a) Write an equation linking x and y and find the constant of proportionality (k). b) Use your answer to part a) to find the value of y when x = 4. c) Use your answer to part a) to find the value of x when y = 72. 	 y is proportional to x. When x = 3, y = 24. a) Write an equation linking x and y and find the constant of proportionality (k). b) Use your answer to part a) to find the value of y when x = 9. c) Use your answer to part a) to find the value of x when y = 72.

Worked Example	Your Turn
y is proportional to x .	y is proportional to x .
When $x = 2, y = 20$.	When $x = 4$, $y = 20$.
a) Find y when $x = 5$.	a) Find y when $x = 5$.
b) Find x when $y = 90$.	b) Find x when $y = 90$.

Worked Example	Your Turn
Worked Example y is directly proportional to x .When $y = 20, x = 2$.a) Find y when $x = 5$.b) Find x when $y = 200$.	Your Turn b is directly proportional to a .When $b = 30, a = 5$.a) Find b when $a = 2$.b) Find a when $b = 3000$.

Worked Example								Your Turn	
y is a) b)	direc Wor Writ	tly pro k out e an e	oporti the co equati	onal to x^2 . Instant of proportionality (k). In connecting y and x.	y is a) b)	direc Wor Writ	tly pro k out e an e	oportio the cor equatio	nal to x^2 . Instant of proportionality (k). In connecting y and x.
x	1	2	5		x	1	3	7	
y	3	12	75		y	5	45	245	

Worked Example	Your Turn
y is proportional to x^2 .	y is proportional to x^2 .
When $y = 90, x = 3$.	When $y = 18, x = 3$.
Work out the value of:	Work out the value of:
a) y when $x = 5$.	a) y when $x = 7$.
b) x when $y = 100$.	b) x when $y = 72$.

Worked Example	Your Turn
Worked Example y is directly proportional to the square of x .When $y = 36, x = 3$.a) Find y when $x = 5$.b) Find x when $y = 400$.	Your Turn b is directly proportional to the square of a. When b = 12, a = 2. a) Find b when a = 3. b) Find a when b = 300.

Worked Example	Your Turn
y is proportional to \sqrt{x} .	y is proportional to \sqrt{x} .
When $y = 6, x = 9$.	When $y = 20, x = 16$.
Work out the value of:	Work out the value of:
a) y when $x = 16$.	a) y when $x = 36$.
b) x when $y = 10$.	b) x when $y = 20$.

Worked Example	Your Turn
y is directly proportional to the square root of x. When $y = 36$, $x = 16$. a) Find y when $x = 25$. b) Find x when $y = 900$.	<i>b</i> is directly proportional to the square root of <i>a</i> . When b = 36, a = 144. a) Find <i>b</i> when a = 49. b) Find <i>a</i> when b = 243.

Worked Example	Your Turn
a) y is directly proportional to $x + 2$.	a) y is directly proportional to $x + 2$.
When $y = 20$, $x = 2$.	When $y = 12$, $x = 2$.
Find y when $x = 5$.	Find y when $x = 8$.
b) y is directly proportional to $x^2 + 4$.	b) y is directly proportional to $2x^2$.
When $y = 52$, $x = 3$.	When $y = 36$, $x = 3$.
Find y when $x = 5$.	Find y when $x = 5$.

Worked Example	Your Turn
A is directly proportional to B^2 .	A is directly proportional to B^2 .
Find the percentage increase in A when B is increased by 10%.	Find the percentage increase in A when B is increased by 20%.

Inverse Proportion

y is inversely proportional to *x y* varies inversely or indirectly to *x*

 $y \propto \frac{1}{x}$ $y = \frac{k}{x}$ k is called the constant of proportionality

The graph of $y = \frac{k}{x}$ is a reciprocal graph.

Worked Example Your Turn y is inversely proportional to x. y is inversely proportional to x. Work out the constant of proportionality (k). a) a) Work out the constant of proportionality (k). Find the missing values in the table. b) b) Find the missing values in the table. Write an equation connecting *x* and *y*. Write an equation connecting *x* and *y*. c) c) 2 9 12 1 х х 8 120 40 80 y y

Worked Example	Your Turn		
Worked Example y is inversely proportional to x .When $x = 2, y = 50$.a) Work out the value of y when $x = 20$.b) Work out the value of x when $y = 12.5$.	Your Turn y is inversely proportional to x .When $x = 5$, $y = 50$.a) Work out the value of y when $x = 10$.b) Work out the value of x when $y = 25$.		

Worked Example	Your Turn
Worked Example y is inversely proportional to x .When $y = 5, x = 2$.a) Find y when $x = 5$.b) Find x when $y = 0.5$.	Your Turn b is inversely proportional to a .When $b = 10, a = 3$.a) Find b when $a = 5$.b) Find a when $b = 0.25$.

Worked Example	Your Turn
y is inversely proportional to the cube of x .	y is inversely proportional to the square root of x .
When $x = 2, y = 5$.	When $x = 4$, $y = 32$.
a) Work out the value of y when $x = 4$.	a) Work out the value of y when $x = 100$.
b) Work out the value of x (to 2dp) when $y = 8$.	b) Work out the value of x when $y = 10$.

Worked Example	Your Turn
Worked Example y is inversely proportional to the square of x .When $y = 6, x = 10$.a) Find y when $x = 5$.b) Find x when $y = 1.5$.	Your Turn b is inversely proportional to the square of a. When b = 6, a = 5. a) Find b when a = 10. b) Find a when b = 6.

Worked Example	Your Turn
y is inversely proportional to the square root of x .	b is inversely proportional to the square root of a .
When $y = 4, x = 25$.	When $b = 4, a = 9$.
a) Find y when $x = 4$.	a) Find b when $a = 16$.
b) Find x when $y = 2.5$.	b) Find a when $b = 6$.

Worked Example	Your Turn
y is inversely proportional to $x + 3$. When $y = 52$, $x = 3$. Find y when $x = 5$.	y is inversely proportional to $2x + 1$. When $y = 30$, $x = 4$. Find y when $x = 7$.

Fill in the Gaps

Туре	Statement	k-Formula	k value x = 2 , y = 4	Final Formula	
y is proportional to x	y∝x	<i>y</i> = k x			
x is proportional to y					
y is inversely proportional to x	$y \propto \frac{1}{x}$	$y = \frac{k}{x}$			
x is inversely proportional to y					
y is proportional to the square of x					
x is proportional to the square of y					
x is proportional to \sqrt{y}					
Y is inversely proportional to \sqrt{x}					
Y is proportional to x ³					
x is proportional to 3 more than y					

Worked Example	Your Turn
A, B and C are three variables. A is directly proportional to C^2 . A is also directly proportional to B^3 . C = 94 when $B = 0.5$. Find B when $C = 730$.	D, E and F are three variables. D is directly proportional to F^2 . D is also directly proportional to E^3 . F = 47 when E = 0.25. Find E when F = 365.

Extra Notes