Year 10

2023 Mathematics 2024 Unit 17 Booklet - Part 1

HGS Maths

Tasks

Dr Frost Course

 답

Name:

Class:

Year 10

2023 Mathematics 2024 Unit 17 Booklet - Part 2

HGS Maths

Tasks

Dr Frost Course
 rrarryan

 ■ M

Name:

Class:

Contents Page

```
1 Bounds and Error Intervals
2 Basic Circle Theorems
3 Direct and Inverse Proportion
4 Constructions and Loci
```


1 Bounds and Error Intervals

When someone says that a distance is 50 metres, what do they mean? Measurements in real life can never be made with absolute accuracy - there is always a certain amount of error. So 50 metres could be accurate to the nearest metre, or to the nearest 10 metres, for example. Knowing within what interval the true distance lies can be very important in many applications of mathematics. When measurements are combined in a calculation, and each value has a certain amount of error, things can get complicated - and sometimes the result can be counterintuitive.

A number has been rounded to 30 to the nearest 10 .

What could the number be?

What is the lowest and highest possible value it could be?

This smallest possible value is called the lower bound. The largest possible value is called the upper bound.

When a measure is expressed to a given unit, the maximum error is half of this unit.

For a value x, the error interval is:
least possible value $\leq x<$ greater possible value

Worked Example	Your Turn
A number z, when rounded to the nearest 100 , is equal to 6700. Find the upper and lower bound of z.	A number z, when rounded to the nearest 10, is equal to 740. Find the upper and lower bound of z.

Your Turn

A number x, when rounded to 3 significant figures, is equal to 612000 . Find the upper and lower bound of x.

A number x, when rounded to 2 significant figures, is equal to 35000. Find the upper and lower bound of x.

Worked Example

Your Turn

A number y, when rounded to 1 decimal place, is equal to 8.2 . A number y, when rounded to the nearest 10 , is equal to 680 . Find the error interval for y.

Fill in the Gaps

Error Interval	$\begin{gathered} \mathrm{L} \\ \mathrm{~m} \\ \mathrm{~V} \\ x \\ \mathrm{VI} \\ \mathrm{~N} \end{gathered}$														$\begin{gathered} V \\ \underset{\sim}{x} \\ \mathrm{VI} \\ \mathrm{~N} \end{gathered}$
		읏	ํํㄴ										\cdots	앙	
	ำ			$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$										\%	
*	-	○	$\stackrel{\sim}{\sim}$	$\stackrel{\text { N }}{ }$	$\begin{aligned} & \stackrel{8}{8} \\ & \stackrel{\rightharpoonup}{\mathrm{~N}} \end{aligned}$	$\stackrel{\infty}{\sim}$	$\begin{aligned} & 0 \\ & \text { en } \end{aligned}$	$\begin{aligned} & 0 \\ & \text { en } \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & \hline 8 \end{aligned}$	$\stackrel{\circ}{\mathrm{N}}$	아	$\stackrel{m}{\square}$			∞

Fill in the Gaps

															$\begin{aligned} & \circ \\ & \stackrel{\rightharpoonup}{n} \\ & \stackrel{\rightharpoonup}{\mathrm{~V}} \\ & \dot{*} \\ & \mathrm{VI} \\ & \mathrm{n} \end{aligned}$
		$\stackrel{1}{n}$				난								$\stackrel{\leftrightarrow}{\dot{\sim}}$	
	$\stackrel{\text { N }}{\substack{0}}$		$\stackrel{\mathrm{N}}{\mathrm{~N}}$										$\stackrel{\sim}{\sim}$	$\begin{aligned} & \text { n } \\ & \end{aligned}$	
＊	ザ	\wedge	\cdots	$\stackrel{\underset{i}{i}}{\stackrel{\rightharpoonup}{2}}$	$\stackrel{\underset{\sim}{\mathrm{N}}}{ }$	안	$\stackrel{\square}{\sim}$	$\begin{aligned} & 0 \\ & \hat{0} \end{aligned}$	\bigcirc	へ	$\stackrel{\Omega}{N}$	H			

Fill in the Gaps

Value	Rounded to	Lower Bound	Upper Bound	Error Interval	Inequality on a number line				
4.2	1 dp	4.15	4.25	$4.15 \leq x<4.25$		${ }_{1}^{4.15}$	$i^{4.2}$	$-\bigcirc$	$i^{4.3}$
3.2	1 dp			$\leq x<$		$\stackrel{3.15}{\mid}$	$i^{3.2}$	${ }_{i}^{3.25}$	$\stackrel{3.3}{\mid}$
3.6	1 dp			$\leq x<$					\dagger
3.68	$2 d p$	3.675	3.685	$\leq x<$				+	-
8.63	$2 d p$		$\leq x<$						
8.43	$2 d p$								1
	$2 d p$	8.815	8.825						
	$2 d p$	9.615	9.625			1	-	,	+

