Tasks

Year 10
 Mathematics
 Unit 20

Do Not Write Inside

earn by heart
A function is a type of equation, because it contains an equals sign.
When we plot the graph of a function we can see all the pairs of values that make it true. These are also called the solutions of the equation.

example

1. By plotting graphs, estimate the solution to

exercise 70 the simultaneous equations:
$y=4 x-5$ and $y=6-2 x$

$\begin{aligned} & \overline{0 \varepsilon-=x_{Z}-\kappa_{\varepsilon}-} \\ & Z \mathrm{I}-=x_{\mathrm{S}}-\kappa_{\varepsilon} \end{aligned}$	$\begin{aligned} \hline \amalg \square & =x_{Z}-\kappa_{\square} \\ 9 \mathrm{I}-= & x_{Z}-\kappa_{Z}- \end{aligned}$	$\begin{aligned} & \hline \mathrm{S} \mathrm{\varepsilon}=x \mathrm{~S}+\kappa_{\varepsilon-}- \\ & 0 \varepsilon-=x \mathrm{~S}-\kappa_{Z} \end{aligned}$
((H	
$\begin{aligned} 9- & =x_{\varepsilon}-\kappa_{\varepsilon} \\ 9 & =x_{\varepsilon}-\kappa_{L} \end{aligned}$	$\begin{aligned} 9 & =x_{\downarrow}-\kappa_{Z} \\ 0 \mathrm{~S} & =x_{\downarrow}+\kappa_{9} \end{aligned}$	$\begin{aligned} & 8 \mathrm{I}=x 9-\kappa_{\varepsilon} \\ & z \tau=x_{Z}-\kappa_{\varepsilon} \end{aligned}$
$($	$(3$	10
$\begin{aligned} \hline t & =x Z-\kappa_{t} \\ 8 \mathrm{I} & =x_{\mathrm{S}}+\kappa_{\mathrm{t}} \end{aligned}$	$\begin{aligned} 9 \mathrm{I} & =x_{Z}+\kappa_{\varepsilon} \\ Z & =x_{Z}-\kappa_{9} \end{aligned}$	$\begin{aligned} & 8 \mathrm{I}=x Z+\kappa \varepsilon \\ & 9 Z=x Z+\kappa \mathrm{S} \end{aligned}$
10	(9	(
;suonen	Ios pue yoea	Y7 2 soou
¿uo!!enba ıəмоן рәзuéeq Лред	s 10 ppe of pәәu ә uo!penby snozuequn	!иел е әдеи!ш!! од ! sұиа!!! ! әоэ әч।

Question 1: Solve the following simultaneous equations by using elimination.

(a) $\quad \begin{array}{r}6 x+y=18 \\ 4 x+y=14\end{array}$
(b) $4 x+2 y=10$
(c) $9 x-4 y=19$ $4 x+4 y=20$
(d) $2 x+y=36$

$$
x-y=9
$$

(e) $6 x-3 y=12$

$$
4 x-3 y=2
$$

(f) $3 x-6 y=6$

$$
2 x-6 y=3
$$

(g) $\quad \begin{aligned} & 8 x+7 y=39 \\ & 8 x+2 y=34\end{aligned}$
(h) $x+3 y=38$
$x+6 y=53$
(i) $6 x+3 y=48$ $6 x+y=26$
(j) $\quad \begin{aligned} & 2 x-4 y=10 \\ & 2 x+3 y=24\end{aligned}$
(k) $5 x-2 y=120$
$5 x+y=165$
(1) $x-2 y=8$
$x-3 y=3$
(m) $\quad \begin{aligned} & 3 x+2 y=54 \\ & 2 x-2 y=16\end{aligned}$
(n) $7 x-4 y=80$
$3 x-4 y=-80$
(o) $5 x-2 y=-23$
$5 x-6 y=-39$
(p) $\quad \begin{aligned} & 6 x+2 y=-26 \\ & 2 x+2 y=-10\end{aligned}$
(q) $x-5 y=65$
$2 x-5 y=85$
(r) $10 x-10 y=-40$ $10 x+4 y=16$

Question 2: Solve the following simultaneous equations by using elimination.
(a) $\quad \begin{aligned} & 3 x+2 y=23 \\ & 2 x-y=6\end{aligned}$
(b) $3 x-3 y=9$
$2 \mathrm{x}+\mathrm{y}=12$
(c) $4 x+2 y=34$ $3 x+y=21$
(d) $9 x-4 y=59$
$2 \mathrm{x}-\mathrm{y}=12$
(e) $2 x+8 y=43$
$x+3 y=18$
(f) $6 x+3 y=45$
$2 x-2 y=12$
(g) $\quad 5 x+4 y=130$
$x+6 y=130$
(h) $\begin{aligned} & 10 x-15 y=25 \\ & x-2 y=1\end{aligned}$
(i) $3 x+8 y=97$
$2 x+4 y=58$
(j) $\quad \begin{aligned} & 3 x-y=4 \\ & \\ & 5 x+4 y=52\end{aligned}$
(k) $4 x+9 y=10$
$2 x+3 y=2$
(1) $5 x-3 y=33$
$3 x-9 y=63$
(m) $\quad \begin{aligned} & 2 x+4 y=-2 \\ & 4 x+2 y=-10\end{aligned}$
(n) $\quad \begin{aligned} & 8 x+4 y=-28 \\ & 3 x-12 y=30\end{aligned}$
(o) $15 x-4 y=82$
$5 x-9 y=12$
(p) $\quad \begin{aligned} & 12 x+3 y=9 \\ & 2 x+11 y=-9\end{aligned}$
(q) $9 x-7 y=111$
$x-2 y=16$
(r) $\quad \begin{aligned} & 8 x-y=4 \\ & 3 x+8 y=-166\end{aligned}$

