

Year 10
 Mathematics
 Unit 18

Name:
:

Class:

Contents Page

1 Advanced Data Handling
2 Expand Binomials
3 Solving Quadratics

See unit 18 course on drfrostmaths.com

Unit 18

PR Advanced Data Handling
Advanced Data Handling
PR Expand Binomials
Expand Binomials
PR Solving Quadratics
Solving Quadratics

Ungrouped Frequency Tables

Worked Example

25 packets of sweets were opened. The numbers of sweets in the packets were:
$11,8,9,12,10,10,9,8,9,13,9,11,10,10,12,12,10,10,10,11,12,8,9,8,9$
Construct a frequency table to show this data:

Number of sweets	Frequency

Mode of Ungrouped Data

Median of Ungrouped Data

Fluency Practice

Number	Position
of pieces	
of data:	of the median:

(a) $4,10,11,12,12,15,20$
(b) $4,10,11,12,12,15$
(c) $10,11,12,12,15$
(d) $10,11,12,12$
(e) $1,3,6,8,9,12$

Number of pieces of data:	Position of the median:
7	
11	
10	
41	
24	

```
8
3.5
4 0
2 1 . 5
```

Fluency Practice

Number of pets	Frequency	Which pieces of data are in this category?
0	3	$1^{\text {st }} 2^{\text {nd }} 3^{\text {rd }}$
1	2	$4^{\text {th }} 5^{\text {th }}$
2	4	

Number of pets	Frequency	Which pieces of data are in this category?
0		$1^{\text {st }} 2^{\text {dd }}$
1		$3^{\text {rd }}$
2	$4^{\text {th }} 5^{\text {th }} 6^{\text {th }} 7^{\text {th }} 8^{\text {th }}$	
3	$9^{\text {th }} 10^{\text {th }}$	
4	$11^{\text {th }} 12^{\text {th }} 13^{\text {th }}$	

Number of pets	Frequency	Which pieces of data are in this category?
0	8	
1	9	
2	13	
3	12	
4	9	

Number of pets	Frequency	Which pieces of data are in this category?
0	5	
1	1	
2	3	

Number of pets	Frequency	Which pieces of data are in this category?
0		$1^{\text {st }}$
1		$2^{\text {nd }} 3^{\text {rd }} 4^{\text {th }}$
2	$5^{\text {th }} 6^{\text {th }} 7^{\text {th }} 8^{\text {th }}$	
3	$9^{\text {th }} 10^{\text {th }}$	
4	$11^{\text {th }} 12^{\text {th }}$	

Number of pets	Frequency	Which pieces of data are in this category?
0		$1^{\text {st }}$ to $13^{\text {th }}$
1		$14^{\text {th }}$ to $29^{\text {th }}$
2	$30^{\text {th }}$ to $59^{\text {th }}$	
3	$60^{\text {th }}$ to $80^{\text {th }}$	
4	$81^{\text {st }}$ to $92^{\text {nd }}$	

Number of pets	Frequency	Which pieces of data are in this category?
0	2	
1	1	
2	5	

Number of pets	Frequency	Which pieces of data are in this category?
0	21	$1^{\text {st }}$ to $21^{\text {st }}$
1	15	$22^{\text {nd }}$ to...
2	18	
3	25	
4	32	

Number of pets	Frequency	Which pieces of data are in this category?
0	1	
1	3	
2	3	

Number of pets	Frequency	Which pieces of data are in this category?
0	10	
1	12	
2	15	
3	20	
4	5	

Mean of Ungrouped Data

Worked Example

The table gives information about the numbers of badges gained by the girls in a Guide group.
a) Write down the mode.
b) Find the range.
c) Work out the median
d) Calculate the mean.

Number of badges	Frequency
0	2
1	8
2	4
3	3
4	5
5	3

Worked Example

80 people take part in a survey. Their ages are shown in the frequency table. How many respondents are in their thirties?

Age range	Frequency
$20 \leq$ age <30	8
$30 \leq$ age <40	
$40 \leq$ age <50	12
$50 \leq$ age <60	16
$60 \leq$ age <70	11
$70 \leq$ age <80	10
$80 \leq$ age <90	9
	$\mathbf{8 0}$

Modal Class of Grouped Data

Range of Grouped Data

Median Class of Grouped Data

Worked Example

Jack collects the heights of 100 flowers and records the data in the table below.

