2023

Year 10

Mathematics 2024 Unit 19 Booklet

Tasks

Dr Frost Course
「";

Name:

Class:

Contents Page

```
1 Advanced Indices
2 Calculating with Surds
3 Algebraic Fractions
```

1 Advanced Indices

Multiplication Law:
$y^{a} \times y^{b}=y^{a+b}$
Division Law:
$y^{a} \div y^{b}=y^{a-b}$
Power Law:
$\left(y^{a}\right)^{b}=y^{a b}$

Worked Example		Your Turn
Simplify:	Simplify:	
1)	1)	
a) $y^{11} \times y^{5}$	a) $x^{5} \times x^{-2}$	
b) $6 y^{3} \times 2 y^{5}$	b) $7 x^{5} \times 8 x^{-3}$	
c) $y^{5} \div y^{2}$	c) $y^{5} \div y^{4}$	
d) $8 y^{3} \div 2 y$	d) $15 y^{3} \div 3 y$	
e) $\left(y^{3}\right)^{7}$	e) $\left(y^{7}\right)^{8}$	
f) $\left(3 y^{4}\right)^{2}$	f) $\left(5 y^{4}\right)^{3}$	
2)	2)	
a) $\frac{a^{6} \times a^{4}}{a^{2}}$	a) $\frac{a^{6} \times a^{-4}}{a^{2}}$	
b) $\left(4 a^{6} b^{3}\right)^{2}$	b) $\left(2 a^{6} b^{3}\right)^{4}$	
c) $\frac{8 a^{5} b^{3}}{4 a b^{7}}$	c) $\frac{12 a^{2} b^{3}}{4 a b^{7}}$	

Power Zero

$2^{4}=16$
$2^{3}=8$
$2^{2}=4$
$2^{1}=2$
$2^{0}=1$

Any non-zero number divided by itself equals 1 , i.e. $2 \div 2=1$
Using the exponent rule for division:
$\frac{2^{1}}{2^{1}}=2^{1-1}=2^{0}=1$

Worked Example		Your Turn
Simplify:	Simplify:	
a) $4 x^{0}$	a) $8 x^{0}$	
b) $x^{4} \times x^{0}$	b) $x^{0} \times x^{8}$	
c) $\frac{x^{9}}{x^{0}}$	c) $\frac{x^{0}}{x^{18}}$	
d) $\quad x^{0} \div x^{-2}$	d) $x^{-4} \div x^{0}$	

Negative Indices

$$
\begin{aligned}
& 2^{2}=4 \\
& 2^{1}=2 \\
& 2^{0}=1 \\
& 2^{-1}=\frac{1}{2} \\
& 2^{-2}=\frac{1}{4} \\
& 2^{-3}=\frac{1}{8} \\
& \frac{2^{3}}{2^{7}}=\frac{2 \times 2 \times 2}{2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2}=\frac{1}{2 \times 2 \times 2 \times 2}=\frac{1}{2^{4}}
\end{aligned}
$$

Using the exponent rule for division:
$\frac{2^{3}}{2^{7}}=2^{3-7}=2^{-4}$
Therefore
$\frac{1}{2^{4}}=2^{-4}$

Worked Example	Your Turn
Evaluate: a) 3^{-2} b) -3^{-2} c) $(-3)^{-2}$	Evaluate: a) 5^{-3} b) -5^{-3} c) $(-5)^{-3}$

Worked Example		Your Turn
Simplify:	Simplify:	
a) $\left(\frac{3}{10}\right)^{-2}$	a) $\left(\frac{2}{5}\right)^{-3}$	
b) $\left(-\frac{3}{10}\right)^{-2}$	b) $\left(-\frac{2}{5}\right)^{-3}$	

Worked Example	Your Turn
Simplify: a) $2 a^{3}\left(3 a^{2}+5 a^{-4}\right)$ Simplify: b) $\quad p^{\frac{1}{2}}\left(2 p^{\frac{1}{2}}-p^{-\frac{3}{2}}\right)$ a) $3 a^{-2}\left(4 a^{5}+2 a\right)$ c) $\quad x^{2}\left(x^{\frac{1}{3}}-x^{\frac{1}{4}}\right)$ b) $2 p^{\frac{1}{3}}\left(3 p^{\frac{2}{3}}-p^{-\frac{1}{3}}\right)$	

