

Year 10 2023 Mathematics 2024 Unit 16 Booklet

HGS Maths

Tasks

Dr Frost Course

Name:

Class:

Contents

- 1 <u>Recurring Decimals</u>
- 2 <u>Parallel and Perpendicular Lines</u>
- 3 <u>Graphical Inequalities</u>
- 4 <u>Non-Linear Graphs</u>

1 Recurring Decimals

Worked Example	Your Turn
Express as a decimal: a) $\frac{2}{9}$	Express as a decimal: a) $\frac{8}{9}$
b) $\frac{2}{11}$	b) $\frac{8}{11}$
c) $\frac{2}{15}$	c) $\frac{4}{15}$

									A	Activ	vity										
Recurring or	Terminating																				
Prime Factors	of Denominator																				
Decimal																					
Fraction		<u>1</u> 2	1 Ιω	₽ 4	م ا ب	6 1	1 1	1 8	<u>1 </u> 0	$\frac{1}{10}$	<u>11</u>	$\frac{1}{12}$	1 13	$\frac{1}{14}$	1 15	<u>1</u> 16	$\frac{1}{17}$	$\frac{1}{19}$	$\frac{1}{20}$		

Activity

	Fraction	Factorised	The Law of	Simplest	Factors of	Kind of
			Cancellation	Form	Denominator	Decimal
(i)	$\frac{8}{12}$					
(ii)	$\frac{3}{16}$					
(iii)	$\frac{9}{27}$					
(iv)	$\frac{12}{30}$					
(v)	$\frac{7}{32}$					
(vi)	$\frac{15}{21}$					
(vii)	$\frac{3}{10}$					
(viii)	$\frac{3}{18}$					
(ix)	$\frac{6}{33}$					
(x)	$\frac{3}{75}$					

Worked Example	Your Turn
Express as a simplified fraction:	Express as a simplified fraction:
0. 4	0.7

Your Turn
Express as a simplified fraction:
0. 27

Worked Example	Your Turn
Express as a simplified fraction:	Express as a simplified fraction:
0. 279	0. 837

Worked Example	Your Turn
Express as a simplified fraction:	Express as a simplified fraction:
0.789	0.579

Worked Example	Your Turn
Express as a simplified fraction:	Express as a simplified fraction:
3.7654	7.5309