Height $(\boldsymbol{y} \mathbf{~ c m})$	Frequency
$40<y \leq 50$	7
$50<y \leq 60$	14
$60<y \leq 70$	59
$70<y \leq 80$	11
$80<y \leq 90$	9

Use interpolation to estimate the median.
Give your answer correct to 1 decimal place.

Your Turn

James collects the heights of 80 flowers and records the data in the table below.

Height $(x$ cm $)$	Frequency
$35<x \leq 40$	4
$40<x \leq 45$	9
$45<x \leq 50$	26
$50<x \leq 55$	13
$55<x \leq 60$	8
$60<x \leq 65$	20

Use interpolation to estimate the median.
Give your answer correct to 1 decimal place.

Worked Example

Jack collects the heights of 100 flowers and records the data in the table below.

Height $(\boldsymbol{y} \mathbf{~ c m})$	Frequency
$40<y \leq 50$	7
$50<y \leq 60$	14
$60<y \leq 70$	59
$70<y \leq 80$	11
$80<y \leq 90$	9

Use interpolation to estimate the interquartile range.
Give your answer correct to 1 decimal place.

Your Turn

James collects the heights of 80 flowers and records the data in the table below.

Height $(x$ cm $)$	Frequency
$35<x \leq 40$	4
$40<x \leq 45$	9
$45<x \leq 50$	26
$50<x \leq 55$	13
$55<x \leq 60$	8
$60<x \leq 65$	20

Use interpolation to estimate the interquartile range.
Give your answer correct to 1 decimal place.

Midpoint of Two Numbers

Worked Example		Your Turn	
Numbers	Midpoint		Numbers Midpoint 40 and 60

Numbers	Midpoint
1. 8 and 10	
2. 7 and 11	
3. 2 and 16	
4. 22 and 36	
5. 22 and 46	
6.22 and 47	
7.22 and 48	
8. 21 and 48	
9. 21 and 47	
10.42 and 94	

Numbers	Midpoint
11. 142 and 194	
12. 14.2 and 19.4	
13. 7.1 and 9.7	
14. 7 and 9.6	
15. -9.6 and -7	
16. -9.9 and -7	
17. -9.9 and -6.9	
18. -6.9 and 9.9	
19. $-6 \frac{3}{4}$ and $9 \frac{3}{4}$	
20. $-6 \frac{3}{5}$ and $9 \frac{3}{4}$	

Estimated Mean of Grouped Data

Worked Example

Bob asked each of 40 friends how many minutes they took to get to work. The table shows some information about his results.
a) Write down the modal class.
b) Work out the upper and lower bounds for the range.
c) Work out the class in which the median lies.
d) Calculate an estimate for the median.
e) Calculate an estimate for the mean.

Time taken (\boldsymbol{m} minutes)	Frequency
$0<m \leq 10$	3
$10<m \leq 20$	8
$20<m \leq 30$	11
$30<m \leq 40$	9
$40<m \leq 50$	9

Extra Notes

Worked Example	Your Turn
Expand and simplify: $(x+2)(x-3)(x-4)$	Expand and simplify: $(x+4)(x-6)(x-8)$

Worked Example	Your Turn
Expand and simplify: $(5 x+2)(7 x-3)(x-4)$	Expand and simplify: $(5 x+4)(7 x-6)(x-8)$

Worked Example	Your Turn
Expand and simplify: $(5 x+2)^{3}$	Expand and simplify: $(7 x-6)^{3}$