Fill in the Gaps

Fill in the Gaps

Fill in the Gaps

12	$2 s f$	11.5	12.5	$11.5 \leq x<12.5$			
0.97	$2 s f$						
760	$2 s f$						
7.68	$3 s f$						
9.61	$3 s f$				$\vdash \mid$ \|l	l	lly
	$1 s f$			$\leq x<7.5$			
	$2 s f$			$435 \leq x<$	$\vdash \mid$ \|l	l	

Fill in the Gaps

Number	Rounding	Lower bound	Upper bound	Error interval
4	Nearest integer	3.5	4.5	
40	Nearest ten			$35 \leq x<45$
40	Nearest integer	39.5	40.5	
50	Nearest integer	49.5		
50	Nearest ten		55	
550		545		
5.5	1 decimal place			
55.5	1 decimal place			
89.6	1 decimal place			
50	1 significant figure			

Worked Example

Your Turn

The height and width of the triangle below have been rounded
The height and width of the triangle below have been rounded as shown in brackets.
Work out the LB and UB for the area of the triangle.
(Whole enumber

(1sf)

Fill in the Gaps
$a . b$ and c are all rounded to the degree of accuracy stated. Find the maximum and minimum values for x.
Values given for $x_{\text {max }}$ are exact.

a	b	c	Equation	$x_{\text {max }}$	$x_{\text {min }}$
10 (1 sig fig)	12.1 (3 sig fig)	3.4 (2 sig fig)	$\sqrt{a x}=b-c$		
0.5 (1 sig fig)	4.5 (2 sig fig)	-2.0 (2 sig fig)	$\frac{a}{x}=b^{2}+3 c$		
5.2 (2 sig fig)	3.4 (2 sig fig)	5 (1 sig fig)	$\frac{a x^{2}}{b}=c$		
3 (1 sig fig)	4 (1 sig fig)	8 (1 sig fig)	$a x+c=b$		
5 (1 sig fig)	-3 (1 sig fig)	$\square(2 \mathrm{sig} \mathrm{fig})$	$a x=b c$	-3.25	
$\square(2 \mathrm{sig} \mathrm{fig})$	4.3 (2 sig fig)	0.3 (1 sig fig)	$a+x=\frac{b}{c}$	9.35	

Considering Bounds

$m=\frac{\sqrt{s}}{t}$
$s=3.47$ correct to 2 decimal places. $t=8.132$ correct to 3 decimal places. By considering bounds, work out the value of m to a suitable degree of accuracy. You must show all your working and give a reason for your final answer.
$s_{\text {lower }}=3.465 \quad s_{\text {upper }}=3.475$
$t_{\text {lower }}=8.1315 \quad t_{\text {upper }}=8.1325$
$m_{\text {lower }}=\frac{\sqrt{s_{\text {lower }}}}{t_{\text {upper }}}=\frac{\sqrt{3.465}}{8.1325}=0.2288903 \ldots$
$m_{\text {upper }}=\frac{\sqrt{S_{\text {upper }}}}{t_{\text {lower }}}=\frac{\sqrt{3.475}}{8.1315}=0.2292486 \ldots$
If we had to only choose a single value for m, what would be most sensible?
We don't know where m is between the $0.2289 \ldots$ and $0.2292 \ldots$ Ideally we want to quote a value of m such that we would round to this same value regardless of what \boldsymbol{m} actually was, but still give as much accuracy as possible..
$m=0.229$ "as both the lower bound and upper bound are this to 3dp".

Worked Example	Your Turn
$a=\frac{\sqrt{b}}{c}$ $b=0.24$ correct to 2 decimal places. $c=57.2$ correct to 3 significant figures. By considering bounds, work out the value of a, giving your answer to a suitable degree of accuracy.	$\begin{aligned} & a=\frac{b}{\sqrt{c}} \\ & b=0.359 \text { correct to } 3 \text { significant figures. } \\ & c=0.64 \text { correct } 2 \text { decimal places. } \end{aligned}$ By considering bounds, work out the value of a, giving your answer to a suitable degree of accuracy.

Truncation

When we truncate a number, we find an estimate for the number without doing any rounding. To truncate a number, we miss off digits past a certain point in the number, filling-in zeros if necessary to make the truncated number approximately the same size as the original number.

To truncate a number to 1 decimal place, miss off all the digits after the first decimal place.
To truncate a number to 2 decimal places, miss off all the digits after the second decimal place.
To truncate a number to 3 significant figures, miss off all the digits after the first 3 significant figures (the first non-zero digit and the next two digits). Fill in any spaces with zeros to make the number approximately the same size as the original value.

