

Year 11 2023 Mathematics 2024 Unit 22 Booklet

HGS Maths

Tasks

Dr Frost Course

Name:

Class:

Similarity with Area and Volume

Scale factors

Length Scale Factor	Area Scale Factor	Volume Scale Factor
× 2	× 4	× 8
× 3	× 9	× 27
× 4	× 16	× 64
$\times k$	$\times k^2$	$\times k^3$

Worked Example	Your Turn
Cuboids A and B are similar.	Cuboids A and B are similar.
A 4 cm	A 4 cm
B 12 cm	B 8 cm
Write down the scale factor for:	Write down the scale factor for:
Length $A \rightarrow B$	Length $A \rightarrow B$
Length $B \rightarrow A$	Length $B \rightarrow A$
Surface Area $A \rightarrow B$	Surface Area $A \rightarrow B$
Sufface Area D 7 A	
Volume $A \rightarrow B$	Volume $A \rightarrow B$
Volume $B \rightarrow A$	Volume $B \rightarrow A$

Worked Example	Your Turn
A and B are mathematically similar solids. The surface area of A is 100 cm ² . The surface area of B is 64 cm ² . Work out the ratio of the volume of A to the volume of B.	A and B are mathematically similar solids. The surface area of A is 120 cm ² . The surface area of B is 480 cm ² . Work out the ratio of the volume of A to the volume of B.

Worked Example	Your Turn
A and <i>B</i> are mathematically similar solids. The volume of <i>A</i> is 500 cm ³ . The volume of <i>B</i> is 256 cm ³ . Work out the ratio of the surface area of <i>A</i> to the surface area of <i>B</i> .	A and B are mathematically similar solids. The volume of A is 120 cm ³ . The volume of B is 960 cm ³ . Work out the ratio of the surface area of A to the surface area of B.

Worked Example	Your Turn
The surface area of two mathematically similar solids are in the ratio 16: 49. The volume of the smaller solid is 128 cm ³ . Work out the volume of the larger solid.	The surface area of two mathematically similar solids are in the ratio 9: 25. The volume area of the smaller solid is 108 cm ³ . Work out the volume of the larger solid.

Worked Example	Your Turn
The volume of two mathematically similar solids are in the ratio 64: 343. The surface area of the smaller solid is 32 cm ² . Work out the surface area of the larger solid.	The volume of two mathematically similar solids are in the ratio 27: 125. The surface area of the smaller solid is 36 cm ² . Work out the surface area of the larger solid.

	Ratio of Volumes	8:125					. 0.001	0.008 : 0.000001	:: C ³	:: 64c ³			:: כ	8a ² : :	
FILL IN THE GAPS	Ratio of Areas	4 : 25			16:				<u> </u>	_: 9b ² :		$a:b^2:c^3$	— : q : —	: 96 :	
	Ratio of Lengths	2 : 5	5 : 3	1:		0.5 : 0.3	0.4 :		a : :	2a : :	$a^{2}:b^{3}:c^{4}$		a : :	:: 4√c	

THE GAPS	
. NI TII	-
	-
C	

	Length	Area	Volume
Scale Factor		4	8
Shape A	3 ст	$10~cm^2$	25 <i>cm</i> ³
Shape B			

	Length	Area	Volume
Scale Factor			125
Shape A	$0.5\ m$	$2 m^2$	$5 m^3$
Shape B			

Area Volui		$8 cm^2$ 20 cn	67.5 <i>c</i>
Length		2.5 <i>cm</i>	
	Scale Factor	Shape A	Shape B

	Scale Factor	Shape A	Shape B
Length			2 cm
Area		$1.8 \ cm^2$	$5~cm^2$
Volume			25 <i>cm</i> ³

	Length	Area	Volume
Scale Factor		6	
Shape A	4~cm	20 <i>cm</i> ²	70 cm ³
Shape B			

	Length	Area	Volume
Scale Factor			
Shape A	4.5 mm	20 mm ²	35 mm ³
Shape B		$180 \ mm^2$	

	Length	Area	Volume
Scale Factor			
Shape A	0.6 m	$2.8 m^2$	
Shape B		$0.7 m^2$	$1.4 \ m^2$

Ĺ	ale ctor	ape	ape B
ength		7.5 <i>cm</i>	
Area			22 cm ²
Volumo		135 cm ³	$40~cm^3$

Extra Notes

Volume and Surface Area of Pyramids

Volume and Surface Area of Pyramids

Volume of Pyramid =
$$\frac{1}{3} \times \text{Base Area} \times \text{Height}$$

Volume of Pyramid = $\frac{1}{3}$ Ah

Worked Example

Your Turn

The diagram shows a pyramid.

Diagram NOT accurately drawn

BCDE is a square with sides of length 20 cm. The other faces of the pyramid are equilateral triangles with sides of length 20 cm.

(a) Calculate the volume of the pyramid. Give your answer correct to 3 significant figures. The diagram shows a pyramid.

Diagram NOT accurately drawn

BCDE is a square with sides of length 10 cm. The other faces of the pyramid are equilateral triangles with sides of length 10 cm.