Question 3: Solve the following simultaneous equations by using elimination.
(a) $\quad \begin{aligned} & 2 x+2 y=14 \\ & 5 x-3 y=19\end{aligned}$
(b) $2 x+3 y=1$
(c) $\quad 5 x+3 y=22$ $7 x+2 y=-22$

$$
2 x+4 y=20
$$

(d) $\begin{array}{r}5 x-6 y=28 \\ 4 x-4 y=24\end{array}$
(e) $\quad \begin{aligned} & 3 x+2 y=7 \\ & 2 x+9 y=43\end{aligned}$
(f) $3 x+3 y=-6$

$$
3 x-2 y=5.5
$$

(h) $\quad \begin{aligned} & 7 x-15 y=2.5 \\ & 3 x-2 y=5.5\end{aligned}$
(i) $\quad \begin{aligned} & 3 x+2 y=53 \\ & 2 x+5 y=72\end{aligned}$
(g) $\quad \begin{aligned} & 3 x+8 y=31 \\ & 5 x+3 y=31\end{aligned}$
(j) $5 x-3 y=18$
(k) $\quad \begin{aligned} & 2 x+9 y=11 \\ & 9 x+3 y=-63\end{aligned}$
(l) $2 x-4 y=4$
$2 x+4 y=54$
$9 x+3 y=-63$
$5 x-3 y=24$
(m) $\quad \begin{aligned} & 3 x+3 y=42 \\ & 2 x+4 y=38\end{aligned}$
(n) $\quad \begin{aligned} & 6 x+2 y=-2 \\ & 4 x-3 y=29\end{aligned}$
(o) $\quad 4 x-4 y=8$
$5 x-3 y=18$
(p) $4 x+3 y=9$
$5 x+2 y=13$
(q) $4 x-2 y=18$
$2 \mathrm{x}-3 \mathrm{y}=15$
(r) $\quad 5 x+2 y=38$
$2 x-3 y=19$

Question 4: Solve the following simultaneous equations by rearranging and then using elimination.
(a) $\quad \begin{aligned} & x=10-y \\ & 2 x+y=17\end{aligned}$
(b) $\begin{aligned} & x-4=y \\ & x+3 y=12\end{aligned}$
(c) $2 x+6 y=4$
$x=12+2 y$
(d) $\begin{aligned} 3 x & =10+5 y \\ 3 y & =52-4 x\end{aligned}$
(e) $2 x+y-18=0$
(f) $6 x+2 y+6=0$
$3 y=7 x+80$
$7 x-5 y-93=10$

Question 1: The cost of buying a coffee and a tea in a cafe is $£ 4$.
The cost of buying a coffee and three teas in a cafe is $£ 7$.
Work out the cost of buying a coffee and the cost of buying a tea.
Question 2: The sum of Rosemary's age and Hannah's age is 102 years.
The difference between Rosemary's age and Hannah's age is 52 years.
Rosemary is older than Hannah.
Find the age of each woman by using simultaneous equations.
Question 3: Five adult tickets and three child tickets for a movie cost $£ 58$.
Two adult tickets and eight child tickets for a movie cost $£ 47$.
Find the cost of each type of ticket.
Question 4: Four chairs and two tables cost $£ 218$.
Six chairs and seven tables cost $£ 587$.
Find the total cost of buying twenty chairs and five tables.
Question 5: A plumber charges a price for each hour, $£ \mathrm{f}$, and a fixed charge, $£ \mathrm{Ec}$.
A 5 hour job costs $£ 155$ in total.
A 8 hour job costs $£ 230$ in total.
How much would a job that lasts 2 hours cost?
Question 6: Barry buys 200 pieces of stationery for $£ 76$.
Of the 200 pieces of stationery, x of them are rulers that cost 50 p each and y of them are pens that cost 20 p each.
Find how many rulers Barry buys and how many pens he buys.
Question 7: In a greengrocers, 4 kg of bananas and 3 kg of apples costs $£ 7.50$
In the same greengrocers, 3 kg of bananas and 5 kg of apples costs $£ 8.10$
How much would 2 kg of bananas and 2 kg of apples cost?

$$
\begin{gathered}
2 x=y \quad y=x+8 \\
2 x=y=x+8 \\
2 x=x+8 \\
x=8 \\
2 x=y \quad 2(8)=16 \\
x \longrightarrow(8,16) \longleftarrow y
\end{gathered}
$$

e) $x+7=y$
$y=3 x-9$
a) $2 x=y \quad y=x+4$
b)
d) $\begin{aligned} x+3 & =y \\ y & =2 x-2\end{aligned}$

$$
y=2 x-2
$$

c) $3 x=y \quad y=x-4$

$$
2 x=x+4
$$

f) $x+10=y$
$y=3 x+18$
g)

$$
\begin{aligned}
2 x+9 & =y \\
y & =x+12
\end{aligned}
$$

h)

$$
\begin{aligned}
2 x+6 & =y \\
y & =3 x+4
\end{aligned}
$$

$$
y=2 x+8
$$

$$
y=4 x-6
$$

k) $y=\frac{x}{2}$
$y=x-6$
I) $y=\frac{x}{2}+3$
$y=x-1$
m) $y=\frac{x}{3}+2$
$y=2 x-3$
n) $2 y=3 x+3$ $y=x+4$

o)	$2 y=2 x+10$	p)	$y=x-6$	q)	$2 y=2 x-22$	r)	$x+3=y$	s)	$2 y+10=2 x$	t)	$2 y=3 x-2$
	$y=x+5$		$3 y=2 x-16$		$y=\frac{x}{2}-7$		$y=\frac{x+11}{2}$		$y=2 x-11$		$3 y=2 x+7$

Question 1: Shown is a 3-digit combination padlock. Each dial can be set to $0,1,2,3,4,5,6,7,8,9$
(a) Work out the total number of different combinations that can be used.
(b) Work out the total number of different combinations that have three different digits that can be used.