\left.| Worked Example | Your Turn |
| :--- | :--- |
| Truncate 41.53681 to: | Truncate 11.95291 to: |
| a) 1 decimal place | a) 1 decimal place |
| b) 2 decimal places | |
| c) 3 decimal places | b) 2 decimal places |
| c) 3 decimal places | |$\right]$

Worked Example	Your Turn
A number z, when truncated to 2 decimal places, is equal to 4.97. Find the upper and lower bound of z.	A number x, when truncated to 3 decimal places, is equal to 0.545. Find the upper and lower bound of x.

Extra Notes

Fluency Practice

Circle Vocabulary: Match each word with its definition.	
Arc	Line joining two points on a circumference.
Segment	Perimeter of a circle.
Chord	Part of a circle between a chord and an arc.
Radius	Line touching the circumference of a circle once.
Diameter	Distance from the centre of a circle to the edge.
Circumference	Part of the circumference of a circle.
Tangent	Part of a circle between two radii and an arc.
Sector	Width of a circle.

Circle Vocabulary: Label the diagram using parts of a circle.

Circle Theorems 1

The angle in a semicircle is a right angle.

The angle at the centre is twice the angle at the circumference.

Angles in the same segment are equal.

Circle Theorems 2

Opposite angles of a cyclic quadrilateral sum to 180°.

Tangents to a point are equal in length.

"Angle between radius and tangent is 90° ".

Circle Theorems 3

The perpendicular from the centre to a chord bisects the chord.

The angle between a chord and a tangent equals the angle in the alternate segment.

Circle Theorems Summary

What you need to remember when answering Circle Theorems questions

The angle at the centre of a circle is twice the angle at the circumference, so...

...the angle in a semi-circle is 90°

Opposite angles in a cyclic quadrilateral add up to 180°

Two radii make an isosceles triangle

Angles subtended by the same arc [or chord] are equal in size

Tangents from the same point are equal in length

A radius and a tangent form a right angle

The perpendicular bisector of a chord passes through the centre of the circle

The angle between a tangent and a chord [or diameter] is equal to the angle in the alternate segment

Fluency Practice
For the circle theorem questions after the grid, write your answers in the grid and tick all the angle facts you used in each case.
Compare your grid to your partner's grid - did you use the same methods? If not, explain your methods and see if
they can follow your thinking.

Extra Notes

3 Direct and Inverse Proportion

Direct Proportion

y is directly proportional to x
y is proportional to x
y varies directly to x
$y \propto x$
$y=k x$
k is called the constant of proportionality

The graph of $y=k x$ is a straight line that passes through the origin.

Worked Example	Your Turn
y is directly proportional to x When $y=20, x=2$ a) Find y when $x=5$ b) Find x when $y=200$	b is directly proportional to a When $\mathrm{b}=30, a=5$ a) Find b when $\mathrm{a}=2$ b) Find a when $b=3000$

Worked Example	Your Turn
y is directly proportional to the square of x	b is directly proportional to the square of a
When $y=36, x=3$	When $\mathrm{b}=12, a=2$ a) Find y when $x=5$ a) Find b when $\mathrm{a}=3$
b) Find x when $y=400$	bind a when $\mathrm{b}=300$

Worked Example	Your Turn
y is directly proportional to the cube of x When $y=32, x=2$ a) Find y when $x=5$ b) Find x when $y=108$	b is directly proportional to the cube of a When $\mathrm{b}=54, a=3$ a) Find b when $\mathrm{a}=4$ b) Find a when $\mathrm{b}=16$

Worked Example	Your Turn
y is directly proportional to the square root of x	b is directly proportional to the square root of a
When $y=36, x=16$	When $\mathrm{b}=36, a=144$
a) Find y when $x=25$	a) Find b when $\mathrm{a}=49$
b) Find x when $y=900$	bind a when $\mathrm{b}=243$

