2023

Year 11

Mathematics 2024 Unit 21 Booklet

HGS Maths

Name:

Class:

Unit 21

PR advanced trigonometry
Advanced Trigonometry
PR Pythagoras
3D Pythagoras' Theorem and
Trigonometry
Bearings
Advanced Ratio

Worked Example

| Worked Example | Your Turn |
| :--- | :--- | :--- |
| BC is 4.2 cm .
 Calculate the length of $A D:$
 Calculate the length of $A D:$ | |

Worked Example	Your Turn
BC is 12 cm . Calculate θ	BC is 24 cm . Calculate θ

Exact Trigonometric Values

angle	\sin	\cos	\tan
0°			
30°			
45°			
60°			
90°			

TIP:

Use the general expression:

$$
\frac{\sqrt{n}}{2}
$$

For sine \boldsymbol{n} goes from 0 to 4, for cosine it's 4 to 0 and tan is the numerator of sine over cosine (simplified)

Worked Example	Your Turn
Show that	Show that $5 \sin 30^{\circ} \times \cos 30^{\circ} \times 8 \tan 30^{\circ}$ is an integer $60^{\circ} \times 5 \cos 60^{\circ} \times 6$ tan 60° is an integer

Worked Example	Your Turn
Without a calculator, calculate $x:$	Without a calculator, calculate x :
x cm	

Worked Example	Your Turn
Without a calculator, calculate x :	Without a calculator, calculate x :

We label the sides a, b, c and their corresponding OPPOSITE angles A, B, C

The Sine Rule

Sine Rule

$$
\begin{array}{cc}
\frac{a}{\sin (A)}=\frac{b}{\sin (B)}=\frac{c}{\sin (C)} & \text { or }
\end{array} \frac{\sin (A)}{a}=\frac{\sin (B)}{b}=\frac{\sin (C)}{c}, ~(\text { for finding angles) }
$$

	$\frac{89 \text { U!̣s }}{9 \varepsilon \text { UỊS } \times G^{\cdot} \varepsilon}=x$		
		$\frac{9 \angle \mathrm{U}!\mathrm{S}}{\varepsilon I}=\frac{\mathrm{S} 9 \mathrm{U}!\mathrm{S}}{x}$	
		$\frac{8 \mathrm{Z} \mathrm{U}!\mathrm{S}}{Z \mathrm{I}}=\frac{\varepsilon 9 \mathrm{U} \mathrm{I} \mathrm{~S}}{x}$	
	$\frac{6 \mathrm{~S} \text { UIS }}{\square \boxplus \mathrm{U}!\mathrm{S} \times 6}=x$	$\frac{6 \mathrm{~S} \mathrm{UỊS}}{6}=\frac{\nabla \sqcap \mathrm{U} \text { UTS }}{x}$	
$\begin{aligned} & \text { (dpt) } \\ & \text { ЧҰбuәך } \end{aligned}$	$\begin{aligned} & \text { еןnusos } \\ & \text { əбueлseəy } \end{aligned}$	eןnuary 0łu! əұnł!7sqns	шeлбе!p
SdVS JHI NI 7			

Page 19

Find the value of θ

Find the value of θ

Page 22

Ambiguous Sine Rule

The sine rule can be used to determine the unknown sides or angles of a triangle given some of its sides and angles.

The ambiguous case can occur when we are given the angle-side-side, as shown in the diagram below:

$$
\begin{aligned}
& \frac{\sin A}{10.2}=\frac{\sin 55}{8.7} \\
& A=73.8^{\circ} \text { or } 106.2^{\circ}
\end{aligned}
$$

10.2

Angle \boldsymbol{A} can be acute or obtuse resulting in 2 possible triangles.

