

Year 11 2023 Mathematics 2024 Unit 21 Booklet

HGS Maths

Tasks

Dr Frost Course

Name:

Class:

Unit 21

PR advanced trigonometry Advanced Trigonometry PR Pythagoras 3D Pythagoras' Theorem and Trigonometry Bearings Advanced Ratio

Recap of Right-Angled Trigonometry

Exact Trigonometric Values

exact values in trigonometry

TIP:

Use the general expression:

For sine **n** goes from 0 to 4, for cosine it's 4 to 0 and tan is the numerator of sine over cosine (simplified)

Worked Example	Your Turn
Show that $5 \sin 30^\circ \times \cos 30^\circ \times 8 \tan 30^\circ$ is an integer	Show that 2 sin 60° ×5 cos 60° ×6 tan 60° is an integer

Non Right-Angled Triangles and Trigonometry

Labelling Non Right-Angled Triangles and Trigonometry

We label the sides *a*, *b*, *c* and their corresponding OPPOSITE angles *A*, *B*, *C*

The Sine Rule

	Length (1dn)									
IE GAPS	Rearrange formula	$x = \frac{9 \times \sin 44}{\sin 59}$							$x = \frac{3.5 \times \sin 36}{\sin 68}$	
FILL IN THE GAPS	Substitute into formula	$\frac{x}{\sin 44} = \frac{9}{\sin 59}$	$\frac{x}{\sin 63} = \frac{12}{\sin 48}$					$\frac{x}{\sin 65} = \frac{13}{\sin 76}$		
	Labelled	B 9 cm 444 444 444 444 444 444 444 4	B 12 cm 48 8 12 cm 48 8 8 8 8 8 8 8 8 8 8 8 8 8	a 200	x 34 3,1 m	108 801 m 23	95 t 40	76 13 cm		

	Acute Angle (1dp)	$x = 55.4^{\circ}$								
HE GAPS	Rearrange formula	$\sin x = \frac{7 \times \sin 36}{5}$							$\sin x = \frac{5 \times \sin 47}{10}$	
FILL IN THE GAPS	Substitute into formula	$\frac{\sin 36}{5} = \frac{\sin x}{7}$	$\frac{\sin x}{23} = \frac{\sin 93}{36}$							
	Labelled diagram	P 20 20 20 20 20 20 20 20 20 20 20 20 20	6 36 mm x 36 mm x 33 mm 8 33 mm 8	A 29 4 11.5 cm	1.5 m 664	67 mm 90 60 mm	11 cm	$\frac{192 cm}{3}$		

The sine rule can be used to determine the unknown sides or angles of a triangle given some of its sides and angles.

The *ambiguous case* can occur when we are given the angle-side-side, as shown in the diagram below:

Angle A can be acute or obtuse resulting in 2 possible triangles.

C	Angle (1dp)	$x = 76.7^{\circ}$							
IE GAPS	Rearrange formula	$\cos x = \frac{9^2 + 13^2 - 14^2}{2 \times 9 \times 13}$	$\cos x = \frac{10^2 + 7^2 - 15^2}{2 \times 10 \times 7}$					$\cos x = \frac{6^2 + 5^2 - 3^2}{2 \times 6 \times 5}$	
FILL IN THE GAPS	Substitute into formula	$14^2 = 9^2 + 13^2$ -2 × 9 × 13 × cos <i>x</i>	$15^{2} = 10^{2} + 7^{2}$ $-2 \times 10 \times 7 \times \cos x$	$4^2 = 7^2 + 8^2$ $-2 \times 7 \times 8 \times \cos x$					
C	Labelled diagram	A	10 10 10 10 10 10 10 10 10 10	B mm B mm	6 1.3 m 1.3 m 2.6 m 2.6 m	1 cm x w 4.5 cm	90 cm		

Worked Example	Your Turn
A clock's hands are 5 <i>cm</i> and 3.5 <i>cm</i> . Find the distance between the tips of the hands at 4 o'clock	A clock's hands are 10 cm and 7 cm. Find the distance between the tips of the hands at 4 o'clock