Fill in the Gaps

Fill in the Gaps

Fill in the Gaps

Relationship in Words	Equation	Known Values	Substitution	Constant of Proportionality (k)	Equation Re-write	Question
y is directly proportional to x	$y=k x$	$\begin{gathered} \text { When } x=9, \\ y=45 \end{gathered}$	$45=k(9)$			$\begin{aligned} & \text { When } x=10, \\ & y= \end{aligned}$
y is directly proportional to x squared	$y=k x^{2}$	$\begin{gathered} \text { When } x=3, \\ y=36 \end{gathered}$	$36=k(3)^{2}$			$\begin{aligned} & \text { When } x=5 \text {, } \\ & y= \end{aligned}$
y is directly proportional to x cubed		$\begin{gathered} \text { When } x=4, \\ y=128 \end{gathered}$				$\begin{aligned} & \text { When } x=3 \text {, } \\ & \quad y= \end{aligned}$
y is directly proportional to the square root of x	$y=k \sqrt{x}$	$\begin{gathered} \text { When } x=25, \\ y=15 \end{gathered}$	$15=k \sqrt{25}$			$\begin{aligned} & \text { When } x=100, \\ & y= \end{aligned}$
	$y=k \sqrt[3]{x}$	$\begin{gathered} \text { When } x=8, \\ y=20 \end{gathered}$				$\begin{gathered} \text { When } x=64, \\ y= \end{gathered}$
	$y=k x$	$\begin{gathered} \text { When } x=5, \\ y=40 \end{gathered}$				$\begin{aligned} & \text { When } x=2.5, \\ & y= \end{aligned}$
y is directly proportional to x squared		$\begin{gathered} \text { When } x=4, \\ y=96 \end{gathered}$				$\begin{aligned} & \text { When } x=10, \\ & y= \end{aligned}$
y is directly proportional to the square root of x		$\begin{gathered} \text { When } x=81, \\ y=81 \end{gathered}$				$\begin{gathered} \text { When } x=36, \\ y= \end{gathered}$
		When $x=5$, $y=500$	$500=k(5)^{3}$			When $x=3$, $y=$
y is directly proportional to the cube root of x		$\begin{gathered} \text { When } x=1000, \\ y=70 \end{gathered}$				$\begin{gathered} \text { When } x=8, \\ y= \end{gathered}$
y is directly proportional to x		$\begin{gathered} \text { When } x=16, \\ y=56 \end{gathered}$				$\text { When } y=49 \text {, }$ $x=$
y is directly proportional to x squared		$\begin{gathered} \text { When } x=3, \\ y=4.5 \end{gathered}$				$\text { When } y=72 \text {, }$ $x=$
y is directly proportional to x cubed		$\begin{gathered} \text { When } x=2, \\ y=1.6 \end{gathered}$				$\begin{gathered} \text { When } y=12.8, \\ x= \end{gathered}$

y is inversely proportional to x
y varies inversely or indirectly to x
$y \propto \frac{1}{x}$
$y=\frac{k}{x}$
k is called the constant of proportionality
The graph of $y=\frac{k}{x}$ is a reciprocal graph.

Worked Example	Your Turn
y is inversely proportional to x	b is inversely proportional to a
When $y=5, x=2$	When $\mathrm{b}=10, a=3$
a) Find y when $x=5$	a) \quad Find b when $\mathrm{a}=5$ b) Find x when $y=0.5$ b)

Worked Example	Your Turn
y is inversely proportional to the cube of x	is inversely proportional to the cube of a When $y=8, x=10$ a) Find y when $x=2$ b) Find x when $y=93.75$ a) \quad Find $b, a=2$
b)Find a when $\mathrm{a}=10$ $\mathrm{~b}=0.625$	

Fill in the Gaps

General Statement	General Equation	Table of Values				Value of \boldsymbol{k}	Specific Equation	$\begin{gathered} \text { When } x=6, \\ y=? \end{gathered}$	$\begin{gathered} \text { When } y=10, \\ x=? \end{gathered}$
$y \propto \frac{1}{x}$	$y=\frac{k}{x}$	x y	1 48	4	8	$k=48$	$y=\frac{48}{x}$	$y=\frac{48}{6}=8$	$x=\frac{48}{10}=4.8$
$y \propto \frac{1}{x}$	$y=\frac{k}{x}$	x	120	2	5 24				$x=\frac{120}{10}=12$
		x y	1	5	10		$y=\frac{30}{x}$		$x=\frac{30}{10}=3$
$y \propto \frac{1}{x}$		x y			100				
$y \propto \frac{1}{x^{2}}$	$y=\frac{k}{x^{2}}$	x 1 2 3 y 40				$k=360$			$x=\sqrt{\frac{360}{10}}=6$
$y \propto \frac{1}{x^{2}}$		x y			10 3				
		x y		5 4		$k=20$			