Question 2: A restaurant has 4 starters and 6 main course on its menu.
Hailey orders a starter and a main course.
How many different combinations of starters and main courses are there?
Question 3: A rugby coach is designing a new rugby strip.
She can choose from: 5 different pairs of socks
6 different pairs of shorts
and 14 different jerseys.
How many different strips are possible?

Question 4: Harry picks a 4 digit pin for his credit card.
Each digit is a number 0 to 9 .
Harry can repeat digits.
(a) How many possible codes are there?

Harry chooses not to repeat any digits.
(b) How many possible codes are there now?

Question 5: Rosie picks a 4-digit odd number.
The first digit is 5 .
The second digit is a 3 or a 4 .
The third digit is prime.
How many different 4-digit numbers could Rosie pick?

Question 6: Oliver picks a 4-digit even number that is greater than 3000.
The second digit is a multiple of 4 .
How many different numbers could Oliver pick?

Question 7: Sophia is creating a 6-digit code to lock her iPad.
She only uses digits greater than 2.
She only uses each digit once.
How many possible codes can Sophia create?

Question 8: In a class, there are 10 boys and 9 girls.
The teacher has been asked to pick one boy and one girl to win a prize.
How many possible pairs of students can the teacher pick?

Question 9: Jason picks a 5-digit number that is less that 80000 . The first digit is odd.
The fourth and fifth digits are equal.
How many different numbers can Jason pick?

Question 10: A headteacher wants to survey two Year 7 students. There are 100 students in Year 7.

How many possible pairs of students can the headteacher pick?
Question 11: How many even numbers greater than 40000 can be created using these digits?

1
8

A. There are 8 runners in a race. In how many different ways could the three medals gold, silver and bronze, be allocated?	B. Car registration plates in Great Britain include a random sequence of three letters. Any letters other than I or Q can be used and the same letter can appear more than once. How many different three letter codes could be used?
C. 12 players take part in a singles table tennis competition. Each player must play each other player once. How many matches will there be in the competition?	D. On a school sports day, there are 6 different team events and 9 different individual events. Pupils must participate in two team events and one individual event. How many different ways are there of doing this?
E. In a class there are 8 boys and 11 girls. (a) Two students are to be selected at random from the class. How many different pairs can be chosen? (b) One boy and one girl are to be selected at random from the class. In how many ways can this be done?	F. Two cards are chosen from a standard deck of 52 cards. How many different possible pairs of cards are there?
G. Three cards are picked at random from this set. (a) In how many different ways could the digits picked (b) In how many different ways could the digits either	1 2 3 4 5 6 d be in the order odd-even-odd? 7 8 9 be in the order odd-even-odd or even-odd-even?
H. A form group has 32 members. A form captain, a sports captain and a charity representative are to be chosen. No one can be in more than one of these positions. How many different combinations of results are possible?	I. A team of three is to be chosen from a group of 8 boys and 7 girls. There must be at least one boy and at least one girl in the team. How many possibilities are there?

A. Jake has 5 different pairs of trousers and 8 different shirts. How many different combinations of these could he wear?	B. A badminton club has 23 members, 8 of whom are female. In how many ways can the club select a mixed doubles team consisting of one male and one female?
C. UK banknotes are issued in denominations of $£ 50, £ 20, £ 10$ and $£ 5$. UK coins are issued in denominations of $£ 2, £ 1,50$ p, 20 p, 10 p, 5 p, 2 p and 1 p. One coin and one banknote are to be selected at random. (a) In how many different ways could this be done? (b) In how many of the ways is the total at least $£ 10.50$?	
D. On a restaurant's menu, there are 5 different starters, 6 main courses and 4 desserts. For a set price, diners can choose either a starter and a main course or a main course and a dessert. How many different combinations are there?	E. In a class there are n boys. There are twice as many girls as boys. One boy and one girl are to be chosen at random. Write a simplified expression for the number of possible combinations.
F. How many different combinations are possible in this supermarket lunch deal?	$\underset{(5 \text { options })}{\text { Sandwich }}+\underset{(8 \text { options })}{\text { Snack }}+\underset{(7 \text { options })}{\text { Drink }}=£ 3$
G. At a school, students are required to choose one language, one humanities subject and one technology subject to study. There are 4 languages to choose from, 3 humanities and 3 technologies. How many different combinations of subjects could be chosen?	H. An examination paper has three sections, each with six questions. The instructions read: 'Answer one question from each section.' How many different combinations of questions could be answered?

The students can choose one piece of fruit and one snack. There are 8 different pieces of fruit and some different snacks.
Altogether there are 104 different ways to choose one piece of fr
How many different snacks are there?
Question 2: At a summer camp, children pick a morning, an afternoon and an evening
There are 4 morning and 7 evening activities to pick from.

Altogether there are 224 different ways to choose their activities
 How many afternoon activities are there?
 12 exercise classes on a Monday 13 exercise classes on a Wednesday
 7 exercise classes on a Friday

Question 3: In a gym there are

Katie is going to attend either

a class on Monday and a class on Friday a class on Wednesday and a class on Friday
or a class on Monday, Wednesday and Friday
Work out how many different ways there are to pick which exercises classes Katie is going to attend.
A group of 10 people enter a room.
Each person shakes hands, once, with all the other people in the room.

How many handshakes are there in total?