Recurring contail Write out multiples of x Subtract $x as a$ $= 0.7$ $10x = 7.7 = 7.7777$ $9x = 7$ $x = \frac{7}{9}$ $= 0.2$ $10x = 7.7 = 7.7777$ $9x = 7$ $x = \frac{7}{9}$ $= 0.2$ $10x = 7.7 = 7.7777$ $9x = 7$ $x = \frac{7}{9}$ $= 0.2$ $10x = 35.35 = 0.7777$ $9x = 7$ $x = \frac{7}{9}$ $= 0.2$ $10x = 35.35 = 0.3535$ $99x = 35$ $x = \frac{7}{100x}$ $= 0.35$ $100x = 35.35 = 0.3535$ $99x = 35$ $x = \frac{7}{100x}$ $= 0.35$ $100x = 35.35 = 0.3535$ $99x = 35$ $x = \frac{7}{100x}$ $= 0.35$ $x = 0.355 = 0.3535$ $99x = 35$ $x = \frac{7}{100x}$ $= 0.35$ $x = 0.355 = 0.3535$ $99x = 35$ $x = \frac{7}{100x}$ $= 0.35$ $x = 0.355 = 0.3535$ $99x = 35$ $x = \frac{7}{100x}$ 0.6133 $1000x = \frac{1000x}{10x}$ $1000x = 2.2 = 2.22222$ $1000x = \frac{1000}{100x}$ 0.932 0.932 0.932 0.932 0.932 0.932 0.932 0.932 0.932				0
$ = 0.7 \qquad 10x = 7.7 = 7.7777 \dots \qquad 9x = 7 \qquad x = \frac{7}{9} $ $ = 0.2 \qquad x = 0.7 = 0.77777 \dots \qquad 9x = 7 \qquad x = \frac{7}{9} $ $ = 0.2 \qquad 10x = 1 \qquad 0.02 = 35.3535 \dots \qquad 9yx = 35 \qquad x = \frac{10x = 1}{2} \qquad 9yx = 35 \qquad x = \frac{10x = 1}{2} \qquad 9yx = 35 \qquad x = \frac{10x = 1}{2} \qquad 9yx = 35 \qquad x = \frac{100x = 35.3535 \dots \qquad 9yx = 35 \qquad x = \frac{100x = 35.3535 \dots \qquad 9yx = 35 \qquad x = \frac{100x = 35.3535 \dots \qquad 9yx = 35 \qquad x = \frac{100x = 35.3535 \dots \qquad 9yx = 35 \qquad x = \frac{100x = 35.3535 \dots \qquad 9yx = 35 \qquad x = \frac{100x = 35.3535 \dots \qquad 9yx = 35 \qquad x = \frac{100x = 35.3535 \dots \qquad 9yx = 35 \qquad x = \frac{100x = 35.3535 \dots \qquad 9yx = 35 \qquad x = \frac{100x = 35.3535 \dots \qquad 9yx = 35 \qquad x = \frac{100x = 35.3535 \dots \qquad 9yx = 35 \qquad x = \frac{100x = 35.3535 \dots \qquad 9yx = 35 \qquad x = \frac{100x = 35.3535 \dots \qquad 9yx = 35 \qquad x = \frac{100x = 35.3535 \dots \qquad 9yx = 35 \qquad x = \frac{100x = 35.3535 \dots \qquad 9yx = 35 \qquad x = \frac{100x = 35.3535 \dots \qquad 9yx = 35 \qquad x = \frac{100x = 35.3535 \dots \qquad 9yx = 35 \qquad x = \frac{100x = 35.3535 \dots \qquad y = \frac{100x = 35}{3} \qquad 0.511 \qquad 1000x = 1 \qquad 0.143 \qquad 0.932 \qquad 0.93 \qquad 0.932 $	recurring	Write out multiples of x	Subtract	<i>x</i> as a fraction
$= 0.2 \frac{10x =}{x =} \frac{10x =}{0.35 = 35.3535} = 0.35 = 35.3535} = 0.35 = 0.3535} = 0.35 = 0.3535} = 0.35 = 0.3535} = 0.27 \frac{100x =}{x =} = 0.35 = 0.3535} = 0.27 = 0.35 = 0.3535} = 0.27 \frac{100x =}{x =} = 0.22222} = 0.143 = 0.00x = 0.143 = 0.00x = 0.002 = $	= 0. 7	$10x = 7, \dot{7} = 7.77777 \dots$ $x = 0, \dot{7} = 0.77777 \dots$	9x = 7	$\frac{6}{2} = x$
$0.3\dot{5}$ $100x = 35.3\dot{5} = 35.353$ $99x = 35$ $x = 0.3\dot{5} = 0.3535$ $99x = 35$ $0.\dot{4}\dot{1}$ $x = 0.3\dot{5} = 0.3535$ $0.\dot{4}\dot{1}$ $100x =$ $0.\dot{2}\dot{7}$ $1000x =$ $0.\dot{2}\dot{7}$ $1000x =$ $0.\dot{2}\dot{7}$ $1000x =$ $0.0\dot{2}\dot{3}\dot{2}$ $100x = 2.\dot{2} = 2.22222$ $0.1\dot{4}\dot{3}$ $0.0\dot{3}\dot{2}$ $0.0\dot{3}\dot{2}$ $0.0\dot{3}\dot{2}$ $0.0\dot{3}\dot{2}$ $0.0\dot{3}\dot{2}$	= 0. Ż	10x = x = x		
$ = 0.\dot{4}i \frac{100x =}{x =} $ $ = 0.\dot{2}\dot{7} \frac{100x =}{x =} $ $ 0.\dot{6}i\dot{3} \frac{1000x =}{1000x =} $ $ 0.\dot{6}i\dot{3} \frac{1000x =}{100x =} $ $ = 0.0\dot{2} \frac{100x = 2.\dot{2} = 2.22222}{10x =} $ $ 0.1\dot{4}\dot{3} \frac{100x = 2.\dot{2} = 2.22222}{10x =} $	= 0. 35	$100x = 35.\dot{3}\dot{5} = 35.3535$ $x = 0.\dot{3}\dot{5} = 0.3535$	99x = 35	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	= 0. 41	100x = x = x = 0		
$\begin{array}{c c} 0. \dot{6}1\dot{3} & 1000x = & \\ 0. \dot{6}1\dot{3} & 100x = 2. \dot{2} = 2.22222 \dots \\ 10x = & & \\ 0.1 \dot{4}\dot{3} & & \\ 0.1 \dot{3}\dot{2} & & \\ 0.9 \dot{3}\dot{2} & & \\ 0.9 \dot{3}\dot{2} & & \\ 0.0 \dot{0}\dot{5} & & \\ 0.0 \dot{0}\dot{5} & & \\ \end{array}$	= 0. 27			
$= 0.02\dot{2} \qquad \frac{100x = 2.2 = 2.22222}{10x =} \qquad $	0.613	1000x =		
0.143 0.932 0.932 0.932	= 0.0Ż	$100x = 2.\dot{2} = 2.22222 \dots$ $10x =$		
: 0.932 : 0.932	: 0.14 <u>3</u>			
0.00 0.0 0 0.0 0 5	0.932			
: 0.0ÒŚ	: 0.932			
	: 0.0 0 Š			