(a) Calculate the volume of the pyramid. Give your answer correct to 3 significant figures.

EXTRA NOTES

Volume of a cone	

Volume of a cone

Worked Example	Your Turn
Find the height, x , given that the volume of the following cone is 94.2 cm^3 . Give your answer to 1 decimal place.	Find the height, x , given that the volume of the following cone is 754.0 cm^3 . Give your answer to 1 decimal place.
x cm	x cm

Find the slanted height, x, given that the Find the slanted height, x, given that the	
volume of the following cone is 37.7 cm ³ . Give your answer to 1 decimal place. volume of the following cone is 301.6 cm ³ . Give your answer to 1 decimal place. volume of the following cone is 301.6 cm ³ . Give your answer to 1 decimal place. volume of the following cone is 301.6 cm ³ . Give your answer to 1 decimal place. volume of the following cone is 301.6 cm ³ . Give your answer to 1 decimal place. volume of the following cone is 301.6 cm ³ . Give your answer to 1 decimal place. volume of the following cone is 301.6 cm ³ . Give your answer to 1 decimal place. volume of the following cone is 301.6 cm ³ . Give your answer to 1 decimal place. volume of the following cone is 301.6 cm ³ . Give your answer to 1 decimal place. volume of the following cone is 301.6 cm ³ . Give your answer to 1 decimal place. volume of the following cone is 301.6 cm ³ . Give your answer to 1 decimal place. volume of the following cone is 301.6 cm ³ . Give your answer to 1 decimal place. volume of the following cone is 301.6 cm ³ . Give your answer to 1 decimal place. volume of the following cone is 301.6 cm ³ . Give your answer to 1 decimal place. volume of the following cone is 301.6 cm ³ . Give your answer to 1 decimal place. volume of the following cone is 301.6 cm ³ . Give your answer to 1 decimal place.	

Surface Area of a cone

Surface Area of a cone

Curved Surface Area of Cone = $\pi \times radius \times length$

Curved Surface Area of Cone = πrl

Total Surface Area of Cone = $\pi \times \text{radius} \times \text{length} + \pi \times \text{radius}^2$

Total Surface Area of Cone = $\pi rl + \pi r^2$

Worked Example	Your Turn
Calculate the curved surface	Calculate the curved surface
area of the following cone. Give	area of the following cone. Give
your answer in terms of π and	your answer in terms of π and
to 1 decimal place.	to 1 decimal place.

Worked Example	Your Turn
Calculate the total surface area of the following cone. Give your answer in terms of π and to 1 decimal place.	Calculate the total surface area of the following cone. Give your answer in terms of π and to 1 decimal place.

Worked Example	Your Turn
Find the slanted height, x , given that the total surface area of the following cone is $75.4 \ cm^2$. Give your answer to 1 decimal place.	Find the slanted height, <i>x</i> , given that the total surface area of the following cone is $301.6 \ cm^2$. Give your answer to 1 decimal place.

Worked Example	Your Turn
Find the perpendicular height, x, given that the total surface area of the following cone is 75.4 cm^2 . Give your answer to 1 decimal place. x cm x cm	Find the perpendicular height, x, given that the total surface area of the following cone is $301.6 \ cm^2$. Give your answer to 1 decimal place. $f(x) = \frac{1}{6 \ cm} \ x \ cm$

Volume and Surface Area of Cones

Radius r	Vertical Height h	Slanted Height <i>l</i>	Volume in terms of π	Volume to 3 s.f.	Curved Surface Area in terms of π	Total Surface Area in terms of π	Volume : Total Surface Area
5 <i>cm</i>	12 cm	13 cm	$100\pi \ cm^3$			$90\pi \ cm^2$	10:9
6 cm	8 cm	10 cm			$60\pi \ cm^2$		
	30 mm	34 mm		8040 mm ³			
0.7 m	2.4 m						
9 cm		15 cm					
2 m			$\frac{14}{5}\pi \ cm^3$				
		20 mm			$240\pi mm^2$		
					$15\pi \ cm^2$	$24\pi \ cm^2$	
		17 cm	$320\pi \ cm^3$				8:5

EXTRA NOTES

Volume of Frustums	

Volume of Frustums

Volume is the amount of space an object takes up.

A **frustum** is a pyramid/cone with part of the top chopped off.

Worked Example	Your Turn
Calculate the volume of the following frustum. Give your answer in terms of π and to 1 decimal place.	Calculate the volume of the following frustum. Give your answer in terms of π and to 1 decimal place.

EXTRA NOTES

Volume of Spheres	

Worked Example	Your Turn
Calculate the volume of the following sphere. Give your answer in terms of π and to 1 decimal place.	Calculate the volume of the following sphere. Give your answer in terms of π and to 1 decimal place.