Worked Example	Thinking
Use the cosine rule to find the exact value of x	
$\frac{3}{2x+4}$ $\frac{2x+4}{4}$ $\frac{2x+1}{x+3}$ $\frac{2x+1}{2x+1}$	

 cm^2 cm^2 cm^2 cm^2 Fill in the blanks for each triangle and calculation (to 1dp) below using the area formula: $Area = 172.3cm^2$ $Area = 38.8cm^2$ Answer Area =Area =Area =Area =о о о о sin 56° FILL IN THE GAPS $\frac{1}{2} \times 8 \times 5 \sin 63^{\circ}$ $\frac{b}{2}ab\sin C$ sin sin sin S Calculation $A = \frac{1}{2} \times 23 \times 15 \sin \theta$ $\frac{1}{2} \times 13 \times$ × × Х Area =II ∾ 1 ⊓ × ∽1 ⊓ Α A =II II Α Α Α 15 cm4cmò ç ç M F 9cm13cm19cm15cmΒ 54%Shape 82 11 cm \geq 26° Ξ 23cmĿ1 77° 10cmR 14cm3 A A V Ś

Worked Example	Your Turn
Worked Example A triangle has sides 5.1 cm, 3.4 cm and 2.85 cm. Work out the area of the triangle.	Your Turn A triangle has sides 10.2 cm, 6.8 cm and 5.7 cm. Work out the area of the triangle.

REVIEW

3D Pythagoras' Theorem

Worked Example	Your Turn
Shown below is a cube.	Shown below is a cube.
(a) Calculate the length AC.	(a) Calculate the length AC.
(b) Calculate the length AG.	(b) Calculate the length AG.
H A A A C M B	E E E E E E E E E E E E E E E E E E E

Worked Example	Your Turn
Shown below is a cuboid.	Shown below is a cuboid.
(a) Find the length AC.	(a) Find the length AC.
(b) Find the length AG.	(b) Find the length AG.
H G A C A B C A A C A	H G G G G C C C C C C C C C C C C C C C

Worked Example	Your Turn
Shown below is a square based pyramid.	Shown below is a square based pyramid.
(a) Find the length BD.	(a) Find the length BD.
(b) Find the length EM.	(b) Find the length EM.
(c) Find the length EF.	(c) Find the length EF.
	A Acm D F

3	BD Trigonometry

Angles Between Lines and Planes

A cube ABCDEFGH has side lengths of 10 cm. Find the angle between the diagonal AH and the base EFGH.

A cube ABCDEFGH has side lengths of 5 cm. Find the angle between the diagonal AH and the base EFGH.

Bearings

North, east, south or west are often not enough to give an accurate direction.

A bearing is an angle measured clockwise from north.

You use a 360° **scale** or a **bearing** to give a direction accurately.

To give a bearing accurately you measure from north, measure clockwise and use three figures.

The bearing of P is 240°.

Examples/Non-Examples

Bearings

1)	045	Yes	/	No	14)	-049	Yes	1	No
2)	090	Yes	1	No	15)	049.5	Yes	1	No
3)	45	Yes	1	No	16)	0180	Yes	1	No
4)	360	Yes	/	No					
5)	361	Yes	1	No	17)	045	Yes	/	No
6)	450	Yes	,	No	18)	145	Yes	1	No
					19)	-260	Yes	/	No
7)	30	Yes	/	No	20)	0100	Yes	1	No
8)	030	Yes	1	No	21)	80	Yes	1	No
9)	-145	Yes	1	No					
10)	260	Yes	1	No	22)	080	Yes	/	No
					23)	0005	Yes	1	No
	365	Yes			24)	000.5	Yes	/	No
12)	180	Yes	1	No	25)	100.005	Yes	1	No
13)	27	Yes	1	No				-	

Worked Example	Your Turn
The bearing of B from A is 030°.	The bearing of B from A is 050°.
What is the bearing of A from B?	What is the bearing of A from B?
The bearing of B from A is 130°.	The bearing of B from A is 150°.
What is the bearing of A from B?	What is the bearing of A from B?