Fill in the Gaps

Worked Example	Your Turn
Worked Example Write the fraction 0.136 × 0.5 as a fraction in its simplest form	Your Turn Write the fraction 0.681 × 0.1 as a fraction in its simplest form

Extra Notes

2 Parallel and Perpendicular Lines

Worked Exa	ample		Your Turn
a) Write down the equation of a $y = 2x - 3$	line parallel to	a)	Write down the equation of a line parallel to $y = -2x + 3$
b) Write down the equation of th y = 6x + 1 and passes throug	e line that is parallel to (0, 8)	b)	Write down the equation of the line that is parallel to $y = -6x - 1$ and passes through $(0, -8)$

Worked Example	Your Turn
Write down the equation parallel to $y = 4x + 1$ which passes through (2, 17)	Write down the equation parallel to $y = 8x + 5$ which passes through (2, 26)

Worked Example	Your Turn
Find the equation of the line parallel to $y = -\frac{1}{3}x - 4$ that passes through (-2, 5)	Find the equation of the line parallel to $y = -\frac{1}{2}x - 3$ that passes through (-2, 5)

Worked Example	Your Turn			
Write the negative reciprocals of: a) 6	Write the negative reciprocals of: a) 7			
b) $\frac{1}{6}$	b) $\frac{1}{7}$			
c) $\frac{5}{6}$	c) $\frac{2}{7}$			

P

Fluency Practice

Worked Example	Your Turn			
a) Write down the equation of a line perpendicular to $y = 2x - 3$	a) Write down the equation of a line perpendicular to $y = -2x + 3$			
b) Write down the equation of the line that is perpendicular to $y = \frac{1}{2}x + 3$ and passes through $(0, -1)$	b) Write down the equation of the line that is perpendicular to $y = -\frac{1}{2}x + 3$ and passes through $(0, 1)$			

Worked Example	Your Turn
Write down the equation perpendicular to $y = 4x + 1$ which passes through (8, 17)	Write down the equation perpendicular to $y = 8x + 5$ which passes through (16, 26)

Worked Example	Your Turn		
Find the equation of the line perpendicular to $y = \frac{1}{2}x - 4$ that passes through (-2, 5)	Find the equation of the line perpendicular to $y = -\frac{4}{3}x + 3$ that passes through $(-12, -5)$		

Worked Example	Your Turn
Worked Example Find the equation of the line perpendicular to $3x + 2y = 5$ which passes through the point (3, 7)	Your TurnFind the equation of the line perpendicular to $2x + 3y = 5$ which passes through the point (4, 7)