Cosine Rule

Cosine Rule

$\begin{array}{ccc}a^{2}=b^{2}+c^{2}-2 b c \cos (A) & \text { or } & \cos (A)=\frac{b^{2}+c^{2}-a^{2}}{2 b c} \\ \text { (for finding sides) } & \text { (for finding angles) }\end{array}$

Page 28

Worked Example	Your Turn
Use the cosine rule to express b in terms of a	Use the cosine rule to express p in terms of m
$5 a c m$	

A clock's hands are 5 cm and 3.5 cm . Find the distance between the tips of the hands at 4 o'clock

A clock's hands are 10 cm and 7 cm . Find the distance between the tips of the hands at 4 o'clock

Use the cosine rule to find the exact value of x

Area of a Triangle

$$
\text { Area }=\frac{1}{2} a b \sin (C)
$$

Worked Example	Your Turn
Calculate the area of the triangle:	Calculate the area of the triangle:
5.44 cm	

Worked Example	Your Turn
The area is $10 \mathrm{~cm}^{2}$	The area is $51.42 \mathrm{~cm}^{2}$
Calculate θ	

Worked Example	Your Turn
A triangle has sides $5.1 \mathrm{~cm}, 3.4 \mathrm{~cm}$ and 2.85 cm. A triangle has sides $10.2 \mathrm{~cm}, 6.8 \mathrm{~cm}$ and 5.7 cm. Work out the area of the triangle. Work out the area of the triangle.	

Worked Example	Your Turn
The area of the triangle is $10 \mathrm{~cm}^{2}$. Work out b	The area of the triangle is $18 \mathrm{~cm}^{2}$. Work out y

Worked Example

Calculate the area of the parallelogram

Your Turn

Calculate the area of the parallelogram

REVIEW

e.g. 1

e.g. 2

e.g. 3

e.g. 4

1. The triangle is not right-angled.
2. We do know a side and its opposite angle.
3. Therefore we use the Sine Rule.
4. The triangle is right-angled.
5. The question involves angles.
6. Therefore we use trig ratios - \sin , \cos and tan.
7. The triangle is right-angled.
8. The question does not involve angles.
9. Therefore we use Pythagoras's Theorem.
10. The triangle is not right-angled.
11. We do not know a side and its opposite angle.
12. Therefore we use the Cosine Rule.

Shown below is a cube.
(a) Calculate the length AC.
(b) Calculate the length AG.

Shown below is a cube.
(a) Calculate the length $A C$.
(b) Calculate the length AG.

Shown below is a cuboid.
(a) Find the length AC.
(b) Find the length AG.

Shown below is a cuboid.
(a) Find the length AC.
(b) Find the length AG.

Worked Example

Shown below is a square based pyramid.
(a) Find the length BD.
(b) Find the length EM.
(c) Find the length $E F$.

Shown below is a square based pyramid.
(a) Find the length $B D$.
(b) Find the length EM.
(c) Find the length $E F$.

Angles Between Lines and Planes

A plane is:
A flat 2D surface (not necessary horizontal).

When we want to find the angle between a line and a plane, use the "drop method" - imagine the line is a pen which you drop onto the plane. The angle you want is between the original and dropped lines.

Worked Example

A cube ABCDEFGH has side lengths of 10 cm .
Find the angle between the diagonal AH and the base EFGH.

Your Turn

A cube ABCDEFGH has side lengths of 5 cm .
Find the angle between the diagonal AH and the base EFGH.

Worked Example

Your Turn

K is the point on EH such that angle $\mathrm{AKB}=68^{\circ}$ and $B K=8.25 \mathrm{~cm}$.
Calculate the size of angle BAK.

K is the point on EH such that angle $\mathrm{AKB}=68^{\circ}$ and $B K=16.5 \mathrm{~cm}$. Calculate the size of angle BAK.

Worked Example

Your Turn

M is the midpoint of $P R$.
Calculate the size of the angle between $T P$ and the base $P Q R S$.
M is the midpoint of $P R$.
Calculate the size of the angle between $T P$ and the base $P Q R S$.

| WABCD is a rectangular based pyramid. | |
| :--- | :--- | :--- |
| Calculate the angle between VC and the plane ABCD . | Your Turn |
| 1 | |

Bearings

North, east, south or west are often not enough to give an accurate direction.

- A bearing is an angle measured clockwise from north.

You use a 360° scale or a bearing to give a direction accurately.

- To give a bearing accurately you measure from north, measure clockwise and use three figures.

The bearing of P is 240°.