Worked Example	Your Turn
Simplify: $\left(2 m^{9}-m^{-2}\right)\left(6 m^{-3}+m^{5}\right)$	Simplify: $\left(7 x^{3}-x^{-4}\right)\left(4 x^{-2}+x^{9}\right)$

Fractional Indices

$x^{\frac{1}{2}} \times x^{\frac{1}{2}}=\left(x^{\frac{1}{2}}\right)^{2}=x^{1} \quad x^{\frac{1}{2}}$ squared is x therefore the square root of x is $x^{\frac{1}{2}}$ i.e. \sqrt{x}
$x^{\frac{1}{3}} \times x^{\frac{1}{3}} \times x^{\frac{1}{3}}=\left(x^{\frac{1}{3}}\right)^{3}=x^{1} \quad x^{\frac{1}{3}}$ cubed is x therefore the cubed root of x is $x^{\frac{1}{3}}$ i.e. $\sqrt[3]{x}$
$x^{\frac{1}{4}} \times x^{\frac{1}{4}} \times x^{\frac{1}{4}} \times x^{\frac{1}{4}}=\left(x^{\frac{1}{4}}\right)^{4}=x^{1}$
The fourth power of $x^{\frac{1}{4}}$ is x therefore the fourth root of x is $x^{\frac{1}{4}}$ i.e. $\sqrt[4]{x}$
$x^{\frac{1}{n}} \times x^{\frac{1}{n}} \times x^{\frac{1}{n}} \times x^{\frac{1}{n}} \times \ldots=\left(x^{\frac{1}{n}}\right)^{n}=x^{1}$
The $n^{\text {th }}$ power of $x^{\frac{1}{n}}$ is x therefore the $n^{\text {th }}$ root of x is $x^{\frac{1}{n}}$ i.e. $\sqrt[n]{x}$

Worked Example		Your Turn
Evaluate:	Evaluate:	
a) $64^{\frac{1}{2}}$	a) $64^{\frac{1}{3}}$	
b) $64^{-\frac{1}{2}}$	b) $64^{-\frac{1}{3}}$	
c) $\left(\frac{81}{16}\right)^{\frac{1}{4}}$	c) $\left(\frac{81}{16}\right)^{\frac{1}{2}}$	
d) $\left(\frac{81}{16}\right)^{-\frac{1}{4}}$	d) $\left(\frac{81}{16}\right)^{-\frac{1}{2}}$	

$$
\begin{aligned}
& 8^{\frac{1}{3}}=\sqrt[3]{8}=2 \\
& 8^{\frac{2}{3}}=\left(8^{\frac{1}{3}}\right)^{2}=(\sqrt[3]{8})^{2}=(2)^{2}=4 \\
& 8^{\frac{3}{3}}=\left(8^{\frac{1}{3}}\right)^{3}=(\sqrt[3]{8})^{3}=(2)^{3}=8 \\
& 8^{\frac{4}{3}}=\left(8^{\frac{1}{3}}\right)^{4}=(\sqrt[3]{8})^{4}=(2)^{4}=16 \\
& 8^{\frac{5}{3}}=\left(8^{\frac{1}{3}}\right)^{5}=(\sqrt[3]{8})^{5}=(2)^{5}=32 \\
& 8^{\frac{m}{3}}=\left(8^{\frac{1}{3}}\right)^{m}=(\sqrt[3]{8})^{m}=(2)^{m}
\end{aligned}
$$

$$
x^{\frac{1}{5}}=\sqrt[5]{x}
$$

$$
x^{\frac{2}{5}}=\left(x^{\frac{1}{5}}\right)^{2}=(\sqrt[5]{x})^{2}
$$

$$
x^{\frac{3}{5}}=\left(x^{\frac{1}{5}}\right)^{3}=(\sqrt[5]{x})^{3}
$$

$$
x^{\frac{4}{5}}=\left(x^{\frac{1}{5}}\right)^{4}=(\sqrt[5]{x})^{4}
$$

$$
x^{\frac{m}{5}}=\left(x^{\frac{1}{5}}\right)^{m}=(\sqrt[5]{x})^{m}
$$

$$
x^{\frac{m}{n}}=\left(x^{\frac{1}{n}}\right)^{m}=(\sqrt[n]{x})^{m}
$$

| Worked Example | | Your Turn |
| :--- | :--- | :--- | :--- |
| Evaluate: | Evaluate: | |
| a) $25^{\frac{3}{2}}$ | a) $81^{\frac{3}{4}}$ | |
| b) $25^{-\frac{3}{2}}$ | b) $81^{-\frac{3}{4}}$ | |
| c) $\left(\frac{36}{25}\right)^{\frac{3}{2}}$ | c) $\left(\frac{81}{256}\right)^{\frac{3}{4}}$ | |
| d) $\left(\frac{36}{25}\right)^{-\frac{3}{2}}$ | d) $\left(\frac{81}{256}\right)^{-\frac{3}{4}}$ | |