Fill in the Gaps

Fill in the Gaps

Relationship in Words	Equation	Known Values	Substitution	Constant of Proportionality (k)	Equation Re-write	Question
y is inversely proportional to x	$y=\frac{k}{x}$	$\begin{gathered} \text { When } x=8, \\ y=2 \end{gathered}$	$2=\frac{k}{8}$			$\begin{gathered} \text { When } x=2, \\ y= \end{gathered}$
y is inversely proportional to x squared		$\begin{gathered} \text { When } x=4, \\ y=0.5 \end{gathered}$	$0.5=\frac{k}{(4)^{2}}$			$\begin{gathered} \text { When } x=2, \\ y= \end{gathered}$
	$y=\frac{k}{x^{3}}$	$\begin{gathered} \text { When } x=2, \\ y=5 \end{gathered}$				$\begin{gathered} \text { When } x=1, \\ y= \end{gathered}$
	$y=\frac{k}{\sqrt{x}}$	$\begin{gathered} \text { When } x=25, \\ y=4 \end{gathered}$				$\begin{gathered} \text { When } x=100, \\ y= \end{gathered}$
		$\begin{gathered} \text { When } x=8, \\ y=4 \end{gathered}$	$4=\frac{k}{\sqrt[3]{8}}$			$\begin{gathered} \text { When } x=64, \\ y= \end{gathered}$
y is inversely proportional to x		$\begin{gathered} \text { When } x=2, \\ y=2.5 \end{gathered}$				$\begin{aligned} & \text { When } x=20 \text {, } \\ & y= \end{aligned}$
y is inversely proportional to x cubed		$\begin{gathered} \text { When } x=4, \\ y=0.25 \end{gathered}$				$\begin{aligned} & \text { When } x=10, \\ & y= \end{aligned}$
y is inversely proportional to the square root of x		$\begin{gathered} \text { When } x=100, \\ y=3 \end{gathered}$				$\begin{gathered} \text { When } x=9, \\ y= \end{gathered}$
y is inversely proportional to the cube root of x		$\begin{gathered} \text { When } x=125, \\ y=10 \end{gathered}$				$\begin{aligned} & \text { When } x=8, \\ & y= \end{aligned}$
y is inversely proportional to x squared		$\begin{gathered} \text { When } x=10, \\ y=2 \end{gathered}$				$\begin{gathered} \text { When } x=5, \\ y= \end{gathered}$

Worked Example	Your Turn
y is inversely proportional to $x+3$ When $y=52, x=3$ Find y when $x=5$	y is inversely proportional to $2 x+1$ When $y=30, x=4$ Find y when $x=7$

Fill in the Gaps

Type	Statement	k-Formula	k value $\mathrm{x}=2, \mathrm{y}=4$	Final Formula
y is proportional to x	$y \propto \mathrm{x}$	$y=\mathrm{kx}$		
x is proportional to y				
y is inversely proportional to x	$y \propto \frac{1}{x}$	$y=\frac{k}{x}$		
x is inversely proportional to y				
y is proportional to the square of x				
x is proportional to the square of y				
x is proportional to \sqrt{y}				
Y is inversely proportional to \sqrt{x}				
Y is proportional to x 3				
x is proportional to 3 more than y				

Fill in the Gaps

Direct \& Inverse Proportion - Method Breakdown Complete the table. Use the equation with the known constant (k) to answer the question.

Relationship in Words	Equation	Known Values	Substitution	Constant of Proportionality (k)	Equation Re-Write	Question
y is directly proportional to x	$y=k x$	$\begin{gathered} \text { When } x=9, \\ y=45 \end{gathered}$	$45=k(9)$			$\begin{gathered} \text { When } x=10, \\ y= \end{gathered}$
y is inversely proportional to x	$y=\frac{k}{x}$	$\begin{gathered} \text { When } x=8, \\ y=2 \end{gathered}$				$\begin{aligned} & \text { When } x=2 \text {, } \\ & \quad y= \end{aligned}$
y is directly proportional to x squared		$\begin{gathered} \text { When } x=3, \\ y=36 \end{gathered}$	$36=k(3)^{2}$			$\begin{aligned} & \text { When } x=5 \text {, } \\ & y= \end{aligned}$
	$y=k x^{3}$	$\begin{gathered} \text { When } x=4, \\ y=128 \end{gathered}$				$\begin{aligned} & \text { When } x=3 \text {, } \\ & \quad y= \end{aligned}$
	$y=\frac{k}{x^{2}}$	When $x=4$, $y=0.5$				$\begin{aligned} & \text { When } x=2, \\ & y= \end{aligned}$
y is inversely proportional to x cubed		$\begin{gathered} \text { When } x=2, \\ y=5 \end{gathered}$				$\begin{aligned} & \text { When } x=1 \text {, } \\ & \quad y= \end{aligned}$
y is directly proportional to the square root of x	$y=k \sqrt{x}$	$\begin{gathered} \text { When } x=25, \\ y=15 \end{gathered}$				$\begin{aligned} & \text { When } x=100, \\ & y= \end{aligned}$
	$y=k \sqrt[3]{x}$	$\begin{gathered} \text { When } x=8, \\ y=20 \end{gathered}$				$\begin{gathered} \text { When } x=64, \\ y= \end{gathered}$
	$y=\frac{k}{\sqrt{x}}$	$\begin{gathered} \text { When } x=25, \\ y=4 \end{gathered}$				$\begin{gathered} \text { When } x=100, \\ y= \end{gathered}$
y is inversely proportional to the cube root of x		$\begin{gathered} \text { When } x=8, \\ y=4 \end{gathered}$				$\begin{gathered} \text { When } x=64, \\ y= \end{gathered}$
y is directly proportional to x squared		$\begin{gathered} \text { When } x=3, \\ y=4.5 \end{gathered}$				$\begin{gathered} \text { When } y=72, \\ x= \end{gathered}$
y is inversely proportional to the square root of x		$\begin{gathered} \text { When } x=100, \\ y=3 \end{gathered}$				$\begin{aligned} & \text { When } x=9, \\ & y= \end{aligned}$

