

Year 10 Mathematics Unit 18

Name:

Class:

Contents Page

- 1 Advanced Data Handling
- 2 <u>Expand Binomials</u>
- 3 <u>Solving Quadratics</u>

See unit 18 course on drfrostmaths.com

Unit 18

PR Advanced Data Handling Advanced Data Handling PR Expand Binomials Expand Binomials PR Solving Quadratics Solving Quadratics

1 Advanced Data Handling

Ungrouped Frequency Tables

25 packets of sweets were opened. The numbers of sweets in the packets were:

11, 8, 9, 12, 10, 10, 9, 8, 9, 13, 9, 11, 10, 10, 12, 12, 10, 10, 10, 11, 12, 8, 9, 8, 9

Construct a frequency table to show this data:

Number of sweets	Frequency

Mode of Ungrouped Data

	W	orked Example			Your Turn
Determir	ne the modal s	core:	Determir	ne the modal s	score:
Score	Frequency		Score	Frequency	
0	2		0	4	
1	3		1	6	
2	1		2	2	
3	2		3	4	
4	2		4	4	
5	4		5	8	
]

Range of Ungrouped Data

	W	orked Example				Your Turn
Determir	ne the range o	f the scores:	1	Determir	ne the range o	f the scores:
Score	Frequency			Score	Frequency	
0	2			0	4	
1	3			1	6	
2	1			2	2	
3	2			3	4	
4	2			4	4	
5	4			5	8	

Median of Ungrouped Data

Fluency Practice

Number	Position
of pieces	of the
of data:	median:

- (a) 4, 10, 11, 12, 12, 15, 20
- (b) 4, 10, 11, 12, 12, 15
- (c) 10, 11, 12, 12, 15
- (d) 10, 11, 12, 12

(e) 1, 3, 6, 8, 9, 12

Number of pieces of data:	Position of the median:
7	
11	
10	
41	
24	
	8
	3.5
	40
	21.5

Fluency Practice

Number of pets	Frequency	Which pieces of data are in this category?
0	3	1 st 2 nd 3 rd
1	2	4 th 5 th
2	4	

Number of pets	Frequency	Which pieces of data are in this category?
0		1 st 2 nd
1		3rd
2		4 th 5 th 6 th 7 th 8 th
3		9 th 10 th
4		11 th 12 th 13 th

Number of pets	Frequency	Which pieces of data are in this category?
0	8	
1	9	
2	13	
3	12	
4	9	

			_	Ν
Number of	Frequency	Which pieces of data are in this		
pets		category?		
0	5			
1	1			
2	3			

Number of pets	Frequency	Which pieces of data are in this category?
0		1 st
1		2 nd 3 rd 4 th
2		5 th 6 th 7 th 8 th
3		9 th 10 th
4		11 th 12 th

Number of pets	Frequency	Which pieces of data are in this category?
0		1 st to 13 th
1		14 th to 29 th
2		30 th to 59 th
3		60 th to 80 th
4		81 st to 92 nd

Number of	Frequency	Which pieces of data are in this
0	2	category:
1	1	
2	5	

Number of pets	Frequency	Which pieces of data are in this category?
0	21	1 st to 21 st
1	15	22 nd to
2	18	
3	25	
4	32	

Number of pets	Frequency	Which pieces of data are in this category?
0	1	
1	3	
2	3	

Number of pets	Frequency	Which pieces of data are in this category?
0	10	
1	12	
2	15	
3	20	
4	5	

Worked Example				Your Turn				
Calculate the median score:			Calculate	Calculate the median score:				
Scor	e Frequency		Score	Frequency				
0	2		0	4				
1	3		1	6				
2	1		2	2				
3	2		3	4				
4	2		4	4				
5	4		5	8				
	•			•				
1								

Worked Example				Your Turn				
Calculate the median score:			Calculate	Calculate the median score:				
Score	e Frequency		Score	Frequency				
0	2		0	9				
1	3		1	6				
2	1		2	2				
3	2		3	4				
4	2		4	4				
5	7		5	8				
l								
1								

Mean of Ungrouped Data

Worked Example				Your Turn			
Calculate the mean score:			Calculate the mean score:				
Score	Frequency		Score	Frequency			
0	2		0	4			
1	3		1	6			
2	1		2	2			
3	2		3	4			
4	2		4	4			
5	4		5	8			
]		

The table gives information about the numbers of badges gained by the girls in a Guide group.

- a) Write down the mode.
- b) Find the range.
- c) Work out the median
- d) Calculate the mean.