$y^{a} \times y^{b}=y^{a+b}$
$y^{a} \div y^{b}=y^{a-b}$
$\left(y^{a}\right)^{b}=y^{a b}$
$(y z)^{a}=y^{a} z^{a}$
$\left(\frac{y}{z}\right)^{a}=\frac{y^{a}}{z^{a}}$
$y^{0}=1$
$y^{-a}=\frac{1}{y^{a}}$
$y^{\frac{1}{b}}=\sqrt[b]{y}$
$y^{\frac{a}{b}}=(\sqrt[b]{y})^{a}$
$y^{-\frac{1}{b}}=\frac{1}{\sqrt[b]{y}}$
$y^{-\frac{a}{b}}=\frac{1}{(\sqrt[b]{y})^{a}}$

Change of Base

What do you notice about all of the numbers: $1,10,100,1000, \ldots$

They are all powers of 10 .

What do you notice about all of the numbers: $2,8,4,16 \ldots$.

They are all powers of 2.

We could replace the numbers with $2^{1}, 2^{3}$ and 2^{2} so that we have a consistent base.

Worked Example	Your Turn
a) Write 27 as a power of 3	a) Write 8 as a power of 2
b) Write 27^{x} as a power of 3	b) Write 8^{x} as a power of 2
c) Write $8^{2 x}$ as a power of 2	c) Write $8^{3 x}$ as a power of 2

Worked Example	Your Turn
Find the value of each of the following: a) $\sqrt{3^{6} \times 16}$ Find the value of each of the following: b) $\sqrt[3]{3^{6} \times 8}$ a) $\sqrt{2^{4} \times 9}$ c) $\sqrt[4]{3^{8} \times 16}$ b) $\sqrt[3]{64 \times 3^{3}}$	

Worked Example	
Solve the equation:	Your Turn
$3^{x}=\frac{1}{9}$	$4^{x}=\frac{1}{64}$

Worked Example	Your Turn
Solve the equation:	Solve the equation:
$\left(\frac{1}{3}\right)^{x}=27$	$\left(\frac{1}{4}\right)^{x}=64$

Worked Example	Your Turn
Find the value of x that satisfies: a) $\quad 2^{x} \times 2^{x-3}=32$ b) $\quad 2^{2 x} \div 2^{x-3}=32$ Find the value of x that satisfies: a) $3^{x} \times 3^{x-2}=81$ b) $3^{3 x} \div 3^{x-2}=81$	

Worked Example	Your Turn
Find the value of x that satisfies: $125^{\frac{1}{4}} \times 5^{2 x+3}=25^{\frac{2}{3}}$	Find the value of x that satisfies: $\frac{1}{4}$ 1

Extra Notes

Multiplying Surds

Worked Example		Your Turn
Simplify:	Simplify:	
a) $\sqrt{5} \times \sqrt{6}$	a) $\sqrt{5} \times \sqrt{7}$	
b) $\sqrt{3} \times \sqrt{6}$	b) $\sqrt{3} \times \sqrt{8}$	

Worked Example		Your Turn
Simplify:	Simplify:	
a) $2 \sqrt{5} \times \sqrt{6}$		
b) $3 \sqrt{3} \times 2 \sqrt{6}$	a) $2 \sqrt{5} \times \sqrt{7}$	

Dividing Surds

Worked Example	Your Turn
Simplify: a) $\sqrt{60} \div \sqrt{2}$ b) $\sqrt{60} \div \sqrt{3}$	Simplify: a) $\sqrt{90} \div \sqrt{3}$ b) $\sqrt{90} \div \sqrt{2}$

Worked Example	
Your Turn	
Simplify:	Simplify:
a) $2 \sqrt{60} \div \sqrt{2}$	a) $3 \sqrt{90} \div \sqrt{3}$
b) $12 \sqrt{60} \div 2 \sqrt{3}$	b) $12 \sqrt{90} \div 3 \sqrt{2}$