Worked Example	Your Turn
Calculate the volume of the following sphere. Give your answer in terms of π and to 1 decimal place.	Calculate the volume of the following sphere. Give your answer in terms of π and to 1 decimal place.
6 cm	24 cm

Worked Example	Your Turn
Calculate the volume of the following hemisphere. Give your answer in terms of π and to 1 decimal place.	Calculate the volume of the following hemisphere. Give your answer in terms of π and to 1 decimal place.
3 cm	6 cm

Find the radius, <i>x</i> , given that the volume of the following hemisphere is 452.4 cm ³ . Give your answer to 1 decimal place.
Fvhy

Surface Area of Spheres	

Surface Area of Sphere = $4\pi r^2$

Worked Example	Your Turn
Calculate the surface area of the following sphere. Give your answer in terms of π and to 1 decimal place.	Calculate the surface area of the following sphere. Give your answer in terms of π and to 1 decimal place.

Worked Example	Your Turn
Calculate the surface area of the following sphere. Give your answer in terms of π and to 1 decimal place.	Calculate the surface area of the following sphere. Give your answer in terms of π and to 1 decimal place.

Worked Example	Your Turn
Calculate the curved surface area of the following hemisphere. Give your answer in terms of π and to 1 decimal place.	Calculate the curved surface area of the following hemisphere. Give your answer in terms of π and to 1 decimal place.

Worked Example	Your Turn	
Calculate the total surface area of the following hemisphere. Give your answer in terms of π and to 1 decimal place.	Calculate the total surface area of the following hemisphere. Give your answer in terms of π and to 1 decimal place.	

Worked Example	Your Turn
Find the radius, x , given that the surface area of the following sphere is $36\pi \ cm^2$.	Find the radius, <i>x</i> , given that the surface area of the following sphere is $144\pi \ cm^2$.
x cm	

Worked Example	Your Turn
Find the radius, <i>x</i> , given that the surface area of the following sphere is 113.1 <i>cm</i> ² . Give your answer to 1 decimal place.	Find the radius, x , given that the surface area of the following sphere is $452.4 \ cm^2$. Give your answer to 1 decimal place.

Worked Example	Your Turn
Find the radius, <i>x</i> , given that the total surface area of the following hemisphere is 84.8 cm ² . Give your answer to 1 decimal place.	Find the radius, x, given that the total surface area of the following hemisphere is $339.3 \ cm^2$. Give your answer to 1 decimal place.

Worked Example	Your Turn
A sphere has a surface area of $36\pi \ cm^2$. Work out the volume of the sphere. Give your answer in terms of π and to 1 decimal place.	A sphere has a surface area of $144\pi \ cm^2$. Work out the volume of the sphere. Give your answer in terms of π and to 1 decimal place.

Worked Example	Your Turn
A sphere has a volume of $36\pi \ cm^3$. Work out the surface area of the sphere. Give your answer in terms of π and to 1 decimal place.	A sphere has a volume of $288\pi \ cm^3$. Work out the surface area of the sphere. Give your answer in terms of π and to 1 decimal place.

EXTRA NOTES

Area o	of a sector

Worked example	Your turn
The area of the sector is 14.844 cm^2 . Find x	The area of the sector is $1484.402529 \ cm^2$. Find x
x cm 84°	x cm 84°
The area of the sector is 7.422 cm^2 . Find x	

Area	$\frac{90}{360} \times \pi \times 8^2 = 50.3 \ cm^2$								$\Box 360 \times \pi \times 25^2 = 327.2 \ mm^2$	$\boxed{360} \times \pi \times 2^2 = 4.712 m^2$	$\frac{35}{360} \times \pi \times \square^2 = 2.75 \ cm^2$	$\frac{315}{360} \times \pi \times \text{m}^2 = 464.6 \text{ mm}^2$	$\frac{58}{360} \times \pi \times \boxed{2} = 50.61 \ cm^2$
Fraction	$\frac{90}{360} = \frac{1}{4}$	$\frac{45}{360} = \frac{1}{8}$					$\frac{1}{360} = \frac{5}{36}$	$\frac{1}{360} = \frac{7}{9}$					
Angle	06°	45°	°09	75°	130°	275°					35°	315°	58°
Radius	8 <i>cm</i>	7 cm	15 mm	4 cm	1.8 <i>m</i>	11 cm	<i>mm</i> 6	10 <i>cm</i>	25 mm	2 m			

Arc Length and Perimeter of a Sector

a
$\frac{360}{360}$
45 360
60 × 360 ×
360 × 3
€0 ×1
360
00 × 1
360 ×
$\bigcup_{n \times n}$

Sector.	Radius.	Diameter.	Fraction of the whole circle.	Arc length.	Length of straight sides.	Perimeter in terms of pi.	Perimeter to 1 decimal place.
10cm	5cm	10 <i>cm</i>	$\frac{1}{2}$	$5\pi = 15.7cm$	10 <i>cm</i>	(5π + 10) <i>cm</i>	25.7 <i>cm</i>
10cm							
8cm							

Sector.	Radius.	Diameter.	Fraction of the whole circle.	Arc length.	Length of straight sides.	Perimeter in terms of pi.	Perimeter to 1 decimal place.
6cm							
		4cm	$\frac{1}{4}$				
	3cm		$\frac{1}{2}$				