Examples/Non-Examples

Bearings

| 1) | 045 | Yes / No | 14) | -049 | Yes / No |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2) | 090 | Yes / No | 15) | 049.5 | Yes / No |
| 3) | 45 | Yes / No | 16) 0180 | Yes / No | |
| 4) | 360 | Yes / No | 17) 045 | Yes / No | |
| 5) | 361 | Yes / No | 18) 145 | Yes / No | |
| 6) | 450 | Yes / No | 19) -260 | Yes / No | |
| 7) | 30 | Yes / No | 20) 0100 | Yes / No | |
| 8) 030 | Yes / No | 21) 80 | Yes / No | | |
| 9) | -145 | Yes / No | 22) 080 | Yes / No | |
| 10) 260 | Yes / No | 23) 0005 | Yes / No | | |
| 11) 365 | Yes / No | 24) 000.5 | Yes / No | | |
| 12) 180 | Yes / No | 25) 100.005 | Yes / No | | |

Worked Example	Your Turn
Find the bearing of B from A	Find the bearing of B from A
Find the bearing of A from B	Find the bearing of A from B

Worked Example	Your Turn
Find the bearing of P from Q	Find the bearing of P from Q
Find the bearing of Q from P	Find the bearing of Q from P

Worked Example	Your Turn
The bearing of B from A is 030°. What is the bearing of A from B ?	The bearing of B from A is 050°. What is the bearing of A from B ?
The bearing of B from A is 130°. What is the bearing of A from B ?	The bearing of B from A is 150°. What is the bearing of A from B ?

Calculating Bearings

Diagram NOT drawn to scale	(a)	(b)	(c)
	Find the bearing of C from A	Find the bearing of B from A	Find the bearing of A from C

Worked Example

Work out the bearing of town B from town A

Your Turn

Work out the bearing of town B from town A

Worked Example	Your Turn
A ship sails on a bearing of 120° for 50 km . How far east has it travelled?	A ship sails on a bearing of 130° for 25 km. How far east has it travelled?

Worked Example	Your Turn
B is $25 m$ from A on a bearing of 020° C is 32.5 m from A on a bearing of 342° Angle CAB is 75° Work out distance BC	B is $50 m$ from A on a bearing of 040° C is 65 m from A on a bearing of 325° Angle CAB is 75° Work out distance BC

Worked Example	Your Turn
A, B and C are three points. The bearing of A from B is 045°. The bearing of C from A is 135°. $A B=10 \mathrm{~km}$ and $A C=6 \mathrm{~km}$. Find the distance $B C$ and the bearing of C from B.	A, B and C are three points. The bearing of A from B is 054°. The bearing of C from A is 153°. $A B=6 \mathrm{~km}$ and $A C=10 \mathrm{~km}$. Find the distance $B C$ and the bearing of C from B.

Your Turn

Given that $x: y=3: 25$ and that $y: z=5: 4$, find the

Given that $p: q=7: 3$ and that $q: r=6: 11$, find the ratio $p: q: r$

Give your ratio in its simplest form with integer parts.
ratio $x: y: z$

Give your ratio in its simplest form with integer parts.

Worked Example K107b	Your Turn
A bag contains only blue, purple and pink marbles.	A bag contains only black, purple and orange marbles.
The ratio of blue marbles to purple marbles is $5: 3$.	The ratio of black marbles to purple marbles is $28: 9$.
The ratio of purple marbles to pink marbles is $1: 4$.	The ratio of purple marbles to orange marbles is $1: 7$.
Calculate the percentage of marbles that are pink.	Calculate the percentage of marbles that are black.

Worked Example K319a

Your Turn

There are blue counters and white counters in a bag in the ratio 4 : 3

10 blue counters are added and the ratio becomes $2: 1$
Work out how many white counters there are in the bag.

There are black counters and red counters in a bag in the ratio 3: 4

20 black counters are removed and the ratio becomes $1: 3$
Work out how many red counters there are in the bag.

Worked Example K107C	Your Turn
A pencil case contains pens, pencils and crayons.	A picnic box contains sandwiches, cakes and apples. The ratio of pens to pencils is $3 n: 11$. The ratio of pencils to crayons is $2: 9 n$. Work out the ratio of pens to crayons. Give your answer in its simplest form.
The ratio of cakes to apples is $6: 11 n$. Work out the ratio of sandwiches to apples. Give your answer in its simplest form.	

Worked Example K107d

Your Turn

In a box,
number of red buttons : purple buttons $=1: 5$ number of purple buttons : orange buttons $=1: 3$

There are 15 orange buttons in the box.
Work out the number of red buttons in the box.

In a box,
number of red pens: green pens $=1: 5$
number of green pens: blue pens $=6: 1$
There are 36 red pens in the box.
Work out the number of blue pens in the box.