Worked Example	Your Turn
x is inversely proportional to y^{2} y is directly proportional to $\sqrt[3]{z}$ Given that $x=10$ and $z=512$ when $\mathrm{y}=7$ find a formula for x in terms of z	x is directly proportional to y^{3} y is inversely proportional to \sqrt{z} Given that $x=10$ and $z=36$ when $\mathrm{y}=5$ find a formula for x in terms of z

Worked Example	Your Turn
t is inversely proportional to z^{3}	y is inversely proportional to p^{2} z is decreased by 50\% is decreased by 50\% Find the percentage increase in t Find the percentage increase in y

Graphs

Fluency Practice

y is proportional to the square of x

Which of the following could be the graph demonstrating between y and x ?
Which of the following could be the graph demonstrating between y and x ?
$)_{x}^{y} v_{x}^{y}$

y is inversely proportional to the square of x
$\boldsymbol{y} \propto \sqrt{\boldsymbol{x}}$
$y \propto x^{3}$

Fluency Practice

Proportional Graphs For each black graph, select the correct proportional relationship \& complete the table of values.

 \& y axes have equal scales)A

$y \propto 2 x+5$
$y \propto \frac{x}{4} \quad y \propto 4 x$

x	0	2	4	8
y				

B
 $y \propto 0.5 x \quad y \propto \frac{x}{5} \quad y \propto 5 x$

x	1	2	4	8
y				

c

$$
y \propto 0.5 x^{2} \quad y \propto 3 x^{2} \quad y \propto \frac{5}{x^{2}}
$$

x	1	2	3	4
y				

D $y \quad y \propto x^{2}$

$y \propto 0.2 x^{2} \quad y \propto 3 x^{3} \quad y \propto 4 x^{2}$

x	1	5	10	20
y				

$$
\begin{aligned}
& y \propto 2 \sqrt[3]{x} \quad y \propto 3 \sqrt{x} \quad y \propto \frac{5}{x^{2}} \\
& \begin{array}{|c|c|c|c|c|}
\hline x & 1 & 4 & 9 & 16 \\
\hline y & & & & \\
\hline
\end{array}
\end{aligned}
$$

F

	$y \propto 4 \sqrt[3]{x}$		$y \propto \sqrt[3]{x}$		$y \propto 2 \sqrt{x}$
	x	1	8	64	125
	y				

G $\underset{\longrightarrow}{\substack{y\\}}$
$y \propto \frac{60}{x} \quad y \propto \frac{1}{x^{2}} \quad y \propto \frac{20}{x}$

H

$$
y \propto \frac{5}{x^{2}} \quad y \propto \frac{1}{x^{3}}
$$

$$
y \propto \frac{1}{\sqrt{x}}
$$

Extra Notes

4 Constructions and Loci

To 'construct' something in the strictest sense means to draw it using only two things:

- Compass
- Straight Edge (Apart from where a length is specified, you are not allowed to measure lengths)

Bisect means cut into two equal parts.
Equidistant means equal distance from

Compass Skills

A) Complete each circle.

Quick Tips:

When the compass is closed, the point and the pencil point should meet.
Make sure the legs are not loose (this needs tight hinge screws).
Place paper underneath the worksheet to make the point hold.
When drawing, try to only hold the handle with a finger and thumb.

Perpendicular Bisector

Draw two points on your page and label them A and B.
Join them with a straight line.
Construct its perpendicular bisector.

1) Draw two equal arcs.
2) Connect the intersections with a straight line.
3) This line is the perpendicular bisector and contains all the points equidistant from A and B.

Worked Example

Construct the perpendicular bisector of the line:

Your Turn

Construct the perpendicular bisector of the line:

Fluency Practice

Perpendicular Line at a Point 1

M is a point on the line $A B$.
Construct a line perpendicular to $A B$ through M.

1) Use your compass to find two points on the line equidistance from M.
2) Construct a perpendicular bisector of these two points.

Worked Example

Construct a perpendicular to the line which passes through the marked point:

Your Turn

Construct a perpendicular to the line which passes through the marked point:

Perpendicular Line at a Point 2

Construct a line perpendicular to $A B$ through C, which is a point not on $A B$.