Number of badges	Frequency
0	2
1	8
2	4
3	3
4	5
5	3

Grouped Frequency Tables

80 people take part in a survey. Their ages are shown in the frequency table. How many respondents are in their thirties?

Age range	Frequency
$20 \le age < 30$	8
$30 \le age < 40$	
40 ≤ age < 50	12
50 ≤ age < 60	16
60 ≤ age < 70	11
70 ≤ age < 80	10
80 ≤ age < 90	9
	80

Modal Class of Grouped Data

	Worke	d Example	Your Turn			
Determine the modal class interval:			Determine the modal class interval:			
Mass, x (kg)	Frequency			Mass, x (kg)	Frequency	
$0 < x \le 10$	5			$0 < x \le 10$	15	
$10 < x \le 20$	3			$10 < x \le 20$	6	
$20 < x \le 40$	2			$20 < x \le 40$	4	
$40 < x \le 46$	6			$40 < x \le 46$	12	
$46 < x \le 50$	7			$46 < x \le 50$	8	

٦

Range of Grouped Data

Worked Example			Your Turn				
Determine the upper and lower bounds for the range:			Determine the upper and lower bounds for the range:				
Mass, x (kg)	Frequency		Mass, <i>x</i> (kg)	Frequency			
$0 < x \le 10$	5		$10 < x \le 20$	5			
$0 < x \le 20$	3		$20 < x \le 30$	3			
$0 < x \le 40$	2		$30 < x \le 50$	2			
$0 < x \le 46$	6		$50 < x \le 56$	6			
$x - 6 < x \le 50$	7		$56 < x \le 60$	7			

Median Class of Grouped Data

Median, UQ, LQ and IQR of Grouped Data

Jack collects the heights of 100 flowers and records the data in the table below.

Height (y cm)	Frequency
$40 < y \le 50$	7
$50 < y \le 60$	14
$60 < y \le 70$	59
$70 < y \le 80$	11
$80 < y \le 90$	9

Use interpolation to estimate the median. Give your answer correct to 1 decimal place.

Your Turn

James collects the heights of 80 flowers and records the data in the table below.

Height (x cm)	Frequency
$35 < x \le 40$	4
$40 < x \le 45$	9
$45 < x \le 50$	26
$50 < x \le 55$	13
$55 < x \le 60$	8
$60 < x \le 65$	20

Use interpolation to estimate the median. Give your answer correct to 1 decimal place.

Jack collects the heights of 100 flowers and records the data in the table below.

Height (y cm)	Frequency
$40 < y \le 50$	7
$50 < y \le 60$	14
$60 < y \le 70$	59
$70 < y \le 80$	11
$80 < y \le 90$	9

Use interpolation to estimate the interquartile range. Give your answer correct to 1 decimal place.

Your Turn

James collects the heights of 80 flowers and records the data in the table below.

Height (x cm)	Frequency
$35 < x \le 40$	4
$40 < x \le 45$	9
$45 < x \le 50$	26
$50 < x \le 55$	13
$55 < x \le 60$	8
$60 < x \le 65$	20

Use interpolation to estimate the interquartile range. Give your answer correct to 1 decimal place.

Midpoint of Two Numbers

Worked Example		Your Turn					
	Numbers	Midpoint			Numbers	Midpoint	
	40 and 60				40 and 70		

Intelligent Practice

Numbers	Midpoint	Numbers	Midpoint
1. 8 and 10		11. 142 and 194	
2. 7 and 11		12 . 14.2 and 19.4	
3. 2 and 16		13. 7.1 and 9.7	
4. 22 and 36		14. 7 and 9.6	
5. 22 and 46		15 . -9.6 and -7	
6. 22 and 47		16 . -9.9 and -7	
7. 22 and 48		17 . -9.9 and -6.9	
8. 21 and 48		18 6.9 and 9.9	
9. 21 and 47		19. $-6\frac{3}{4}$ and $9\frac{3}{4}$	
10 . 42 and 94		20. $-6\frac{3}{5}$ and $9\frac{3}{4}$	

Estimated Mean of Grouped Data

Your Turn

Calculate an estimate for the mean:

Mass, x (kg)	Frequency
$0 < x \le 8$	3
$8 < x \le 16$	6
$16 < x \le 24$	7
$24 < x \le 32$	4

Calculate an estimate for the mean:

Mass, x (kg)	Frequency
$0 < x \le 8$	3
$8 < x \le 16$	0
$16 < x \le 24$	7
$24 < x \le 32$	4

Bob asked each of 40 friends how many minutes they took to get to work. The table shows some information about his results.