Sector.	Radius.	Diameter.	Fraction of the whole circle.	Arc length.	Length of straight sides.	Perimeter in terms of pi.	Perimeter to 1 decimal place.
60° 6cm							
30°							
36° 70cm							

Sector.	Radius.	Diameter.	Fraction of the whole circle.	Arc length.	Length of straight sides.	Perimeter in terms of pi.	Perimeter to 1 decimal place.
120° 15cm							
		10 <i>cm</i>	$\frac{1}{3}$				
	10 <i>cm</i>		$\frac{1}{8}$				

Sector.	Radius.	Diameter.	Fraction of the whole circle.	Arc length.	Length of straight sides.	Perimeter in terms of pi.	Perimeter to 1 decimal place.
			$\frac{1}{2}$		7cm		
			$\frac{1}{3}$			(4π + 12) cm	
			$\frac{1}{10}$		40 <i>cm</i>		46.3 <i>cm</i>

Worked example	Your turn
Calculate the perimeter of the shaded region	Calculate the perimeter of the shaded region
A C C C C C C C C C C C C C C C C C C C	a c c c c c c c c

EXTRA NOTES

Worked example

80 students visited the library over three days. The two-way table shows some information about these students.

	Monday	Tuesday	Wednesday	Total
Year 7			20	64
Year 8	9			
Total		25	36	100

(a) Complete the two-way table.

(b) Write down the probability that the student is in Year 7.

(c) Write down the probability that the student visited the library on Tuesday.

80 students visited the library over three days. The two-way table shows some information about these students.

	Monday	Tuesday	Wednesday	Total
Year 7			13	38
Year 8	14			
Total		33	26	80

(a) Complete the two-way table.

(b) Write down the probability that the student is in Year 7.

(c) Write down the probability that the student visited the library on Tuesday.

K55c: Determine a probability from a two-way table.

78 people were asked if they prefer to go on holiday in Croatia or in Portugal or in France.

The responses are shown in the two-way table below.

	Croatia	Portugal	France	Total
Female	11	22	10	43
Male	7	9	19	35
Total	18	31	29	78

One of the people is chosen at random.

What is the probability that this person is a male that said Portugal?

K55c: Determine a probability from a two-way table.

60 students each attended one revision lesson at the weekend.

Each student went to English, History or Science.

The two-way table below shows the attendance of each revision lesson.

	English	History	Science	Total
Saturday	5	17	7	29
Sunday	9	15	7	31
Total	14	32	14	60

One of the students that attended on Sunday is picked at random.

Find the probability that this student attended History.

Venn Diagrams and Probability

A set is a collection of numbers, or letters, or symbols, or objects, etc., which are related in some way.

The items in a set are called '**members'** or '**elements'**

Curly brackets (often called 'braces') are usually used when listing or describing sets – this helps to distinguish sets from lists of unrelated items.

The elements within a set are usually described in words or listed

Examples:

Description in words	List of elements
{even numbers less than 11}	{2, 4, 6, 8, 10}
{the first five prime numbers}	{2, 3, 5, 7, 11}
{multiples of three between 10 and 20}	{12, 15, 18}
{factors of 27 which are even}	{}

More examples of sets:

Description in words	List of elements
{quadrilaterals with four equal length sides}	{square, rhombus}
{vowels}	{a, e, i, o, u}
{letters in the word 'banana'}	{a, b, n}
{yellow fruit}	{grapefruit, banana, lemon,}

Notes:

Elements are only ever included once – as shown with {letters in the word 'banana'} = $\{a, b, n\}$ {yellow fruits} is an imprecise description and the list of elements contains only examples.

What is a set?

In mathematics, it is often useful to represent **a** collection of items.

We use curly braces to indicate a **set** of items...

 $\{-4, 1, 3\}$

A set is a collection of items with 2 properties:

- a) It does not contain duplicates.
- b) The order of the elements does not matter. (but we usually write the items in ascending order)

Is it a set?

- a) $\{-3.5, 2, 9\}$
- b) {4, 5, 5, 6}
- c) {1}
- d) $\{\{1,2\},\{3,4\}\}$
- e) {red, blue, green}

Are these sets the same?

 $\{3,1,2\} = \{1,2,3\}$

Venn Diagrams and Probability

Finite Sets vs Infinite Sets

The examples with seen have been **finitely** large sets.

• {-4, 1, 3}

But it is also possible to have sets which are infinitely large...

- "the set of all positive integers (whole numbers)"
- "the set of all odd numbers"

The Universal set is the set of all elements under consideration.

Elements that can be in other sets are restricted to those within the Universal set. For example, if the Universal set was {integers less than 10}, then {prime numbers} would be limited to {2, 3, 5, 7}. Likewise if the Universal set was {even numbers}, then {factors of 18} would be {2, 6, 18}

<u>Notation</u>

In Britain the special symbol ' \mathcal{E} ' is used to represent the Universal set but in some countries, such as America, the letter ' \mathcal{U} ' is used.

Thus we could write

 $\mathcal{E} = \{ \text{integers less than 10} \} \text{ or } \mathcal{E} = \{ \text{prime numbers} \}$

When we have more than one set, capital letters are usually used to represent them.