Calculating Bearings						
Diagram NOT drawn to scale	(a)	(b)	(c)			
	Find the bearing of C from A	Find the bearing of B from A	Find the bearing of A from C			
(35,9	(d)	(e)	(f)			
$A = 50^{\circ}$	Find the bearing of C from B	Find the bearing of A from B	Find the bearing of B from C			
Diagram NOT drawn to scale	(g)	(h)	(i)			
N D 34°7	Find the bearing of D from F	Find the bearing of F from D	Find the bearing of E from D			
F	(j)	(k)	(I)			
	Find the bearing of E from F	Find the bearing of D from E	Find the bearing of F from E			

Worked Example	Your Turn
Worked Example A ship sails on a bearing of 120° for 50 km. How far east has it travelled?	Your Turn A ship sails on a bearing of 130° for 25 <i>km</i> . How far east has it travelled?

Worked Example	Your Turn
B is 25 <i>m</i> from <i>A</i> on a bearing of 020° <i>C</i> is 32.5 <i>m</i> from <i>A</i> on a bearing of 342° Angle CAB is 75° Work out distance BC	B is 50 m from A on a bearing of 040° C is 65 m from A on a bearing of 325° Angle CAB is 75° Work out distance BC
North S S S S S S S S S S S S S	Not drawn 65m Som Not drawn accurately

Worked Example	Your Turn
A, B and C are three points. The bearing of A from B is 045°. The bearing of C from A is 135°. AB = 10 km and AC = 6 km. Find the distance BC and the bearing of C from B.	A, B and C are three points. The bearing of A from B is 054°. The bearing of C from A is 153°. AB = 6 km and AC = 10 km. Find the distance BC and the bearing of C from B.

Advanced Ratio

Worked Example K107a	Your Turn
Given that $p:q=7:3$ and that $q:r=6:11$, find the ratio $p:q:r$	Given that $x:y=3:25$ and that $y:z=5:4$, find the ratio $x:y:z$
Give your ratio in its simplest form with integer parts.	Give your ratio in its simplest form with integer parts.

Worked Example K107b	Your Turn
A bag contains only blue, purple and pink marbles. The ratio of blue marbles to purple marbles is $5:3$. The ratio of purple marbles to pink marbles is $1:4$.	A bag contains only black, purple and orange marbles. The ratio of black marbles to purple marbles is $28:9$. The ratio of purple marbles to orange marbles is $1:7$.
Calculate the percentage of marbles that are pink.	Calculate the percentage of marbles that are black.

Worked Example K319a	Your Turn
There are blue counters and white counters in a bag in the ratio $4:3$	There are black counters and red counters in a bag in the ratio $3:4$
10 blue counters are added and the ratio becomes $2:1$	20 black counters are removed and the ratio becomes $1:3$
Work out how many white counters there are in the bag.	Work out how many red counters there are in the bag.

Worked Example <i>K107c</i>	Your Turn
A pencil case contains pens, pencils and crayons.	A picnic box contains sandwiches, cakes and apples.
The ratio of pens to pencils is $3n:11$.	The ratio of sandwiches to cakes is $2n:3.$
The ratio of pencils to crayons is $2:9n$.	The ratio of cakes to apples is $6:11n$.
Work out the ratio of pens to crayons. Give your answer in its simplest form.	Work out the ratio of sandwiches to apples. Give your answer in its simplest form.

Worked Example K107d	Your Turn
In a box,	In a box,
number of red buttons : purple buttons = 1 : 5	number of red pens : green pens = 1 : 5
number of purple buttons : orange buttons = 1 : 3	number of green pens : blue pens = 6 : 1
There are 15 orange buttons in the box.	There are 36 red pens in the box.
Work out the number of red buttons in the box.	Work out the number of blue pens in the box.

Worked Example K319b	Your Turn
There are black counters and red counters in a bag in the ratio $3:7$	There are white counters and red counters in a bag in the ratio $3:4$
5 black counters are removed and 10 red counters are added to the bag, and the ratio becomes $2:5.$	10 white counters are removed and 1 red counter is added to the bag, and the ratio becomes $2:3.$
Work out the original number of red counters in the bag.	Work out the original number of red counters in the bag.