- a) Write down the modal class.
- b) Work out the upper and lower bounds for the range.
- c) Work out the class in which the median lies.
- d) Calculate an estimate for the median.
- e) Calculate an estimate for the mean.

Time taken ($m{m}$ minutes)	Frequency
$0 < m \leq 10$	3
$10 < m \leq 20$	8
$20 < m \le 30$	11
$30 < m \le 40$	9
$40 < m \le 50$	9
Extra Notes	

2 Expand Binomials

Expanding Triple Brackets

Worked Example	Your Turn
Expand and simplify: (x+2)(x-3)(x-4)	Expand and simplify: (x + 4)(x - 6)(x - 8)

Worked Example	Your Turn
Expand and simplify: (5x+2)(7x-3)(x-4)	Expand and simplify: (5x + 4)(7x - 6)(x - 8)

Worked Example	Your Turn
Expand and simplify: $(5x + 2)^3$	Expand and simplify: $(7x - 6)^3$

Extra Notes

3 Solving Quadratics

Multiplication by Zero

Fluency Practice

Find the value of (x-3)(x-7) if a) x = 8 b) x = 7 c) x = 3a) If x = 8 (x - 3)(x - 7) = (8 - 3)(8 - 7)= (5)(1)= 5 b) If x = 7 (x - 3)(x - 7) = (4)(0)= 0c) If x = 3 (x - 3)(x - 7) = (0)(-4)= 01. Find the value of (x-4)(x-2) if a) x = 6 b) x = 4 c) x = 22. Find the value of (x-5)(x-9) if a) x = 5 b) x = 10 c) x = 93. Find the value of (x-7)(x-1) if a) x = 1 b) x = 8 c) x = 74. Find the value of (x-4)(x-6) if a) x = 4 b) x = 6 c) x = 35. Find the value of (x-6)(x-7) if a) x = 2 b) x = 6 c) x = 9Find the value of (x-2)(x+4) if a) x = 2 b) x = 4 c) x = -4a) If x = 2(x-2)(x+4) = (0)(6)= 0b) If x = 4 (x - 2)(x + 4) = (2)(8)= 16c) If x = -4 (x - 2)(x + 4) = (-6)(0)= 0

- 6. Find the value of (x 3)(x + 5) if a) x = 6 b) x = 3 c) x = -5
- 7. Find the value of (x 4)(x + 6) if a) x = 0 b) x = -6 c) x = 4
- 8. Find the value of (x 7)(x + 2) if a) x = -7 b) x = -2 c) x = 7
- **9.** Find the value of (x + 4)(x + 5) if a) x = -4 b) x = -5 c) x = 0
- **10.** Find the value of (x + 7)(x + 1) if a) x = -4 b) x = -1 c) x = -7

The results of this exercise show that if the product of two factors is 0, then either one or both of these factors must be 0

In general we can say

if $A \times B = 0$ then either A = 0 or/and B = 0

Fluency Practice

In questions 1 to 12 find, if possible, the value or values of A. Note that if $A \times 0 = 0$ then A can have any value.

b) B if A = 3

b) *A* if B = 0

1.	$A \times 6 = 0$	<u>7</u> .	$A \times 10 = 0$
2.	$A \times 7 = 0$	<u>8.</u>	$A \times 9 = 18$
3.	$A \times 4 = 0$	<u>9.</u>	$A \times 20 = 0$
4.	$A \times 0 = 0$	<u>10.</u>	$A \times 3 = 21$
5.	$3 \times A = 12$	<u>11.</u>	$0 \times A = 0$
6.	$8 \times A = 8$	<u>12.</u>	$4 \times A = 0$
13.	If $AB = 0$ find	a) A if $B = 2$	b) <i>B</i> if $A = 10$
14.	If $AB = 0$ find	a) A if $B = 5$	b) B if $A = 5$

15. If AB = 0 find a) A if B = 10

16. If AB = 0 find a) B if A = 6

	Find a and b if $a(b-3) = 0$			
	Either $a = 0$	or/and	b - 3 = 0	
	i.e., either a	= 0 or/and l	b = 3	
Find	a and b if:			
17.	a(b-1)=0	<u>22.</u>	a(b-4)=0	
18.	a(b-5)=0	<u>23.</u>	a(b-10)=0	
19.	a(b-2)=0	<u>24.</u>	(a-1)b=0	
20.	(a-3)b=0	<u>25.</u>	(a-7)b=0	
21.	(a-9)b = 0	26.	(a - 12)b = 0	

Quadratics Equations

Previously we have considered equations such as x - 1 = 0 and 3x + 2 = 0. These are examples of *linear equations*. The first equation is true only for x = 1 and the second only for $x = -\frac{2}{3}$.