Question 5: A pizza parlour sells 9 different toppings
Michael orders a pizza with 2 different toppings.
(a) How many different pizzas can he choose from?
Beth orders a pizza with 3 different toppings.
(b) How many different pizzas can she choose from?
John orders a pizza with 4 different toppings.
¿шољу әsоочэ әч иеэ sezz!̣ ұиәләң!р Киеш мон (э)
Question 4:

Product Rule for Counting

188 How many 2-digit numbers can you make with these 2 cards?
1 8 How does this change if we add a third card?

A) How many 4-digit numbers can you make using these cards?

* How many choices do you have for the $1^{\text {st }}$ card?
* After you choose a $1^{\text {st }}$ card,
how many choices do you have for the $2^{\text {nd }}$ card, $3^{\text {rd }}$ card $\& 4^{\text {th }}$ card?

B) How many odd 5-digit numbers can you make with these cards?
* One number must be last, how does this affect our choices?

C) How many numbers greater than 40,000 can you make?
* How many choices are there for the $1^{\text {st }}$ card?

D) How many odd 6-digit numbers can you make?
* How many choices are there for the last card?

E) How many numbers greater than 300,000 can you make?
F) How many 5-digit numbers that are a multiple of 2 can you make?

G) How many odd numbers greater than 50,000 can you make?
* Sum the choices for each starting card.

H) How many odd numbers greater than 500,000 can you make?

H) How many even numbers smaller than 600,000 can you make?

I) How many 2-digit numbers can we make using these cards?
J) How many 3-digit numbers can we make using these cards?

K) How many ways can we make 3 numbers from these cards?
L) The number 156 is made. How many different numbers use these same digits?
M) If we don't care about their order (the number they make): how many ways can we pick 3 digits from the 5 cards?

Group	Group width
$5<h \leq 30$	
$5<t \leq 30$	
$15<t \leq 30$	
$15<t \leq 45$	
$20<t \leq 50$	
$40<t \leq 100$	
$39<t \leq 100$	
$39<t \leq 101$	
$39<t \leq 51$	
$31<t \leq 59$	

Group	Group width
$3.1<t \leq 5.9$	
$3.1<t \leq 3.9$	
$3.1<t \leq 3.8$	
$2.9<t \leq 3.8$	
$-2.9<t \leq 3.8$	
$-3.8<t \leq 2.9$	
$-3.8<t \leq 3.8$	
$-\frac{3}{8}<t \leq \frac{3}{8}$	
$-\frac{2}{8}<t \leq \frac{3}{8}$	
$-\frac{2}{8}<t \leq \frac{3}{7}$	

Frequency	Group width	Frequency density
20	4	
40	4	
10	4	
10	10	
8	10	
6	20	
6	50	
6	5	
6	8	
6		
6		

Frequency	Group width	Frequency density
60	0.5	
60	0.4	
6	0.4	
8	0.4	
8	0.8	
8	0.08	
8	0.16	
12	0.16	
12	16	
16	12	

Question 1: Draw a histogram for each set of data below.
(a)

Time,t seconds	Frequency
$0 \leq \dagger<2$	10
$2 \leq t<4$	13
$4 \leq \dagger<6$	18
$6 \leq \dagger<10$	16
$10 \leq \dagger<14$	8
$14 \leq \dagger<20$	6

(d)

Volume, v ml	Frequency
$0 \leq v<100$	400
$100 \leq v<175$	900
$175 \leq v<250$	1275
$250 \leq v<300$	350
$300 \leq v<450$	450
$450 \leq v<600$	150

(b)

Length (cm)	Frequency
$0 \leq L<20$	10
$20 \leq L<30$	35
$30 \leq L<40$	65
$40 \leq L<80$	40

(c)

Mass, $m \mathrm{~kg}$	Frequency
$40 \leq m<50$	4
$50 \leq m<60$	7
$60 \leq m<70$	13
$70 \leq m<85$	12
$85 \leq m<100$	3
$100 \leq m<120$	3

(f)

Force, $f N$	Frequency
$10 \leq f<19$	3
$19 \leq f<25$	12
$25 \leq f<28$	9
$28 \leq f<31$	4
$31 \leq f<34$	2

Question 1: Mr Smith has drawn a histogram to represent his classes' examination scores.
(a) Can you explain what Mr Smith has done wrong?
(b) Draw a correct histogram for Mr Smith

Examination score	Frequency
$0<s \leq 30$	3
$30<s \leq 50$	4
$50<s \leq 70$	10
$70<s \leq 80$	10
$80<s \leq 90$	5
$90<s \leq 100$	2

Question 2: The ages of the members of a snooker club are shown in the table below.
(a) Draw a histogram to represent the data.

Ronnie, the manager of the snooker club, says that the average age of the members of the snooker club is under 32 .
(b) Work out an estimate of the mean age of the members
(c) Do you agree with Ronnie? Explain your answer.

Age, x years	Frequency
$20<x \leq 24$	6
$24<x \leq 28$	10
$28<x \leq 34$	12
$34<x \leq 40$	9
$40<x \leq 50$	7
$50<x \leq 65$	6

Question 3: Christine has drawn a histogram to show the value of some antiques. She has made some mistakes.
(a) Can you spot all the mistakes?
(b) Draw a correct histogram to represent the data.

Question 4: Henry has 20 apples in a crate.
The masses of the apples are shown in the table.
(a) Work out an estimate of the mean mass of an apple.
(b) Draw a histogram to represent the data.
(c) What fraction of the apples are over 85 g ?

Henry takes two apples from the crate at random, without replacement.

Mass, m grams	Frequency
$50<m \leq 70$	2
$70<m \leq 80$	3
$80<m \leq 85$	6
$85<m \leq 90$	5
$90<m \leq 110$	4

(d) Work out the probability that both apples are over 90 g .