Extra Notes

Multiplication by Zero

Fluency Practice

Find the value of $(x-3)(x-7)$ if
a) $x=8$
b) $x=7$
c) $x=3$
a) If $x=8 \quad(x-3)(x-7)=(8-3)(8-7)$

$$
\begin{aligned}
& =(5)(1) \\
& =5
\end{aligned}
$$

b) If $x=7 \quad(x-3)(x-7)=(4)(0)$

$$
=0
$$

c) If $x=3 \quad(x-3)(x-7)=(0)(-4)$

$$
=0
$$

1. Find the value of $(x-4)(x-2)$ if
a) $x=6$
b) $x=4$
c) $x=2$
2. Find the value of $(x-5)(x-9)$ if
a) $x=5$
b) $x=10$
c) $x=9$
3. Find the value of $(x-7)(x-1)$ if
a) $x=1$
b) $x=8$
c) $x=7$
4. Find the value of $(x-4)(x-6)$ if
a) $x=4$
b) $x=6$
c) $x=3$
5. Find the value of $(x-6)(x-7)$ if
a) $x=2$
b) $x=6$
c) $x=9$

Find the value of $(x-2)(x+4)$ if
a) $x=2$
b) $x=4$
c) $x=-4$
a) If $x=2$

$$
(x-2)(x+4)=(0)(6)
$$

$$
=0
$$

b) If $x=4$

$$
(x-2)(x+4)=(2)(8)
$$

$$
=16
$$

c) If $x=-4$

$$
(x-2)(x+4)=(-6)(0)
$$

6. Find the value of $(x-3)(x+5)$ if
a) $x=6$
b) $x=3$
c) $x=-5$
7. Find the value of $(x-4)(x+6)$ if
a) $x=0$
b) $x=-6$
c) $x=4$
8. Find the value of $(x-7)(x+2)$ if
a) $x=-7$
b) $x=-2$
c) $x=7$
9. Find the value of $(x+4)(x+5)$ if
a) $x=-4$
b) $x=-5$
c) $x=0$
10. Find the value of $(x+7)(x+1)$ if
a) $x=-4$
b) $x=-1$
c) $x=-7$

The results of this exercise show that if the product of two factors is 0 , then either one or both of these factors must be 0

In general we can say

```
then either \(A=0\) or/and \(\quad B=0\)
```


Fluency Practice

In questions 1 to 12 find, if possible, the value or values of A. Note that if $A \times 0=0$ then A can have any value.

1. $A \times 6=0$
2. $A \times 7=0$
3. $A \times 10=0$
4. $A \times 4=0$
5. $A \times 9=18$
6. $A \times 0=0$
7. $A \times 20=0$
8. $3 \times A=12$
9. $8 \times A=8$
10. $A \times 3=21$
11. $0 \times A=0$
12. $4 \times A=0$,
13. If $A B=0$ find
a) A if $B=2$
b) B if $A=10$
14. If $A B=0$ find
a) A if $B=5$
b) B if $A=5$
15. If $A B=0$ find
a) A if $B=10$
b) B if $A=3$
16. If $A B=0$ find
a) B if $A=6$
b) A if $B=0$

Find a and b if $a(b-3)=0$

$$
\begin{aligned}
& \text { Either } \quad a=0 \quad \text { or/and } \quad b-3=0 \\
& \text { i.e., either } \\
& \quad a=0 \text { or/and } b=3
\end{aligned}
$$

Find a and b if:
17. $a(b-1)=0$
18. $a(b-5)=0$
19. $a(b-2)=0$
20. $(a-3) b=0$
21. $(a-9) b=0$
22. $a(b-4)=0$
23. $a(b-10)=0$
24. $(a-1) b=0$
25. $(a-7) b=0$
26. $(a-12) b=0$

Quadratics Equations

Previously we have considered equations such as $x-1=0$ and $3 x+2=0$. These are examples of linear equations. The first equation is true only for $x=1$ and the second only for $x=-\frac{2}{3}$.

If, however, we consider the equation

$$
(x-1)(x-2)=0
$$

we find that it is true either when $x-1=0$ or when $x-2=0$, i.e. either when $x=1$ or when $x=2$

There are, therefore, two values of x that satisfy the equation $(x-1)(x-2)=0$
Expanding the left-hand side gives

$$
x^{2}-3 x+2=0
$$

Equations like this, which contain an x^{2} term, are called quadratic equations.

When we are given a quadratic equation we can often factorise the left-hand side into two linear factors,

```
e.g.
\[
x^{2}-5 x+4=0
\]
\[
\text { gives } \quad(x-4)(x-1)=0
\]
```

It is this technique that concerns us in the present chapter.