1) Use your compass to find two points on the line equidistance from C.
2) Construct a perpendicular bisector of these two points.

Worked Example

Construct a perpendicular to the line which passes through the marked point:

X

Your Turn

Construct a perpendicular to the line which passes through the marked point:

X

Fluency Practice

Fluency Practice

	ล-1			©			
	©			©			x_{2}

Angle Bisector

Draw an acute angle on your page.
Construct its angle bisector.

1) Draw an arc from the vertex.
2) Draw two more equal arcs from the intersections.
3) Join the new intersection up to the vertex.
4) This line is the angle bisector and contains all points equidistant from both arms of the angle.

Worked Example

Bisect angle BAC:

Your Turn

Bisect angle BAC:

Fluency Practice

Constructing Triangles

You can construct a unique triangle when you know:
Two sides and the angle between them (SAS)
Two angles and a side (ASA)
Three sides (SSS)

SSS

Using a ruler and compass only, construct the following SSS triangle accurately.

1) Draw a 6 cm line with a ruler.
2) Draw two arcs with lengths 4 cm and 5 cm from each end of the line.
3) Join the ends of the line to the intersection.

Worked Example

Construct a triangle with:

- A side length of 10 cm
- A side length of 6 cm
- A side length of 8 cm

Your Turn

Construct a triangle with:

- A side length of 5 cm
- A side length of 3 cm
- A side length of 4 cm

SAS

Using a ruler, compass and protractor, construct the following SAS triangle accurately.

1) Draw a 7 cm line with a ruler.
2) Draw an arc with length 8 cm .
3) Measure an angle of 40°.
4) Draw a line through the angle to the arc.
5) Join up the end of the lines.

Worked Example

Construct a triangle with:

- A side length of 10 cm
- An angle of 30°
- A side length of 8 cm

Your Turn

Construct a triangle with:

- A side length of 5 cm
- An angle of 30°
- A side length of 4 cm

ASA

Using a ruler, compass and protractor, construct the following ASA triangle accurately.

1) Draw a 7.3 cm line with a ruler.
2) Measure both angles.
3) Draw a feint line through each angle and label them.
4) Draw a solid line over each feint line up to the intersection.

7.3 cm

Worked Example

Construct a triangle with:

- An angle of 30°
- A side length of 10 cm
- An angle of 45°

Your Turn

Construct a triangle with:

- An angle of 30°
- A side length of 5 cm
- An angle of 60°

Loci

A locus is a path formed by a point which moves according to a rule. The plural is loci.

Loci involving:		We can use our constructions from last lesson to find the loci satisfying certain conditions...	
Thing A	Thing B	Interpretation	Resulting Lo
Point	-	A given distance from point A	
Line	-	A given distance from line A	
Point	Point	Equidistant from 2 points or given distance from each point.	A
Line	Line	Equidistant from 2 lines	Ange bisector
Point	Line	Equidistant from point A and line B	

Loci can also be regions satisfying certain descriptions.

A goat is attached to a post, by a rope of length 3 m . Shade the locus representing the points the goat can reach

A goat is now attached to a metal bar, by a rope of length 3 m . The rope is attached to the bar by a ring, which is allowed to move freely along the bar. Shade the locus representing the points the goat can reach

Shade the region consisting of points which are closer to line

Common schoolboy error: Thinking the locus will be oval in shape. A than to line B.

```
As always, you MUST show
construction lines or you wil
be given no credit.
```


Fluency Practice

Complete as many of the following challenges as you can, as a group, making a note of the shapes you produce for each one. You will also be expected to demonstrate one of these shapes to the rest of the class.

1. In your group, stand exactly $\mathbf{2 m}$ from one member of your group Draw and describe the shape you have created:

This is the locus of points a fixed distance from a point.
2. In your group, stand exactly 1m away from a straight wall Draw and describe the shape you have created:
3. In your group, stand exactly $\mathbf{2 m}$ a wall around a corner. Draw and describe the shape you have created:

This can give the locus of points a fixed distance from a rectangle.
4. In your group, stand exactly the same distance away from two members of your group
Draw and describe the shape you have created:
5. In your group, stand within $\mathbf{2 m}$ of one member of your group.

Draw and describe the area you have created:

This is the locus of points within a given distance of a point.
6. In your group, stand no further than 1 m away from a straight wall. Draw and describe the area you have created:
7. In your group, stand at least $\mathbf{1 m}$ away from a straight wall, and within $\mathbf{2 m}$ of a person standing beside the wall.
Draw and describe the area you have created

This is the locus of points which satisfy both conditions.
8. Design your own conditions, either by combining those used in these challenges or creating new ones altogether
Draw and describe the area you have created.