Examples:

Description in words	List of elements
$A = \{$ prime numbers between 10 and 20 $\}$	<i>A</i> = {11, 13, 17, 19}
$B = \{ \text{factors of } 24 \}$	$B = \{1, 2, 3, 4, 6, 8, 12, 24\}$
$C = \{\text{vowels}\}$	$C = \{a, e, i, o, u\}$

Note that it is often convenient to use letters that are in some way connected to the description of the set.

e.g. $P = \{\text{prime numbers between 10 and 20}\}, F = \{\text{factors of 24}\} \text{ and } V = \{\text{vowels}\}$

Venn Diagrams and Probability

Venn Diagrams are a way of showing the items in each set.

Worked example	Your turn
List the following sets:	List the following sets:
a) {factors of 15}	a) {the first four multiples of 15}
b) {the first four square numbers}	b) {the first four cube numbers}
c) {letters in the word LONDON}	c) {letters in the word BIRMINGHAM}
d) {possible outcomes when an ordinary coin is thrown}	d) {possible outcomes when an ordinary dice is thrown}

	Worked example			Your turn
a)	U = {odd numbers less than 15} A = {prime numbers} B = {multiples of 3} List:		a)	U = {even numbers less than 15} A = {prime numbers} B = {multiples of 3} List:
	i) A			i) A
	ii) B			ii) B
b)	U = {first 10 letters of the alphabet} X = {vowels} Y = {letters in the word 'ENGLISH'} List:		b)	U = {first 10 letters of the alphabet} X = {vowels} Y = {letters in the word 'FRENCH'} List:
	i) X			i) X
	ii) Y			ii) Y
c)	U = {factors of 24} P = {prime numbers} E = {even numbers} O = {odd numbers} List:		c)	U = {factors of 30} P = {prime numbers} E = {even numbers} O = {odd numbers} List:
	i) P			i) P
	ii) E			ii) E
	iii) O	Page	110	iii) O

Worked example	Your turn
Represent as a Venn diagram: $\xi = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ $A = \{0, 1, 3, 5, 8\}$ $B = \{2, 5, 8, 9\}$	Your turn Represent as a Venn diagram: $\xi = \{2, 3, 4, 5, 7, 11, 13, 17, 19\}$ $A = \{2, 3, 5, 11, 13\}$ $B = \{5, 7, 13, 17, 19\}$

Your turn
Your turn Represent as a Venn diagram: ξ = Integers between 0 and 5 inclusive A = {Prime numbers} B = {Odd numbers}

Worked example	Your turn
$\pmb{\xi}=$ whole numbers from 1 to 15	$oldsymbol{\xi}=$ whole numbers from 1 to 10
A = set of all prime numbers	A = set of all cube numbers
B = set of all numbers one less than a power of 2	B = set of all odd numbers
C = set of all square numbers	C = set of all multiples of 3

Bonus: If we extended $\boldsymbol{\xi}$ to include more positive integers, what is the smallest number that would appear in all three of A, B, C?

Worked example	Your turn
Represent in a Venn diagram:	Represent in a Venn diagram:
$\xi = \{Integers \ between \ 1 \ and \ 10 \ inclusive\}$	$\xi = \{Integers \ between \ 1 \ and \ 20 \ inclusive\}$
$A = \{odd \ numbers\}$	$A = \{prime \ numbers\}$
$B = \{numbers \ greater \ than \ 4\}$	$B = \{square \ numbers\}$
$C = \{numbers \ less \ than \ 3\}$	$C = \{even \ numbers\}$

Worked example	Your turn
From the Venn diagram below, write in roster notation:	From the Venn diagram below, write in roster notation:
$\xi =$	$\xi =$
A =	A =
B =	B =
$\begin{array}{c c} A \\ 1 \\ 9 \\ 6 \\ 5 \\ 7 \\ 5 \\ 2 \\ 4 \\ 6 \\ 8 \\ \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Worked example	Your turn
There are 150 pupils. The examinations available are: English, Maths and Science.	There are 130 pupils. The examinations available are: English, Maths and Science.
 15 pupils are sitting English and Maths but not science. 20 pupils are sitting Science and Maths but not English. 18 pupils are sitting Science and English but not Maths. 8 pupils are sitting all three exams. 55 are sitting English in total. 72 are sitting Maths in total. 65 are sitting Science in total. 	 10 pupils are sitting English and Maths but not science. 20 pupils are sitting Science and Maths but not English. 9 pupils are sitting Science and English but not Maths. 13 pupils are sitting all three exams. 49 are sitting English in total. 83 are sitting Maths in total. 62 are sitting Science in total.
A pupil is chosen at random. What is the probability that they are sitting no exams?	A pupil is chosen at random. What is the probability that they are sitting no exams?