Your Turn

There are black counters and red counters in a bag in the ratio $3: 7$

5 black counters are removed and 10 red counters are added to the bag, and the ratio becomes $2: 5$.

Work out the original number of red counters in the bag.

There are white counters and red counters in a bag in the ratio $3: 4$

10 white counters are removed and 1 red counter is added to the bag, and the ratio becomes $2: 3$.

Work out the original number of red counters in the bag.

The ratio $a: b: c=6: 7: 6$.
The ratio $c: d: e=5: 7: 3$.
Find the ratio $a: d$.
Give your ratio in its simplest form.

The ratio $a: b: c=6: 5: 3$.
The ratio $c: d: e=1: 8: 3$.
Find the ratio $b: d$.
Give your ratio in its simplest form.

Worked Example $\mathbf{K 1 0 7 f}$	Your Turn
A biscuit tin contains shortbread, cookies and bourbons.	A pencil case contains pens, pencils and crayons. The ratio of shortbread to cookies is $6: 5$. The ratio of cookies to bourbons is $1: 3$. There are more than 107 biscuits in the biscuit tin. The pencils to crayons is $5: 2$.
Find the least possible number of cookies in the biscuit tin.	Find the greatest possible number of pens in the pencil case.

Worked Example K107j	Your Turn
a, b, c and d are integers with no common factors.	a, b, c and d are integers with no common factors.
$a: b=4: 3$	$3 a=5 b$
$c: d=1: 6$	$5 c=7 d$
$2 a=3 d$	
Find $a: b: c: d$	

The ratio $p+4: 3 q-2$ is equal to $1: 2$.
Express p in terms of q.
The ratio $3 a: 6 b+4$ is equal to $1: 4$. Express a in terms of b.

Worked Example K105g	Your Turn
Given that $8 x=y$, work out the ratio $x: y$	Given that $10 p=q$, work out the ratio $p: q$

The points A, B, C and D lie in order on a straight line.

$$
\begin{aligned}
& A B: B D=1: 3 \\
& A C: C D=11: 5
\end{aligned}
$$

Work out $A B: B C: C D$

The points A, B, C and D lie in order on a straight line.

$$
\begin{aligned}
& A B: B D=1: 3 \\
& A C: C D=9: 11
\end{aligned}
$$

Work out $A B: B C: C D$

Worked Example K107h	Your Turn
Green shapes and purple shapes are used in a game. Some of the shapes are triangles. All the other shapes are hexagons. The ratio of triangles to hexagons is $3: 1$ The ratio of green triangles to purple triangles is $2: 3$ Work out the fraction of shapes that are purple triangles.	White shapes and black shapes are used in a game. Some of the shapes are triangles. All the other shapes are hexagons. The ratio of triangles to hexagons is $3: 4$ The ratio of white triangles to black triangles is $5: 1$ Work out the fraction of shapes that are white triangles.

Worked Example K107i	Your Turn
Green shapes and purple shapes are used in a game. Some of the shapes are circles. All of the other shapes are squares.	Green shapes and purple shapes are used in a game. Some of the shapes are triangles. All of the other shapes are hexagons.
The ratio of the number of green shapes to the number of purple shapes is $3: 1$ The ratio of the number of green circles to the number of green squares is $4: 1$ The ratio of the number of purple circles to the number of purple squares is $3: 1$	The ratio of the number of green shapes to the number of purple shapes is $5: 2$ The ratio of the number of green triangles to the number of green hexagons is $1: 1$ The ratio of the number of purple triangles to the number of purple hexagons is $1: 4$
Work out what fraction of all the shapes are circles.	Work out what fraction of all the shapes are triangles.

Find the midpoint of $(10,9)$ and $(20,14)$

Worked Example K166b	Your Turn
$M(2,0.5)$ is the midpoint of the line segment $A B$ where $A(5,-4)$. Find the coordinates of B. $(5,5)$. Find the coordinates of B.	

Worked Example K166c

Your Turn

The point M lies on the line segment $A B$ where $A(4,3)$
The point M lies on the line segment $A B$ where $A(-4,-2)$ and $B(-1,4)$.

Given that $A M: M B=1: 2$, find the coordinates of M.
and $B(10,15)$.

Given that $A M: M B=2: 1$, find the coordinates of M.