Worked Example	Your Turn
What values of x satisfy the equation $x(x-9)=0 ?$	What values of x satisfy the equation $(x+6) x=0$?

Worked Example	Your Turn
What values of x satisfy the equation $(x-9)(x+5)=0$?	What values of x satisfy the equation $(x+6)(x-5)=0$?

Worked Example	Your Turn
Solve the equation $(2 \mathrm{x}-3)(3 \mathrm{x}+1)=0$	Solve the equation $(3 \mathrm{x}+2)(2 \mathrm{x}-1)=0$

Solving Quadratics Equations by Factorising
The previous two exercises suggest that if the left-hand side of a quadratic equation can be expressed as two linear factors, we can use these factors to solve the equation.

Worked Example	
Solve the equation $x^{2}+2 x-8=0$	Solve the equation Turn $x^{2}+2 x-15=0$

Worked Example	
Solve the equation	
$x^{2}-49=0$	

Worked Example	
Solve the equation	Your Turn
$3 x^{2}+2 x=0$	

Worked Example	
Solve the equation $x^{2}-4 x+4=0$	Solve the equation Turn $x^{2}+14 x+49=0$

Worked Example	
Solve the equation	Your Turn
$5 x^{2}+13 x-6=0$	$5 x^{2}+7 x-6=0$

Worked Example	
Solve the equation	Your Turn
$4 x^{2}-9=0$	$16 x^{2}-81=0$

Worked Example	
Solve the equation	Your Turn
$x^{2}-x=12$	

Worked Example	Your Turn
Solve the equation $12 x^{2}+10 x-12=0$	Solve the equation

Worked Example	
Solve the equation $x(x-2)=15$	Solve the equation Turn $(x-3)(x+2)=6$

Worded Problems

Worked Example

I think of a positive number x, square it and then add three times the number I first thought of. If the answer is 54 , form an equation in x and solve it to find the number I first thought of.

Worked Example

A rectangle is 4 cm longer than it is wide. If it is $x \mathrm{~cm}$ wide and has an area of $77 \mathrm{~cm}^{2}$, form an equation in x and solve it to find the dimensions of the rectangle.

Worked Example

The sum of two numbers is 13 and the sum of their squares is 97 . Find the numbers.

Solution of Quadratic Equation by Formula

If we apply the method of completing the square to the general quadratic numbers, we can establish, where a, b and c are positive or negative numbers, we can establish a formula for solving the equation
Consider the general equation

$$
a x^{2}+b x+c=0
$$

$$
\begin{aligned}
& \text { Divide both sides by } a \\
& \text { Subtract } \frac{c}{a} \text { from each side }
\end{aligned}
$$

$$
x^{2}+\frac{b}{a} x+\frac{c}{a}=0
$$

Complete the square on the LHS and

$$
x^{2}+\frac{b}{a} x=-\frac{c}{a}
$$ add the same quantity to the RHS. $\quad x^{2}+\frac{b}{a} x+\frac{b^{2}}{4 a^{2}}=-\frac{c}{a}+\frac{b^{2}}{4 a^{2}}$

Therefore

$$
\left(x+\frac{b}{2 a}\right)^{2}=\frac{-4 a c+b^{2}}{4 a^{2}}
$$

Take square roots of each side

$$
x+\frac{b}{2 a}= \pm \frac{\sqrt{b^{2}-4 a c}}{2 a}
$$

Subtract $\frac{b}{2 a}$ from each side

$$
x=-\frac{b}{2 a} \pm \frac{\sqrt{b^{2}-4 a c}}{2 a}
$$

i.e.

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

This is called the formula for solving quadratic equations. It gives values of x, or roots of the equation, for any given values of a, b and c (provided that $b^{2}-4 a c$ is not negative).
Remember that a is the coefficient of x^{2} b is the coefficient of x
c is the constant number term.
Since the two values of x are

$$
-\frac{b}{2 a}+\frac{\sqrt{b^{2}-4 a c}}{2 a} \text { and }-\frac{b}{2 a}-\frac{\sqrt{b^{2}-4 a c}}{2 a}
$$

the sum of the two roots is always $\left(\frac{-b}{2 a}\right)+\left(\frac{-b}{2 a}\right)=-\frac{b}{a}$
This provides a useful check that your answers are correct.