Worked Example K107e	Your Turn
The ratio $a : b : c = 6 : 7 : 6$. The ratio $c : d : e = 5 : 7 : 3$.	The ratio $a:b:c=6:5:3.$ The ratio $c:d:e=1:8:3.$
Find the ratio $a : d$. Give your ratio in its simplest form.	Find the ratio $b: d$. Give your ratio in its simplest form.

Worked Example K107f	Your Turn
A biscuit tin contains shortbread, cookies and bourbons.	A pencil case contains pens, pencils and crayons.
The ratio of shortbread to cookies is $6:5$. The ratio of cookies to bourbons is $1:3$.	The ratio of pens to pencils is $5:6$. The ratio of pencils to crayons is $5:2$.
There are more than 107 biscuits in the biscuit tin.	There are less than 270 items in the pencil case.
Find the least possible number of cookies in the biscuit tin.	Find the greatest possible number of pens in the pencil case.

Worked Example K107j	Your Turn
a,b,c and d are integers with no common factors.	a,b,c and d are integers with no common factors.
a:b=4:3	3a = 5b
c:d=1:6	5c = 7d
2a = 3d	$a=rac{1}{7}d$
Find $a:b:c:d$	
	Find $a:b:c:d$

Worked Example K105f	Your Turn
The ratio $p+4:3q-2$ is equal to $1:2.$	The ratio $3a:6b+4$ is equal to $1:4.$
Express p in terms of q .	Express a in terms of b .

Worked Example K105g	Your Turn
Given that $8x = y$, work out the ratio $x:y$	Given that $10p=q$, work out the ratio $p:q$

Worked Example <i>K107g</i>	Your Turn
The points A,B,C and D lie in order on a straight line.	The points A,B,C and D lie in order on a straight line.
AB:BD=1:3 AC:CD=11:5	$\begin{array}{l} AB:BD=1:3\\ AC:CD=9:11 \end{array}$
Work out $AB:BC:CD$	Work out $AB:BC:CD$

Worked Example K107h	Your Turn
Green shapes and purple shapes are used in a game. Some of the shapes are triangles. All the other shapes are hexagons.	White shapes and black shapes are used in a game. Some of the shapes are triangles. All the other shapes are hexagons.
The ratio of triangles to hexagons is $3:1$ The ratio of green triangles to purple triangles is $2:3$	The ratio of triangles to hexagons is $3:4$ The ratio of white triangles to black triangles is $5:1$
Work out the fraction of shapes that are purple triangles.	Work out the fraction of shapes that are white triangles.

Worked Example K107i	Your Turn
Green shapes and purple shapes are used in a game.	Green shapes and purple shapes are used in a game.
Some of the shapes are circles.	Some of the shapes are triangles.
All of the other shapes are squares.	All of the other shapes are hexagons.
The ratio of the number of green shapes to the number of purple shapes is $3:1$	The ratio of the number of green shapes to the number of purple shapes is $5:2$
The ratio of the number of green circles to the number of green squares is $4:1$	The ratio of the number of green triangles to the number of green hexagons is $1:1$
The ratio of the number of purple circles to the number of purple squares is $3:1$	The ratio of the number of purple triangles to the number of purple hexagons is $1:4$
Work out what fraction of all the shapes are circles.	Work out what fraction of all the shapes are triangles.

Worked Example K166a	Your Turn
Find the midpoint of the line segment AB where $A(8,3)$ and $B(15,19)$	Find the midpoint of $(10,9)$ and $(20,14)$

Worked Example K166b	Your Turn
M(2,0.5) is the midpoint of the line segment AB where $A(5,-4)$. Find the coordinates of B .	M(4,1) is the midpoint of the line segment AB where $A(5,5).$ Find the coordinates of $B.$

Worked Example K166c	Your Turn
The point M lies on the line segment AB where $A(-4,-2)$ and $B(-1,4).$	The point M lies on the line segment AB where $A(4,3)$ and $B(10,15).$
Given that $AM:MB=1:2,$ find the coordinates of $M.$	Given that $AM:MB=2:1,$ find the coordinates of $M.$