Adding and Subtracting Surds

Worked Example		Your Turn
Simplify:	Simplify:	
a) $2 \sqrt{5}+5 \sqrt{5}$	a) $2 \sqrt{6}+5 \sqrt{6}$	
b) $2 \sqrt{20}+5 \sqrt{5}$	b) $2 \sqrt{54}+5 \sqrt{6}$	
c) $2 \sqrt{20}+5 \sqrt{10}$	c) $2 \sqrt{20}+5 \sqrt{15}$	

Worked Example		Your Turn
Simplify: $\frac{2 \sqrt{20}+5 \sqrt{5}}{\sqrt{5}}$	Simplify: 	

Worked Example	
Expand and simplify:	Expand and simplify:
a) $2(4+\sqrt{3})$	a) $-2(\sqrt{3}+4)$
b) $-\sqrt{3}(4+\sqrt{3})$	b) $\sqrt{3}(\sqrt{3}+4)$
c) $\sqrt{12}(4+\sqrt{3})$	

Worked Example	Your Turn
Expand and simplify:	Expand and simplify:
a) $(2-\sqrt{3})(4+\sqrt{3})$	a) $(\sqrt{3}-2)(\sqrt{3}+4)$
b) $(2-\sqrt{3})^{2}$	b) $(\sqrt{3}-2)^{2}$

Worked Example	Your Turn
Expand and simplify:	Expand and simplify:
a) $(2-\sqrt{20})(4+\sqrt{5})$	a) $(\sqrt{54}-2)(\sqrt{6}+4)$
b) $(2-2 \sqrt{20})(4+5 \sqrt{5})$	b) $(2 \sqrt{54}-2)(5 \sqrt{6}+4)$

Worked Example	Your Turn
Express b and c in terms of $a:$ $(a+\sqrt{12})^{2}=b+c \sqrt{3}$ $(a+\sqrt{8})^{2}=b+c \sqrt{2}$ 	

Worked Example	Your Turn
Find the value of a and $b:$ $(a-3 \sqrt{5})^{2}=b-42 \sqrt{5}$ 	

Worked Example		Your Turn
Rationalise:	Rationalise:	
a) $\frac{3}{\sqrt{5}}$	a) $\frac{10}{\sqrt{5}}$	
b) $\frac{3}{2 \sqrt{5}}$	b) $\frac{3}{2 \sqrt{6}}$	
c) $\frac{3+\sqrt{5}}{\sqrt{5}}$	c) $\frac{10+\sqrt{5}}{\sqrt{5}}$	

Worked Example	Your Turn
A rectangle has area $64 \mathrm{~cm}^{2}$ and a width of $\sqrt{32} \mathrm{~cm}$. Find the length of the rectangle in the form $a \sqrt{b}$	A rectangle has area $60 \mathrm{~cm}^{2}$ and a width of $\sqrt{12} \mathrm{~cm}$. Find the length of the rectangle in the form $a \sqrt{b}$

Conjugates

$$
\begin{aligned}
& \text { Is } \sqrt{3}-1 \text { the conjugate of } \sqrt{3}+1 \text { ? } \\
& \text { Is }-\sqrt{3}+1 \text { the conjugate of } \sqrt{3}+1 \text { ? } \\
& \text { Is }-\sqrt{3}+1 \text { the conjugate of } 1+\sqrt{3} \text { ? } \\
& \text { Is } 1-\sqrt{3} \text { the conjugate of } 1+\sqrt{3} \text { ? } \\
& \text { Is }-1-\sqrt{3} \text { the conjugate of } 1-\sqrt{3} \text { ? } \\
& \text { Is } 1+\sqrt{3} \text { the conjugate of } 1-\sqrt{3} \text { ? } \\
& \text { Is } 1+\sqrt{5} \text { the conjugate of } 1-\sqrt{5} \text { ? } \\
& \text { Is } 1-3 \sqrt{5} \text { the conjugate of } 1+3 \sqrt{5} \text { ? } \\
& \text { Is } 3 \sqrt{5}-1 \text { the conjugate of } 1+3 \sqrt{5} \text { ? } \\
& \text { Is } 3 \sqrt{5}-1 \text { the conjugate of } 3 \sqrt{5}+1 \text { ? } \\
& \text { Is }-3 \sqrt{5}-1 \text { the conjugate of } 3 \sqrt{5}+1 \text { ? } \\
& \text { Is }-3 \sqrt{5}-1 \text { the conjugate of } 3 \sqrt{5}-1 \text { ? }
\end{aligned}
$$