If, however, we consider the equation

$$(x-1)(x-2) = 0$$

we find that it is true either when x - 1 = 0 or when x - 2 = 0, i.e. either when x = 1 or when x = 2

There are, therefore, two values of x that satisfy the equation (x-1)(x-2) = 0

Expanding the left-hand side gives

 $x^2 - 3x + 2 = 0$

Equations like this, which contain an x^2 term, are called *quadratic* equations.

When we are given a quadratic equation we can often factorise the left-hand side into two linear factors,

e.g.
$$x^2 - 5x + 4 = 0$$

gives $(x - 4)(x - 1) = 0$

It is this technique that concerns us in the present chapter.

Worked Example	Your Turn
What values of x satisfy the equation $x(x - 9) = 0$?	What values of x satisfy the equation $(x + 6)x = 0$?

Worked Example	Your Turn
What values of x satisfy the equation $(x - 9)(x + 5) = 0$?	What values of x satisfy the equation $(x + 6)(x - 5) = 0$?

Worked Example	Your Turn
Solve the equation (2x-3)(3x+1) = 0	Solve the equation (3x + 2)(2x - 1) = 0

Solving Quadratics Equations by Factorising

The previous two exercises suggest that if the left-hand side of a quadratic equation can be expressed as two linear factors, we can use these factors to solve the equation.

Worked Example	Your Turn
Solve the equation $x^2 + 2x - 8 = 0$	Solve the equation $x^2 + 2x - 15 = 0$

Worked Example	Your Turn
Solve the equation $x^2 - 49 = 0$	Solve the equation $x^2 - 64 = 0$

Worked Example	Your Turn
Solve the equation $3x^2 + 2x = 0$	Solve the equation $2x^2 - 3x = 0$

Worked Example	Your Turn
Solve the equation $x^2 - 4x + 4 = 0$	Solve the equation $x^2 + 14x + 49 = 0$

Worked Example	Your Turn
Solve the equation $5x^2 + 13x - 6 = 0$	Solve the equation $5x^2 + 7x - 6 = 0$

Worked Example	Your Turn
Solve the equation $4x^2 - 9 = 0$	Solve the equation $16x^2 - 81 = 0$

Worked Example	Your Turn
Solve the equation $x^2 - x = 12$	Solve the equation $x^2 = 2x + 3$

Worked Example	Your Turn
Solve the equation $12x^2 + 10x - 12 = 0$	Solve the equation $18x^2 - 15x - 18 = 0$

Worked Example	Your Turn
Solve the equation x(x-2) = 15	Solve the equation (x-3)(x+2) = 6

Worded Problems

Worked Example

I think of a positive number x, square it and then add three times the number I first thought of. If the answer is 54, form an equation in x and solve it to find the number I first thought of.

Worked Example

A rectangle is 4cm longer than it is wide. If it is xcm wide and has an area of $77cm^2$, form an equation in x and solve it to find the dimensions of the rectangle.

Worked Example

The sum of two numbers is $13 \ \text{and} \ \text{the} \ \text{sum} \ \text{of} \ \text{their} \ \text{squares} \ \text{is} \ 97.$ Find the numbers.

Solution of Quadratic Equation by Formula

If we apply the method of completing the square to the general quadratic equation $ax^2 + bx + c = 0$, where a, b and c are positive or negative numbers, we can establish a formula for solving the equation.

Consider the general equation $ax^2 + bx + c = 0$ Divide both sides by a $x^2 + \frac{b}{a}x + \frac{c}{a} = 0$ Subtract $\frac{c}{a}$ from each side $x^2 + \frac{b}{a}x = -\frac{c}{a}$ Complete the square on the LHS and add the same quantity to the RHS. $x^{2} + \frac{b}{a}x + \frac{b^{2}}{4a^{2}} = -\frac{c}{a} + \frac{b^{2}}{4a^{2}}$ Therefore $\left(x + \frac{b}{2a}\right)^2 = \frac{-4ac + b^2}{4a^2}$ Take square roots of each side $x + \frac{b}{2a} = \pm \frac{\sqrt{b^2 - 4ac}}{2a}$ Subtract $\frac{b}{2a}$ from each side $x = -\frac{b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a}$ $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ i.e.

This is called the *formula* for solving quadratic equations. It gives values of x, or roots of the equation, for any given values of a, b and c (provided

Remember that a is the coefficient of x^2 b is the coefficient of xc is the constant number term.