Worked example	Your turn
 In a group of 28 scientists: 20 have degrees in Physics. 18 have degrees in Chemistry. Some have degrees in both. 4 scientists have degrees which are neither Physics nor Chemistry. A scientist is chosen at random. Find the probability that the scientist has a degree in: a) Physics b) Chemistry c) Both Physics and Chemistry d) Neither Physics nor Chemistry 	 In a group of 30 mathematicians: 15 have studied Calculus. 22 have studied Topology. Some have studied both. 3 mathematicians have not yet studied either Calculus or topology. A mathematician is chosen at random. Find the probability that the mathematician has studied: a) Calculus b) Topology c) Both Calculus and Topology d) Neither Calculus nor topology

Find the probability that a student plays the guitar, given that they play the piano.

Find the probability that a student plays the piano, given that they play the guitar.

Worked example	Your turn
 A vet surveys 100 of her clients. She finds that 25 own dogs, 15 own dogs and cats, 11 own dogs and tropical fish, 53 own cats, 10 own cats and tropical fish, 7 own dogs, cats and tropical fish, 40 own tropical fish. Draw a Venn Diagram, and hence answer the following questions: a) P(owns dog only) b) P(does not own tropical fish) c) P(does not own dogs, cats, or tropical fish) d) <u>Given that</u> a randomly chosen person owns a cat, what's the probability they own a dog? 	 The following shows the results of a survey on the types of exercise taken by a group of 100 people. 65 run, 8 swim,60 cycle, 40 run and swim, 30 swim and cycle, 35 run and cycle and 25 do all three a) Draw a Venn Diagram to represent these data. Find the probability that a randomly selected person from the survey b) takes none of these types of exercise, c) swims but does not run, d) takes at least two of these types of exercise. Jason is one of the above group. Given that Jason runs, e) find the probability that he swims but does not cycle.
Combining Sets

We have various operations on numbers, such as addition: 1 + 2 = 3 and multiplication: $2 \times 3 = 6$

So are there similar operations on sets? Yes!

$$A \cap B = \{3,4\}$$

 $A \cap B$ is the <u>intersection</u> of A and B It means "the things in A <u>and</u> in B"

$$A \cup B = \{1, 2, 3, 4, 5, 6, 7\}$$

 $A \cup B$ is the <u>union</u> of A and B It means "the things in A <u>or</u> in B"*

* Things in A or B also includes things in both.

$$A' = \{5, 6, 7, 8, 9, 10\}$$

A' is the **complement** of *A* It means "the things **not in A**"

Notation

Worked example	Your turn
$\xi = \{1, 2, 3,, 10\}$ $A = \{2, 4, 6, 8, 10\}$ $B = \{3, 6, 9\}$	$\xi = \{ \text{ all whole numbers } \}$ $A = \{ \text{ factors of 60 } \}$ $B = \{ \text{ multiples of 3 } \}$
a) $A \cap B =$	a) $A \cap B =$
b) $A \cup B =$	b) $A \cup B =$
c) $A' =$	c) $A' =$
d) B' =	d) B' =
e) $A \cap B' =$	e) $A \cap B' =$
f) $A' \cap B =$	f) $A' \cap B =$
g) $A' \cap B' =$	g) $A' \cap B' =$

	$(\boldsymbol{A} \cup \boldsymbol{B})'$	{5, 7, 8, 10, 11}				{3,5,6, 7,9,10, 11,12}	
on Iclusive}	$A' \cap B$					8	{5, 7, 8, 10, 11}
<mark>et Notatio</mark> m 1 to 12 in	$A \cap B$	{3, 6, 12}				{1,8}	{6,9,12}
<mark>ns and So</mark> ttegers fro	$A \cup B$						{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
<u>Venn Diagrar</u> In all questions $\xi = \{In$	Venn Diagram	$ \begin{bmatrix} 4 & & & B \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$			$\begin{pmatrix} A & & & & \\ & 1 & & & \\ & 4 & & & \\ & 6 & & & 10 & 12 \\ & & & & & 12 \\ \end{pmatrix}$	H A	
	Sets	$A = A = {multiples} of 3 \\ of 3 \\ B = {factors} of 12 $	A = {prime numbers} B = {odd numbers}	A = {integers less than 7} B = {square numbers}			

EXTRA NOTES

Tree Diagrams	

Fluency Practice

Structuring Probability Trees

Represent each scenario using a probability tree.

⁽¹⁾	⁽²⁾
There are some blue and	There are some blue and
red marbles in a bag.	red marbles in a bag.
l pick two marbles.	l pick three marbles.
(3)	(4)
There are some blue, green	There are some blue, green
and red marbles in a bag.	and red marbles in a bag.
l pick two marbles.	l pick three marbles.

• How do we know how many branches to draw at each intersection?

• How do we know how many layers of branches to draw?

Represent each scenario using a probability tree.

- (A) You play a game three times.Each time, you can either win, lose or draw.
- (B) You flip a coin three times.
- (c) Three people are travelling to work separately. Each person is either on time or late.
- Why do the probability trees for 'Marble Scenario 4' and 'Contextual Scenario A' have the same structure?
- Which of the marble scenarios has the same structure as Contextual Scenario C?
- How could I alter one of the contextual scenarios to make it have a tree like Marble Scenario 3?

Represent each scenario using a probability tree.

One bag contains red, blue and green marbles. Another bag contains only red and blue marbles.