Question 1: The histogram shows information about the time taken to travel to school by students.

Complete the frequency table.

Time taken, minutes	Frequency
$0<t \leq 10$	
$10<t \leq 15$	
$15<t \leq 20$	
$20<t \leq 25$	

Question 2: The histogram shows information about the temperatures in various locations.
Complete the frequency table.

Temperature, ${ }^{\circ} \mathrm{C}$	Frequency
$0<t \leq 6$	
$6<t \leq 10$	
$10<t \leq 12$	
$12<t \leq 16$	
$16<t \leq 24$	

Question 3: The histogram shows information about the salaries of workers in a company. Complete the frequency table.
Frequency Density

Complete the frequency table. $0.008 \uparrow$

Salary, $£$	Frequency
$0<s \leq 20000$	
$20000<s \leq 30000$	
$30000<s \leq 35000$	
$35000<s \leq 40000$	
$40000<s \leq 60000$	

© CORBETTMATHS 2019

Question 4: The histogram shows information about ages of the people who live in a village.
Complete the frequency table.

Question 5: The histogram shows information about distances students live from a college.
(a) How many students attend the college?
(b) How many students live less than 10 km from the college?
(c) How many students live between 15 km and 20 km from the college?
(d) Estimate how many students live more than 25 km from the college.
(e) Estimate how many students live
 less than 5 km from the college.
(f) Estimate how many students live between 5 km and 12.5 km from the college.
(g) Estimate how many students live between 12.5 km and 17.5 km from the college.
(h) Estimate how many students live between 10 km and 14 km from the college.
(i) Estimate how many students live between 8 km and 16 km from the college
(j) Estimate how many students live further than 16 km from the college.

Question 1: An A-level course is marked out of 400 marks.
A teacher has created this histogram to represent the students' results in his college over the past 10 years.

The table shows the marks needed for each grade.
Work out an estimate of the number of students who achieved each grade.

Grade	Marks needed
A*	360
A	320
B	280
C	240
D	200
E	160
U	Below 160

Question 2: There are road works in Antrim, so all the buses this week were late.
The histogram shows information about all the buses.
(a) Estimate what fraction of buses were less than 3 minutes late.

The bus company offers a full refund if the bus is more than 10 minutes late.
(b) Estimate what percentage of passengers will receive a full refund. Give your answer to two decimal places.

Question 3: 260 people sit a driving theory test.
Their results are shown in this histogram.

Question 4: The ages of the residents of a village are represented in this histogram
(a) How many people live in the village?
(b) Calculate an estimate of the mean age

Question 5: The heights of some sunflowers are represented in the histogram.

Question 6: The histogram shows the speed, in miles per hour, of cars on a road over 1 hour.
24 cars travelled faster than 40 mph .

Question 7: The histogram below shows the ages of rugby players. There are 768 players that are under 26 years old.

Work out an estimate of how many players are over 32.

Question 8: The histogram below shows the monthly salaries of employees.
There are 216 people who have a monthly salary of between $£ 1800$ and $£ 2100$.
Work out an estimate of how many employees have a salary of between $£ 2300$ and $£ 2900$

interpreting histograms

Twelve people waited more than 45 minutes.
How many people waited between 10 and 30 minutes?

Twelve parcels weighed between $2 k g$ and 5 kg .
How many parcels weighed less than 5 kg ?

Forty rooms have a floor area between $20 m^{2}$ and $40 \mathrm{~m}^{2}$.

Estimate the number of rooms with a floor area greater than $50 \mathrm{~m}^{2}$.
2.

Twelve days had an average temperature between $10^{\circ} \mathrm{C}$ and $15^{\circ} \mathrm{C}$.

How many days were surveyed in total?
4.

Ten rockets had a height greater than 50 m .
How many rockets had a height between 20 m and 50 m ?

Five used cars were valued at less than £1000.

Estimate the number of used cars valued at less than $£ 4000$.
7. The histogram shows the ages of the workers at a company.
a) How many workers are between 20 and 30 years old?
b) True or false: there are more workers aged between 30 and 40 than between 40 and 55.
c) 60% of the workers at the company are female. Work out the number of female workers.
8. The histogram shows the duration of 64 flights offered by an airline.
a) How many of the flights are 3 hours or less in duration?
b) Work out an estimate for the number of flights that take between 2 and 6 hours.
c) Work out an estimate for the median flight time.
9. In a survey, 600 workers were asked about their salaries. The results are shown in the histogram.
a) Work out an estimate for the median salary of the workers.

A worker is to be chosen at random.
b) Work out the probability that their salary will be at most £15,000.
c) Work out an estimate for the probability that their salary is at least double the median salary.

Question 1

Lloyd collects the lengths of 98 animals and records the data in the table below.

Length $(\mathrm{Z} \mathrm{cm})$	Frequency
$\mathbf{1 0}<\mathbf{z} \leq \mathbf{2 0}$	16
$\mathbf{2 0}<\mathbf{z} \leq \mathbf{3 5}$	45
$\mathbf{3 5}<\mathbf{z} \leq \mathbf{4 5}$	11
$\mathbf{4 5}<\mathbf{z} \leq \mathbf{5 0}$	10
$\mathbf{5 0}<\mathrm{z} \leq \mathbf{7 0}$	16

A histogram was drawn and the class $35<z \leq 45$ was represented by a rectangle of width 2 cm and height 5.5 cm .

Calculate the width and the height of the rectangle representing the class $20<z \leq 35$.

Question 2

Question 3

Lenny collects the heights of 115 plants and records the data in the table below.