This is the locus of points within a given distance of a line.

Worked Example

Construct the locus of points 1 cm away from a point.

Your Turn

Construct the locus of points 2 cm away from a point.

Worked Example

Construct the locus of points which is:

- More than 3 cm from A

Your Turn

Construct the locus of points which is:

- More than 5 cm from B

Worked Example

Construct the locus of points equidistant from two points.

Your Turn

Construct the locus of points equidistant from two points.

Worked Example

Construct the locus of points which are:

- Closer to B than A
- Closer to C than D

Your Turn

Construct the locus of points which are:

- Closer to C than B
- Closer to D than A

Worked Example

Construct the locus of points equidistant from two intersecting lines.

Your Turn

Construct the locus of points equidistant from two intersecting lines.

Worked Example

Construct the locus of points which is:

- Closer to AD than AB

Your Turn

Construct the locus of points which is:

- Closer to BC than DC

Worked Example

Construct the locus of points 1 cm away from the line.

Your Turn

Construct the locus of points 1 cm away from the line.

Worked Example

Construct the locus of points equidistant from a line.

Your Turn

Construct the locus of points equidistant from a line.

Worked Example

Construct the locus of points which are:

- More than 3 cm from AB
- More than 4 cm from AD

Your Turn

Construct the locus of points which are:

- More than 5 cm from AB
- More than 3 cm from AD

Worked Example

Construct the locus of points which are:

- Closer to B than C
- More than 3 cm from A
${ }^{A} x$

$$
x^{C}
$$

Your Turn

Construct the locus of points which are:

- Closer to C than A
- Less than 5 cm from B
${ }^{A} x$

$$
\times \mathrm{C}
$$

B^{\times}

Loci Practice Grid - Shade the region inside the rectangle which satisfies the conditions given.

Harder Loci Practice Grid - Shade the region inside the rectangle which satisfies the conditions given.

Fluency Practice

loci and regions (inside the rectangle)

more than 3 cm from $A B$ more than 4 cm from $A D$
(3)

more than 4 cm from A closer to B than C
shade the region (hatching:
(2)

less than 2 cm from $A B$ less than 3 cm from C
(4)

closer to $A D$ than $A B$ more than 3 cm from $A D$

Fluency Practice

closer to $A B$ than $A D$ more than 4 cm from C
(7)

closer to CB than CD closer to C than A
(6)

closer to B than A closer to BC than BA
(8)

closer to CB than CD less than 5 cm from D
(9)

less than $31 / 2 \mathrm{~cm}$ from D less than 5 cm from B
(11)

closer to $A B$ than $A D$ less than 4 cm from A closer to B than A
(10)

closer to D than B more than 4 cm from C
(12)

closer to $A B$ than $B C$ less than 6 cm from D closer to $A B$ than $D C$

Intelligent Practice

Fluency Practice

1. whirls

the diagram shows two points A and B that are 6 cm . apart
around each point are circles of radius $1 \mathrm{~cm} ., 2 \mathrm{~cm} ., 3 \mathrm{~cm} ., 4 \mathrm{~cm} ., 5 \mathrm{~cm}$. and 6 cm .
(a) mark with a cross two points that are 4 cm away from A and 4 cm away from B
(b) draw the locus of points that are the same distance from A as they are from B

Fluency Practice

2. tree (i)

students are planning to plant a tree in the school garden
it must be at least 10m. from the school buildings and
it must also be at least $\mathbf{8 m}$. from the centre of the circular pond
shade in the region to show accurately where the tree could be planted

$$
\text { scale } 1 \mathrm{~cm} .=2 \mathrm{~m}
$$

3. tree (ii)
a gardener wants to plant a tree
they want it to be more than 8 m . away from the vegetable plot
they want it to be more than 18m. away from the greenhouse
the plan shows part of the garden
the scale is $\mathbf{1 c m}$. to $\mathbf{4 m}$
show accurately on the plan the region of the garden where she can plant the tree and label this region \mathbf{R}

4. fence

in the scale drawing, the shaded area is a semi-circular lawn
there is a fence all around the lawn
the shortest distance from the fence to the edge of the lawn is always 6 m .
on the diagram, draw the fence accurately

Fluency Practice

5. mast

the plan shows the position of three towns, each marked with an \times
the scale of the plan is $\mathbf{1 ~ c m}$. to $10 \mathbf{k m}$.
the towns need a new phone mast
the new mast must be:

- nearer to Ashby than Ceewater
- less than 45 km from Beaton
show on the plan the region where the new mast can be placed
leave in your construction lines to show how you found the region

Fluency Practice

Fluency Practice

Fluency Practice

Fluency Practice

Fluency Practice

Extra Notes