I pick a marble from each bag.

There are some blue marbles and 1 <mark>red</mark> marble in a bag. I pick **two** marbles.

I'm going to keep flipping a coin until I get a tails.

Structuring Probability Trees

The probability tree represents drawing three marbles from the same bag, without replacement.

How many marbles of each colour could there be in the bag?

a) There are 15 sweets in a 10 of the sweets are toffee Reece takes two of the swe Work out the probability th	a bag. and 5 are mint. eets at random. hat Reece takes one of each type of sweet.	 b) There are 12 sweets in a bag. 8 of the sweets are toffee and 4 are mint. Reece takes two of the sweets at random. Work out the probability that Reece takes one of each type 				
Draw a tree diagram.		Draw a tree diagram.				
What is the probability of choosing each type of sweet first?	10 15 7 m 7 m 7 m 7 m 7 m 7 m	What is the probability of choosing each type of sweet first?	M T M			
What is the probability of choosing each type of sweet second?	10 15 15 15 15 15 15 15 15 15 15 15 15 15	What is the probability of choosing each type of sweet second?	1			
What is the probability of choosing one of each type of sweets?	$P(T, M) = \frac{10}{15} \times \frac{5}{14} = \frac{50}{210}$ $P(M, T) = \frac{5}{15} \times \frac{10}{14} = \frac{50}{210}$ $\frac{50}{210} + \frac{50}{210} = \frac{100}{210} = \frac{10}{21}$	What is the probability of choosing one of each type of sweets?				

c) There are 20 sweets 7 of the sweets are toff Reece takes two of the Work out the probabil	s in a bag. fee and 13 are mint. sweets at random. ity that Reece takes one of each type of sweet.	 d) There are 35 sweets in a bag. 20 of the sweets are toffee and 15 are mint. Reece takes two of the sweets at random. Work out the probability that Reece takes one of each type of sweet.
Draw a tree diagram.		
What is the probability of choosing each type of sweet first?	$\frac{1}{20}$	
What is the probability of choosing each type of sweet second?		
What is the probability of choosing one of each type of sweets?		

Worked example	Your turn						
In bag A there are 2 white and 5 red counters. In bag B there are 7 white counters and 3 red counters. A person takes at random one counter from A and one counter from B.	In bag A there are 4 white and 7 red counters. In bag B ther 9 white counters and 5 red counters. A person takes at rand one counter from A and one counter from B.						
 a) Draw a probability tree diagram to represent the situation. b) Find the probability that the counters are the same colour. c) Find the probability that the counters are different colours. 	 a) Draw a probability tree diagram to represent the situation. b) Find the probability that the counters are the same colour. c) Find the probability that the counters are different colours. 						

Worked example	Your turn					
 A person plays a game of tennis and then a game of golf. They can only win or lose each game. The probability of winning tennis is 0.3. The probability of winning golf is 0.7. The results of each game are independent of each other. a) Draw a probability tree to represent this information. b) Calculate the probability that the person win both games. c) Calculate the probability that the person wins one and loses one. d) Calculate the probability that the person wins at least one game. 	 A person plays a game of tennis and then a game of golf. They can only win or lose each game. The probability of winning tennis is 0.6. The probability of winning golf is 0.35. The results of each game are independent of each other. a) Draw a probability tree to represent this information. b) Calculate the probability that the person loses both games. c) Calculate the probability that the person wins one and loses one. d) Calculate the probability that the person loses at least one game. 					

- Does it matter which box Leyland chooses from first?
- Will the order affect the probabilities of the combined outcomes?

	0.49															
obability	7 × 0.7 =	7 × 0.3 =	3 × 0.7 =	3 × 0.3 =	$4 \times 0.4 =$	Ш Х	 ×	 ×	 	 ×	Ш Х	 ×				
Pre	P(PF) = 0.7	P(PF) = 0.3	P(FP) = 0.3	P(FF) = 0.3	P(HH)=0.	P(HT) =	P(TH) =	P(TT) =	P(LL) =	P(LO) =	P(0L) =	P(00) =				
Tree Diagram	Dev 0.7 Pass	Diana 0.7 Pass 0.3 Foll	0.3 Fail 0.7 Pass	0.3 Fail	2 nd Throw 0.4 Heads	1st Throw 0.4 Heads	0.6 Tails 0.4 Heads	0.6 Tails	$\frac{\textbf{Tuesday}}{6}$	Late On Difference On Differen	On 6 Late	On Time	2nd Set	1st Set	Stop	Go Go
Question	ne probability of passing a	7. Diana and	Complete the cree diagram	u calculate the probability of ach outcome.	he probability a biased coin	nding on tails 0.4. The coin tossed twice.	Complete the tree diagram d calculate the	probability of ach outcome.	he probability of Abby being	Abby works Monday and	I uesday. Complete the tree diagram	d calculate the orobability of ach outcome.	he probability of stopping at	affic lights is $\frac{3}{8}$. ameela drives	rough two sets f traffic lights. Complete the	tree diagram d calculate the probability of ach outcome.