Since the two values of x are

$$-\frac{b}{2a} + \frac{\sqrt{b^2 - 4ac}}{2a} \quad \text{and} \quad -\frac{b}{2a} - \frac{\sqrt{b^2 - 4ac}}{2a}$$

the sum of the two roots is always $\left(\frac{-b}{2a}\right) + \left(\frac{-b}{2a}\right) = -\frac{b}{a}$
This provides

This provides a useful check that your answers are correct.

Quadratic Formula

a general quadratic equation can always be written:

$$ax^2 + bx + c = 0$$

the solutions to a general quadratic equation are:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

a is the number in front of the x^2

- **b** is the number in front of the *x*
- c is the (constant) number

Worked Example	Your Turn
Write down the values of	Write down the values of
a, b and c in:	a, b and c in:
a) $5x^2 + 2x - 3 = 0$	a) $5x^2 - 2x + 3 = 0$
b) $x^2 + 2x - 3 = 0$	b) $x^2 - 2x + 3 = 0$
c) $x^2 + 2x = 4x - 3$	c) $x^2 - 2x = -4x + 3$

Intelligent Practice

Questions	а	b	с
$3x^2 + 5x + 1 = 0$			
$0 = 3x^2 + 5x + 1$			
$0 = 3x^2 + 5x + 2$			
$3x^2 + 4x + 2 = 0$			
$0 = 3x^2 + 4x - 2$			
$3x^2 - 4x + 2 = 0$			
$x^2 - 4x + 2 = 0$			
$x^2 + 2 - 4x = 0$			
$1+2x-4x^2=0$			
$1 + 2x = 4x^2$			

Intelligent Practice

Questions	а	b	с
$2x = 4x^2 + 1$			
$1 = 4x^2 + 2$			
$4x^2 + 2x = 0$			
$4x^2 + 2 = 0$			
$2(2x^2+1)=0$			
$-2(2x^2 + 1) = 0$			
$-2(2x^2+1) = 2x$			
$-2(2x^2 + 1) = 2x + 2$			
$-2(2x^2 + 1) = x^2 + 2x + 2$			
$-2(2x^2 + x + 1) = x^2 + 2x + 2$			

Discriminant

The expression $b^2 - 4ac$ in the quadratic formula is called the discriminant, because it can "discriminate" between the possible types of answer:

- When $b^2 4ac$ is positive, we get two real solutions
- When $b^2 4ac$ is zero, we get just one real solution (both answers are the same)
- When $b^2 4ac$ is negative, we get a pair of complex solutions

Worked Example	Your Turn
Given that a = 5, b = 6, c = -7 work out the value of $b^2 - 4ac$	Given that a = -6, b = 7, c = 8 work out the value of $b^2 - 4ac$
Solving Quadratic Equations by the Formula

Worked Example	Your Turn
Worked ExampleUse the formula to solve the equation $x^2 - 9x - 2 = 0$ giving your answers correct to two decimal places.	Your TurnUse the formula to solve the equation $x^2 - 2x - 9 = 0$ giving your answers correct to two decimal places.

Worked Example	Your Turn
Worked Example Use the formula to solve the equation $3x^2 + 7x - 2 = 0$ giving your answers correct to two decimal places.	Your Turn Use the formula to solve the equation $3x^2 - 9x + 2 = 0$ giving your answers correct to two decimal places.

Your Turn
Solve the equation $7x^2 = 4x + 1$ giving your answers correct to two decimal places.

Fill in the Gaps

Quadratic Equation	a, b and c	b ² – 4ac	$x = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$	$x=\frac{-b-\sqrt{b^2-4ac}}{2a}$	Solutions to 3sf
$x^2 + 5x + 1 = 0$	a = 1, b = 5, c = 1	$5^2 - 4 \times 1 \times 1$ $= 21$	$x = \frac{-5 + \sqrt{21}}{2}$	$x = \frac{-5 - \sqrt{21}}{2}$	
$2x^2 + 5x + 1 = 0$	a = 2, b = 5, c = 1	$5^2 - 4 \times 2 \times 1$ $= 17$			
$2x^2 - 5x + 1 = 0$	a = 2, b = -5, c = 1	$(-5)^2 - 4 \times 2 \times 1$ $= 17$	$x = \frac{5 + \sqrt{17}}{2}$		
$x^2 - 7x + 3 = 0$					
$2x^2 - 7x + 3 = 0$					
$5x^2 + x - 2 = 0$					
	a = 3, b = 5, c = 2				
			$x = \frac{-9 + \sqrt{89}}{4}$	$x = \frac{-9 - \sqrt{89}}{4}$	
	1		1	1]	

Worded Problems

Extra Notes