Quadratic Formula

a general quadratic equation can always be written:

$$
a x^{2}+b x+c=0
$$

the solutions to a general quadratic equation are:

$$
x=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}
$$

a is the number in front of the x^{2}
b is the number in front of the x
c is the (constant) number

Worked Example	Your Turn
Write down the values of	Write down the values of
a, b and c in:	
a) $5 x^{2}+2 x-3=0$	and c in:
b) $x^{2}+2 x-3=0$	
c) $\quad x^{2}+2 x=4 x-3$	a) $5 x^{2}-2 x+3=0$
	b)$x^{2}-2 x+3=0$ c) $x^{2}-2 x=-4 x+3$

Questions	\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{c}
$3 x^{2}+5 x+1=0$			
$0=3 x^{2}+5 x+1$			
$0=3 x^{2}+5 x+2$			
$3 x^{2}+4 x+2=0$			
$0=3 x^{2}+4 x-2$			
$3 x^{2}-4 x+2=0$			
$x^{2}-4 x+2=0$			
$x^{2}+2-4 x=0$			
$1+2 x-4 x^{2}=0$			
$1+2 x=4 x^{2}$			

Questions	\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{c}
$2 \mathrm{x}=4 \mathrm{x}^{2}+1$			
$1=4 \mathrm{x}^{2}+2$			
$4 \mathrm{x}^{2}+2 \mathrm{x}=0$			
$4 \mathrm{x}^{2}+2=0$			
$2\left(2 \mathrm{x}^{2}+1\right)=0$			
$-2\left(2 x^{2}+1\right)=0$			
$-2\left(2 x^{2}+1\right)=2 \mathrm{x}$			
$-2\left(2 x^{2}+1\right)=2 \mathrm{x}+2$			
$-2\left(2 x^{2}+1\right)=x^{2}+2 x+2$			
$-2\left(2 x^{2}+x+1\right)=x^{2}+2 x+2$			

Discriminant

The expression $b^{2}-4 a c$ in the quadratic formula is called the discriminant, because it can "discriminate" between the possible types of answer:

- When $b^{2}-4 a c$ is positive, we get two real solutions
- When $b^{2}-4 a c$ is zero, we get just one real solution (both answers are the same)
- When $b^{2}-4 a c$ is negative, we get a pair of complex solutions

Worked Example	Your Turn
Given that $a=5, b=6, c=-7$ work out the value of $b^{2}-4 a c$	Given that $a=-6, b=7, c=8$ work out the value of $b^{2}-4 a c$

Worked Example	Your Turn
Solve the equation $4 x^{2}=7 x+1$ giving your answers correct to two decimal places.	Solve the equation $7 x^{2}=4 x+1$ giving your answers correct to two decimal places.

Fill in the Gaps

Quadratic Equation	$\boldsymbol{a}, \boldsymbol{b}$ and \boldsymbol{c}	$\boldsymbol{b}^{2}-\mathbf{4 a c}$	$\boldsymbol{x}=\frac{-\boldsymbol{b}+\sqrt{\boldsymbol{b}^{2}-\mathbf{4 a c}}}{\mathbf{2 a}}$	$\boldsymbol{x}=\frac{\mathbf{- b}-\sqrt{\boldsymbol{b}^{2}-\mathbf{4 a c}}}{\mathbf{2 a}}$	Solutions to 3sf
$x^{2}+5 x+1=0$	$a=1, b=5, c=1$	$5^{2}-4 \times 1 \times 1$ $=21$	$x=\frac{-5+\sqrt{21}}{2}$	$x=\frac{-5-\sqrt{21}}{2}$	
$2 x^{2}+5 x+1=0$	$a=2, b=5, c=1$	$5^{2}-4 \times 2 \times 1$ $=17$			
$2 x^{2}-5 x+1=0$	$a=2, b=-5, c=1$	$(-5)^{2}-4 \times 2 \times 1$ $=17$	$x=\frac{5+\sqrt{17}}{2}$		
$x^{2}-7 x+3=0$					
$2 x^{2}-7 x+3=0$					
$5 x^{2}+x-2=0$					

Worded Problems

Extra Notes