FILL IN THE GAPS

				0.36	0.04									$\frac{35}{144}$		
ility	П	II	II	= 9		II	II	=	=	Ξ	II		II	II	II	II
obab.	×	×	×	.6 × 0.).2 ×	×	×	×	×	$\frac{3}{7}$ ×	×	×	×	×	×	×
P	P(PP) =	P(PF) =	P(FP) =	P(FF) = 0	P(HH) = 0	P(HT) =	P(TH) =	P(TT) =	P(SS) =	P(SG) =	P(GS) =	P(GG) =	P(RR) =	P(RB) =	P(BR) =	P(BB) =
Tree Diagram	Maysoon Pass	maria Pass	Pass Fail	Fail	Second 	Heads	Tails	Tails								
Question	wo students, Maria and	ysoon each sit cheir driving heory exam.	complete the e diagram and calculate the	rrobability of ach outcome.	biased coin is ssed once and	then tossed again for a second time.	Complete the e diagram and calculate the	orobability of ach outcome.	A car travels ough two sets	r and not not the first of the	me. Complete tree diagram	u calculate the probability of ach outcome.	lere are 12 red blue balls in a ox. There are	lore blue balls an red balls. A l is removed at dom, the colour	ecorded, then laced. A second ball is then	mplete the tree diagram and probabilities.

Worked example

Your turn

There are counters in a bag.

Colour	Red	Blue	Yellow
Number	5	10	15

One counter is taken out the bag. It is not replaced. Then another counter is taken out the bag. Find the probability that:

- a) Both counters are red
- b) Neither counter is red
- c) The counters are different colours

There are counters in a bag.

Colour	Purple	Orange	Green
Number	10	45	5

One counter is taken out the bag. It is not replaced. Then another counter is taken out the bag. Find the probability that:

- a) Both counters are purple
- b) Neither counter is purple
- c) The counters are different colours

- Does it matter which box Laura chooses from first?
- Will the order affect the probabilities of the combined outcomes?

FILL IN THE GAPS	

	<u>30</u> 90	$\frac{24}{90}$														
bility	9 ت ا	$\frac{4}{9} =$	Ш	II	II	II	II	Ш	II	II	II	II				
Proba	$\frac{6}{10}$ ×	$\frac{6}{10}$ ×	×	×	×	×	×	×	×	×	×	×				
	P(RR) =	P(RG) =	P(GR) =	P(GG) =	P(BB) =	P(BG) =	P(GB) =	P(GG) =	P(DD) =	P(DC) =	P(CD) =	P(CC) =	P(BB) =	P(BR) =	P(RB) =	P(RR) =
ee Diagram ^{2nd Ball} ^{2nd Ball} ^g ^g ^g ^g ^g ^g ^g ^g																
L		151 Bal	4	10	40 +34		\\r\\s	1	<u>-</u>	1ST Ire :	~~~~	7				
uestion	re are 6 red	and 4 green in a bag. Two are chosen at	rree diagram calculate the	ibility of each putcome.	e are 6 boys 5 girls in a	all team. Two members are n at random.	olete the tree agram and iculate the	bility of each outcome.	are 4 donuts	Riaz chooses o treats at	rree diagram calculate the	utcome.	e are 7 blue s and 5 red	s in a pencil Two pens are n at random.	blete the tree agram and culate the	ability of each outcome.
Ø	The	balls balls balls	the t and c	brone	Ther and	footb team chose	Comr dia cal	probe	There	tin. F	the t and c		Ther	pen case. chose	Com _f dia cal	probe

Exam Q

There are two bags with numbered discs as shown.

A person chooses a disc at random from bag 1. If it is labelled 2, he puts the disc in bag 2. If it is labelled 1, he does not put the disc in bag 2. He then chooses a disc at random from bag 2. He then adds the numbers of the two discs he selected to give his score. Find the probability that his score is 4.

There are two bags with numbered discs

A person chooses a disc at random from bag 1.

If it is labelled 2, he puts the disc in bag 2.

If it is labelled 1, he does not put the disc in bag 2.

He then chooses a disc at random from bag 2.

He then adds the numbers of the two discs he selected to give his score. Find the probability that his score is 5.

Worked Example K297a	Your Turn
Neha has 6 sweets, of which k are blue. The remainder of the sweets are green.	Hannah has n marbles, of which 7 are red. The remainder of the marbles are blue.
Neha eats a sweet, does not regurgitate it, and then eats another sweet.	Hannah takes a marble, does not replace it, and then takes another marble.
The probability that she eats two blue sweets is $\frac{1}{5}$.	The probability that she takes two red marbles is $\frac{3}{4}$.
Show that $k^2+ak+b=0$, where a and b are constants to be found.	Show that $n^2+an+b=0,$ where a and b are constants to be found.

REVIEW

...with replacement:

The item is returned before another is chosen. The probability of each event on each trial is fixed.

...without replacement:

The item is not returned.

- •Total balls decreases by 1 each time.
- •Number of items of this type decreases by 1.

Note that if the question doesn't specify which, e.g. "You pick two balls from a bag", then PRESUME WITHOUT REPLACEMENT.

EXTRA NOTES