Worked Example	Your Turn		
Worked Example Find the midpoint of the line segment between (-2,4) and (-9,9)	Your Turn Find the midpoint of the line segment between (2, -4) and (11,8)		

Worked Example	Your Turn
A is the point (3, 8)	A is the point (3,8)
B is the point $(1, -2)$	B is the point (1, 4)
<i>C</i> is the midpoint of <i>AB</i>	<i>C</i> is the midpoint of <i>AB</i>
Find the equation of the line perpendicular to AB which passes through C	Find the equation of the line perpendicular to AB which passes through C

Worked Example	Your Turn				
ABCD is a rhombus. A has coordinates (5, 10) The equation of <i>DB</i> is $y = \frac{1}{2}x + 5$ Find an equation of diagonal <i>AC</i>	ABCD is a rhombus. A has coordinates (5, 11) The equation of <i>DB</i> is $y = \frac{1}{2}x + 6$ Find an equation of diagonal <i>AC</i>				
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \end{array} \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \end{array} \\$	$y \uparrow f f f f f f f f f f f f f f f f f f $				

Fill in the Gaps

Equation	Point on the Line (1)	Point on the Line (2)	Gradient	y intercept	The parallel line that goes through (2, 5)	Gradient of all perpendicular lines
y = 2x + 8						
y = 4x - 1						
	(1,5)	(3,11)				
	(5,9)	(8,12)				
	(4,6)	(6,2)				
	(4,3)		-3			
	(2,9)		6			
	(-1,2)		3			
	(2,10)			(0,4)		
	(3,11)				y = 5x - 5	
	(4,3)					-2

Extra Notes

3 Graphical Inequalities

Page 55

Extra Notes

4 Non-Linear Graphs

Interpreting Quadratic Graphs

- *y*-intercept where the graph intercepts the *y*-axis
- *x*-intercept or root or solution where the graph intercepts the *x*-axis
- Turning point or vertex or minimum/maximum where the graph stops decreasing and starts increasing or vice-versa

- a) Complete the table and draw the graph of $y = x^2 + 2x$ for x = -4 to x = 2
- b) Write down the equation of the line of symmetry of your graph
- c) Use your graph to find:
 - i) the value of y when x = 0.5ii) the values of x when y = 6
- Here is a table of values for $y = x^2 + 2x$.

я	r	-4	-3	-2	-1	0	1	2
y	1	8		0	-1			8

Worked Example Complete the table and draw the graph of $y = x^2 - 2x - 4$ for x = -2 to

x = 4

a)

- b) Write down the equation of the line of symmetry of your graph
- c) Write down the values of *x* where the graph crosses the *x*-axis

Here is a table of values for $y = x^2 - 2x - 4$.

x	-2	-1	0	1	2	3	4
y		-1	-4			-1	

Fluency Practice

1. Here is a table of values for $y = x^2 - 2$.

x	-3	-2	-1	0	1	2	3
y	7		-1	-2			7

a) Complete the table of values.

b) On the grid, draw the graph of $y = x^2 - 2$ for x = -3 to x = 3.

d) Write down the coordinates of the minimum point.

Fluency Practice

2. Here is the table of values for $y = 3 - x^2$.

x	-3	-2	-1	0	1	2	3
y	-6		2	3		-1	

a) Complete the table of values.

b) On the grid, draw the graph of $y = 3 - x^2$ for x = -3 to x = 3.

d) Write down the values of *x* where the graph crosses the *x*-axis.

Use this graph to solve these equations:

a) $x^2 - 2x - 2 = 0$ b) $x^2 - 2x - 5 = 0$

Use this graph to solve these equations: $\frac{2}{3}$

Use this graph to solve these equations:

a)
$$x^2 = 2x + 3$$

b) $x^2 = x + 4$

b)
$$x^2 = x +$$

Use this graph to solve these equations:

c)
$$x^2 + x - 1 = 0$$

Fluency Practice

x	-5	-4	-3	-2	-1	0	1	2
y	6	0		-6		-4		

a) Complete the table of values.

b) On the grid, draw the graph of $y = x^2 + 3x - 4$.