Height (y cm)	Frequency
$\mathbf{2 0}<\mathbf{y} \leq \mathbf{3 5}$	30
$35<\mathbf{y} \leq \mathbf{4 0}$	19
$40<\mathbf{y} \leq 45$	16
$45<\mathbf{y} \leq 55$	14
$55<\mathbf{y} \leq 60$	29
$60<\mathbf{y} \leq 80$	7

A histogram was drawn and the class $55<y \leq 60$ was represented by a rectangle of width 1 cm and height 7.25 cm .

Calculate the width and the height of the rectangle representing the class $45<y \leq 55$.
Lloyd collects the running times of 167 athletes and records the data in the table below.

Time (y seconds)	Frequency
$\mathbf{0}<\mathbf{y} \leq \mathbf{1 0}$	34
$\mathbf{1 0}<\mathbf{y} \leq \mathbf{1 5}$	32
$\mathbf{1 5}<\mathbf{y} \leq \mathbf{3 5}$	20
$\mathbf{3 5}<\mathbf{y} \leq \mathbf{5 0}$	30
$\mathbf{5 0}<\mathbf{y} \leq \mathbf{5 5}$	6
$\mathbf{5 5}<\mathbf{y} \leq \mathbf{7 0}$	45

A histogram was drawn and the class $50<y \leq 55$ was represented by a rectangle of width 2 cm and height 9 cm .

Calculate the width and the height of the rectangle representing the class $0<y \leq 10$.

Question 4

Lesley collects the heights of 119 plants and records the data in the table below.

Height (x cm)	Frequency
$\mathbf{6 0}<\mathbf{x} \leq \mathbf{8 0}$	22
$\mathbf{8 0}<\mathbf{x} \leq \mathbf{9 0}$	12
$\mathbf{9 0}<\mathbf{x} \leq \mathbf{1 0 5}$	15
$\mathbf{1 0 5}<\mathbf{x} \leq \mathbf{1 1 0}$	25
$\mathbf{1 1 0}<\mathbf{x} \leq \mathbf{1 2 5}$	45

A histogram was drawn and the class $105<x \leq 110$ was represented by a rectangle of width 2.5 cm and height 6.25 cm .

Calculate the width and the height of the rectangle representing the class $60<x \leq 80$.

Question 1: Draw a frequency polygon for each table of information below.

(a)

(b)

Days absent	Frequency
0	16
1	5
2	4
3	2
4	1
5	2

(c)

Day	Customers
Monday	14
Tuesday	12
Wednesday	16
Thursday	21
Friday	25
Saturday	8

Question 2: Draw a frequency polygon for each table of information below.
(a)

(b)

Time, seconds	Frequency
$0<t \leq 5$	10
$5<t \leq 10$	50
$10<t \leq 15$	75
$15<t \leq 20$	80
$20<t \leq 25$	45
$25<t \leq 30$	35

(c)

Question 3: For each frequency polygon, complete the frequency table.

(b) Frequency

Question 4: For each frequency polygon, complete the frequency table.

(a)

Length, cm	Frequency
$0<x \leq 10$	
$10<x \leq 20$	
$20<x \leq 30$	
$30<x \leq 40$	
$40<x \leq 50$	

(b)

Frequency

Weight, kg	Frequency
$8<w \leq 12$	
$12<w \leq 16$	

Question 1: Tia asked her friends how many times they visited the cinema last month.
The frequency polygon shows her results.
(a) How many people visited the cinema twice?
(b) What is most popular number of times that her friends visited the cinema?
(c) What is the most number of times that somebody visited the cinema?
(d) How many people did Tia survey in total?

Question 2: Henry surveyed 50 people.
This frequency polygon shows their shoe sizes.
(a) What is the modal shoe size?
(b) What is the range of the shoe sizes?
(c) What fraction of the people surveyed have size 5 shoes?
(d) What percentage of the people surveyed have size 7 shoes?
(e) Henry picks somebody at random to win a prize. Write down the probability that the winner has size 6 shoes.

Question 3: Roy is a striker for Rovers.
The frequency polygon shows the number of goals scored in each game over 20 games he has played.
(a) Work out the median number of goals scored per game.
(b) Work out the mean number of goals scored per game.
(c) A journalist asks him for the "average" number of goals scored per game.
 Which average should he use?

Question 4: The frequency polygons show the amount of time that 30 students in year 7 and 30 students in year 11 spent on their last maths homework.

Compare the time spent on homework by the year 7s and the year 11s.

cumulative frequency

learn by heart

The cumulative frequency works like a 'running total'. It tells you the number of pieces of data up to and including a particular value.

example

The length of a number of television adverts is given in the frequency table. Work out the cumulative frequencies.

Frequency Table		Cumulative Frequency Table			
Time \boldsymbol{t} (s)	Frequency	\longrightarrow	Time \boldsymbol{t} (s)	Cumulative Frequency	
$0<t \leq 10$	7		$t \leq 10$	7	
$10<t \leq 20$	12		$t \leq 20$	19	tells you that
$20<t \leq 30$	10		$t \leq 30$	29	19 adverts
$30<t \leq 40$	8		$t \leq 40$	37	ess than
$40<t \leq 50$	3		$t \leq 50$	40	seconds.

exercise

1. The widths of some birds are recorded and shown in the frequency table.

Width $w(m m)$	Frequency
$10<w \leq 20$	2
$20<w \leq 30$	6
$30<w \leq 40$	14
$40<w \leq 50$	18
$50<w \leq 60$	7
$60<w \leq 70$	4

Width $\boldsymbol{w}(\mathbf{m m})$	Cumulative Frequency
$w \leq 20$	
$w \leq 30$	
$w \leq 40$	
$w \leq 50$	
$w \leq 60$	
$w \leq 70$	

a) Complete the cumulative frequency table for the data.
b) How many of the eggs had a width less than or equal to 40 mm ?
c) How many eggs had widths up to and including 60 mm ?
d) How many eggs were included in the data?
2. The hourly wages of the workers at a company are shown in the tables.