Worked Example		Your Turn
Rationalise:		
a) $\frac{6}{4+\sqrt{3}}$	Rationalise:	
b) $\frac{6}{\sqrt{3}+5}$	a) $\frac{6}{4-\sqrt{3}}$	

Worked Example		Your Turn
Rationalise:		Rationalise:
a) $\frac{6}{4+2 \sqrt{3}}$	$\frac{6}{2 \sqrt{3}+5}$	a) $\frac{6}{4-2 \sqrt{3}}$

Worked Example		Your Turn
Rationalise: $\frac{4}{\sqrt{3}}+\sqrt{3}$	$\frac{3}{\sqrt{2}+\frac{1}{\sqrt{2}}}$ 	

Worked Example	Your Turn
Find in its simplest form $a: b$, given:	Find in its simplest form $a: b$, given:
$a=\sqrt{5}+\sqrt{c}$	$a=\sqrt{7}+\sqrt{c}$
$b=\sqrt{80}+\sqrt{d}$	$b=\sqrt{63}+\sqrt{d}$
c and d are positive integers	
$c: d=1: 16$	

Extra Notes

3 Algebraic Fractions

Worked Example		Your Turn
Simplify: $\frac{6 x}{10 x^{2}}$	$\frac{\text { Simplify: }}{}$	
		$\frac{6 x}{10 x^{3}}$

Worked Example		Your Turn
Simplify:		
a) $\frac{5 x+10}{x+2}$	Simplify:	
b) $\frac{x+2}{x^{2}+5 x+6}$	a) $\frac{3 x+12}{x+4}$	
c) $\frac{2 x^{2}+14+24}{3 x^{2}-15 x-108}$	b) $\frac{x+3}{x^{2}+7 x+12}$	

Worked Example		Your Turn
Simplify:	Simplify:	
a) $\frac{6 x}{2 y} \times \frac{4 y}{5}$	a) $\frac{5 a}{2 b} \times \frac{5 b}{30}$	
b) $\frac{6 x}{2 y} \div \frac{4 y}{5}$	b) $\frac{5 a}{2 b} \div \frac{5 b}{30}$	

Worked Example	Your Turn
$\frac{2 x^{2}+7 x-15}{x^{2}-36} \times \frac{2 x+12}{2 x^{3}-3 x^{2}}$	Simplify fully:

Worked Example	Your Turn
$\frac{3 x^{2}+8 x+5}{x^{2}-25} \div \frac{3 x^{2}+5 x}{5 x^{2}-25 x}$	Simplify fully:
	$\frac{3 x^{2}-x-14}{9 x^{2}-4} \div \frac{x+2}{3 x^{2}+2 x}$

Adding and Subtracting Algebraic Fractions

Worked Example		Your Turn
Simplify: $\frac{x}{5}+\frac{3 x}{8}$ 	$\frac{5}{x}+\frac{8}{3 x}$	

Worked Example	Your Turn
Write as a single simplified fraction:	Write as a single simplified fraction:
$3-(x-4) \div \frac{x^{2}-16}{x-5}$	$5-(x-2) \div \frac{x^{2}-4}{x+3}$

Worked Example	Your Turn
Solve $\frac{x+1}{3}-\frac{x-3}{5}=1$	Solve $\frac{x+2}{3}-\frac{x-6}{5}=2$

Worked Example	Your Turn
Solve $\frac{4}{x+6}+\frac{5}{x+8}=1$	Solve $\frac{4}{x+3}+\frac{5}{x+4}=2$

Worked Example		Your Turn
Solve $\frac{3}{x-6}+\frac{4}{x-9}=1$	Solve	
	$\frac{3}{x-2}+\frac{4}{x-3}=3$	

Worked Example	
$\frac{y}{a}+\frac{3 y}{x-2}=5$	

Worked Example	
Make x the subject: $\frac{1}{x}-\frac{1}{y}=\frac{1}{z}$	Make p the subject: $\frac{1}{p}+\frac{1}{q}=\frac{1}{r}$

Extra Notes