Fluency Practice

Worked Example	Worked Example
a) Complete the table and draw the graph of $y = x^3 - 4$ for $x = -4$ to $x = 4$ b) Use the graph to find the value of y when $x = 4$ Here is a table of values for $y = x^3 - 4$.	 a) Complete the table and draw the graph of y = x³ - 4x² + 5 for x = -2 to x = 5 b) Use your graph to find the solutions to: i) x³ - 4x² + 5 = 0 ii) x³ - 4x² - x + 5 = 0 Here is a table of values for y = x³ - 4x² + 5.
x -4 -3 -2 -1 0 1 2 3 4	x -2 -1 0 1 2 3 4 5
<i>y</i>	v = 19 5 -4 5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Worked Example	Worked Example												
Complete the tables and draw the graph of $y = \frac{2}{x}$ for $x = -5$ to $x = 5$	Complete the tables and draw the graph of $y = -\frac{1}{x}$ for $x = -5$ to $x = 5$												
Here is a table of values for $y = \frac{2}{x}$.	Here is a table of values for $y = -\frac{1}{x}$.												
x 0.25 0.4 0.5 0.8 1 2 4 5	x 0.2 0.4 0.5 0.8 1 2 3 4 5												
	у												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	x -0.2 -0.4 -0.5 -0.8 -1 -2 -3 -4 -5												
	у и и и и и и и и и и и и и и и и и и и												
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$												

	Worked Example							
Comple	te the	tables	and	draw	the g	raph o	f y =	
Here is a tab	ole of value	s for $y = \frac{1}{x}$	<u>4</u> :-1					
x	1.5	2	3	5	6	9	11	
У								
x	0.5	0	-1	-3	-4	-7	-9	
У			vt					
			8 - 7-					
			6-					
			5- 4-					
			3- 2-					
			1-					
-12 -10	-8 -6	-4 -2	0 : 1-	2 4	6 8	10 12	x	
			-2- -3-					
			-4 -					
			-6-					
			-/- -8-					

	Fluency Practice												Fluency Practice											
1.	1. Here are some table of values for $y = \frac{4}{x}$.											a) He	re are so	ome ta	able of v	values f	for $y = \frac{1}{2}$	$\frac{8}{x+2}$						
	x	0.2	0.4	0.5	1	2	4	5	8	10		x	-12	-10	-7	-6	-4	-3	-1	0	2	3	6	8
	y		10		4	2		0.8				у												
	$x - 10 - 8 - 5 - 4 - 2 - 1 - 0.5 - 0.4 - 0.2$ y b) On your additional sheet, draw the graph of $y = \frac{8}{x+2}$ for $-12 \le x \le 12$. c) For which values of x is $y = \frac{8}{x+2}$ not defined? (b) On your additional sheet, draw the graph of $y = \frac{8}{x+2}$ for $-12 \le x \le 12$. (c) For which values of x is $y = \frac{8}{x+2}$ not defined? (c) For which values for $y = 3 - \frac{2}{x}$, $x \ne 0$. (c) For which values for $y = 3 - \frac{2}{x}$, $x \ne 0$.																							
	c) Use	your graph	to find a	n estimate	e for the s	solutions c	of $\frac{4}{x} = 4$ -	- <i>x</i> .					A					I					-	
2.	2. On your additional sheet, draw the graph of $y = -\frac{3}{x}$ for $-10 \le x \le 10$.											b) On c) Thi Wr	your ad s graph te down	dition: appro the e	al shee baches t equation	t, draw two line of eacl	the grap s withou h of the	ph of y ut touch se two I	$= 3 - \frac{2}{x}$ ing ther ines.	for – 3 s	$\leq x \leq 3$	re calle	d asymį	ototes.

Fluency Practice

Fluency Practice

a) Complete the table of values.

b) On the grid, draw the graph of $y = 4^x$ for $-2 \le x \le 2$.

ii) the value of x when y = 11

2. Here is the table of values for $y = 3^{-x}$.

x	-3	-2	-1	0	1	2
У						

a) Complete the table of values.

b) On the grid, draw the graph of $y = 3^{-x}$ for $-3 \le x \le 2$.

Extra Notes