Hourly wage $\boldsymbol{W}(£)$	Frequency
$4 \leq W<8$	15
$8 \leq W<12$	11
$12 \leq W<16$	5
$16 \leq W<20$	

Hourly wage $\boldsymbol{W}(£)$	Cumulative Frequency
$W<8$	
$W<12$	
$W<16$	
$W<20$	33

a) Complete the tables.
b) How many workers are at the company?
c) How many workers earn less than $£ 8$ per hour?
d) How many workers earn $£ 8$ or more per hour?
3. The air temperature at midnight on a number of days was recorded. The data is shown in the cumulative frequency table.

Temperature $\boldsymbol{T}\left({ }^{\circ} \mathrm{C}\right)$	Cumulative Frequency
$T \leq 0$	3
$T \leq 5$	9
$T \leq 10$	17
$T \leq 15$	21
$T \leq 20$	25

a) How many times was the temperature less than or equal to $5^{\circ} \mathrm{C}$?
b) How many times was the temperature greater than $15^{\circ} \mathrm{C}$?
c) How many times was the temperature in the range $10^{\circ} \mathrm{C}<T \leq 15^{\circ} \mathrm{C}$?
d) How many times was the temperature in the range $5^{\circ} \mathrm{C}<T \leq 15^{\circ} \mathrm{C}$?
4. The test scores of some pupils are shown in the cumulative frequency table.

Score, $x \%$	Cumulative Frequency
$x \leq 20$	2
$x \leq 40$	11
$x \leq 60$	25
$x \leq 80$	34
$x \leq 100$	40

a) How many pupils scored more than 80% ?
b) How many pupils scored more than 40% ?
c) How many pupils scored between 20% and 60% ?
d) What fraction of the pupils scored 60% or less?
e) What percentage of the pupils scored 80% or less?
5. At a company, 30% of the workers earn less than $£ 22,000.88 \%$ of the workers earn less than $£ 48,000$. What percentage of workers have:
a) salary $\geq £ 48,000$
b) $£ 22,000 \leq$ salary $<£ 48,000$

Question 1: Some students complete a quiz. The cumulative frequency graph shows their results
(a) How many students completed the quiz?
(b) Complete the frequency table below.
(c) What percentage of the students scored above 20 marks?

Marks	Frequency
$0<m \leq 5$	
$5<m \leq 10$	
$10<m \leq 15$	
$15<m \leq 20$	
$20<m \leq 25$	

A company has 72 employees, all of whom are at least 20 years of age.
The number of employees aged from 20 to 30 is equal to the number of employees aged over 50 .

The number of employees aged over 30 but no more than 40 is twice the number of employees aged over 50 .

One third of the company's employees are over 40.
The company's oldest employee is exactly 60 .
Construct a cumulative frequency graph for the ages of the employees.

Most students scored very high or very low marks.

Nearly all students scored near the median.

Most students scored
high marks

High median score.

Few students scored
high marks

Low median score.

Most students scored near the median. There are equal amounts of high \& low scores.

Even distribution of students across the range of scores.

Score

Score

Find the lower quartile, upper quartile and interquartile range for each of these sets of data:
a) $4,5,7,8,8,8,9,10,10$
b) $8,9,11,12,12,12,14,14,15,17$
c) $7.1,7.2,7.4,7.4,7.5$
d) $19,29,31,21,28,27,24$
e) $0.6,0.23,0.2,0.7,0.14,0.1,0.68$
f) $20,31,25,45,46,20,34,31$

For each statement, decide if its possible and suggest 7 values that fit the description
The interquartile range is equal to the range
The interquartile range is equal to the median

The interquartile range is larger than the range
The upper quartile is equal to the median

The median is 0 and the interquartile range is 5

The range is negative
\square

The upper quartile is 1 and the range is 5

$$
2
$$

Question 3: Draw a box plot for each of the following.
(c)

Lower Quartile	115
Median	135
Highest Value	160
Range	70
Interquartile Range	25

(c)

Lowest Value	60
Lower Quartile	85
Median	100
Upper Quartile	110
Highest Value	170

Question 1: Draw a box plot for each of the following.
๔
(a)

Lowest Value	2
Lower Quartile	7
Median	9
Upper Quartile	10
Highest Value	13

Lowest Value	23
Lower Quartile	30
Median	32
Upper Quartile	34
Highest Value	45

(b)

Question 4: Draw a box plot for each set of data
(a) $8,10,13,14,14,15,15,16,18,19,21,22,24,29,35$
$40,80,90,90,100,120,130$
(c) $5.9,7.3,7.8,8,8.4,8.7,8.9,8.9,8.9,9,9,9.1,9.1,9.3,9.5,9.6,9.9,10.5,10.9$
Question 5: Compare the distributions of each pair of box plots below.
(b)

Time taken to complete puzzle - Adults

Ξ

Question 1: Gareth and Wayne are two footballers.
Que table shows information about the number of passes they make in each

$\begin{array}{\|l\|} \hline 0 \\ \text { 合 } \\ 3 \end{array}$	\sim	\square	9		ก	$\stackrel{\text { ® }}{\sim}$	
$\begin{aligned} & \text { ᄃ } \\ & \stackrel{\rightharpoonup}{0} \\ & 0.0 \end{aligned}$	1Ω	\sim	$\underset{\sim}{0}$	$\stackrel{\text { N }}{\sim}$			¢
	$\begin{aligned} & \frac{3}{0} \\ & 0 \\ & \vdots \\ & \vdots \\ & \vdots \\ & 3 \\ & 3 \end{aligned}$				$\begin{array}{\|c} \frac{0}{0} \\ \frac{0}{5} \\ \vdots \\ \vdots \\ \frac{0}{0} \\ \frac{0}{1} \end{array}$		碞

$\stackrel{\circ}{ \pm}$

$\begin{array}{lllll}0 & 60 & 90 & 120 & 150 \\ \text { Mass, grams }\end{array}$
After selecting each apple, he records its mass and returns it to the crate before picking another.
Work out the probability that:
(a) Jack picks two apples, both under 75 g
(b) Jack picks two apples, both over 90 g
(c) Jack picks two apples, both over 105 g

(e) Jack picks three apples, all over 105 g
(f) Jack picks three apples, two over 105g and one under 75g.

quartiles \& boxplots

example

exercise

1. For each data set, work out Q_{1}, Q_{2}, Q_{3} and the interquartile range.
a) $\begin{array}{lllllll}7 & 9 & 11 & 14 & 16 & 16 & 18\end{array}$
b) $2 \begin{array}{lllllllllllll}2 & 2 & 4 & 5 & 7 & 8 & 8 & 9 & 10 & 10 & 11 & 11 & 12\end{array}$
c) $\begin{array}{llllllll}0.4 & 0.7 & 1.0 & 1.5 & 1.7 & 1.7 & 2.2 & 2.6\end{array}$
d) $29 \quad 31 \quad 34 \quad 34 \quad 35 \quad 39 \quad 47 \quad 51 \quad 52 \quad 58 \quad 65 \quad 82$
2. Work out the median and quartiles and construct a box plot:
a) Number of customers each hour
b) Maximum day temperature $\left({ }^{\circ} \mathrm{C}\right)$

2	3	5	7	7	9
9	9	9	13	14	19

12	12	14	16	19	20	21
23	24	28	28	29	31	31

3. A group of people were asked how many books they read in a year. The boxplot shows the results.
a) State the median.
b) Work out the range.

c) Work out the interquartile range.
d) What percentage of the people had read more than 20 books?
e) What percentage of the people had read more than 7 books?
4. Two teams took part in a charity run. The times taken for members of the teams to complete the run are shown in the box plots.
a) On average, which team's members were quicker? Justify your answer.

b) Which team had a smaller overall spread of times? Justify your answer.
c) Which team had a smaller spread of the middle 50% of times.
5. The results of a class of pupils in exams for two subjects are shown in the box plots.

Compare the distributions of exam results in the two subjects.

6. Which boxplot matches each statement?

The median is 23 mins	The interquartile range is 26 mins
The boxplot with the smallest range	The IQR is less than half of the range.
At least 25% of the data values are greater than 40 mins.	At least $\frac{3}{4}$ of the data values are less than 35 mins.

The boxplot above shows the distribution of marks scored in a test by pupils in a Geography class. There are 31 students in the class.

Find upper and lower bounds for the mean score achieved by the 31 students.
c) ...the distribution was symmetrical.

e) ...the results were very consistent.

g) ...the results were low scoring \& inconsistent.

i) ...the test was too difficult for most, but Mary got 100\%!

k) ...the lowest result was shared by 25% of the students.

d) ...the class did well, except George who was late!

f) ...the results were perfectly distributed.

h) ...50\% of the students got 100%.

j) ...the interquartile range was 20% of the range.

Question 1: Draw a line graph for each of the following tables
(a)

Year	Population
1990	40
1995	44
2000	50
2005	62
2010	88
2015	90

(b)

Time	Price
$9 a m$	$30 p$
$10 a m$	$24 p$
$11 a m$	$25 p$
12 noon	$27 p$
$1 p m$	$37 p$
$2 p m$	$38 p$

(c)

Month	Height, cm
1	3
2	5
3	10
4	20
5	35
6	36

Question 2: Sally recorded the number of cars in a car park every two hours.
She begun at 9 am and finished at 7 pm .
The line graph shows her results.
(a) When were the most cars in the car park?
(b) How many cars were in the car park at 11am
(c) At what time were there 24 cars in the car park?
(d) Estimate the number of cars in the car park at 10 am .
(e) How many less cars were in the car park at 3 pm than 1 pm ?

Question 3: The line graph below shows the cost of a coffee in a shop over 30 years.
(a) In which year was the price $£ 2.50$?
(b) How much was the price of a coffee in 1990?
(c) Estimate the price of a coffee in 2005.

Carlos says that the price of a coffee will be $£ 3.60$ by 2020 .
(d) Do you agree with Carlos? Explain your answer.

Question 4: The table below shows the average temperature min denas anu riymuan.
(a) Draw line graphs on the same axes to show the temperatures in Belfast and Plymouth.

	Belfast	Plymouth
Monday	$14^{\circ} \mathrm{C}$	$17^{\circ} \mathrm{C}$
Tuesday	$16^{\circ} \mathrm{C}$	$18^{\circ} \mathrm{C}$
Wednesday	$15^{\circ} \mathrm{C}$	$13^{\circ} \mathrm{C}$
Thursday	$10^{\circ} \mathrm{C}$	$12^{\circ} \mathrm{C}$
Friday	$9^{\circ} \mathrm{C}$	$10^{\circ} \mathrm{C}$

(b) On which day did Belfast have a higher temperature than Plymouth?
(c) Between which two consecutive days did the temperature in Belfast change the most?

$\%$
 c Which month? (March 2008, adapted)

The table shows the number of cars sold by a garage each month from July to December.

July	August	September	October	November	December
28	26	25	21	22	17

