Year 11

2023 Mathematics 2024 Unit 25 Booklet and Tasks

HGS Maths

Dr Frost Course

Name:

Class:

Graphs you should already recognise the shape of:

| 2. Linear |
| :--- | :--- | :--- | :--- |
| Graph |\quad| Straight line graph. |
| :--- |
| The equation of a linear graph can contain |
| an \mathbf{x}-term, a y-term and a number. |

Reciprocal graphs and asymptotes

5. Reciprocal Graph	The equation is of the form $\boldsymbol{y}=\frac{\boldsymbol{A}}{\boldsymbol{x}}$, where \boldsymbol{A} is a number and $\boldsymbol{x} \neq \mathbf{0}$. The graph has asymptotes on the \mathbf{x}-axis and y-axis.		A straight line that a graph approaches but never touches.	

Exponential graphs

7. Exponential	The equation is of the form $\boldsymbol{y}=\boldsymbol{a}^{\boldsymbol{x}}$, where Graph is a number called the base. If $\boldsymbol{a}>\mathbf{1}$ the graph increases. If $\mathbf{0}<\boldsymbol{a}<\mathbf{1}$, the graph decreases. The graph has an asymptote which is the \mathbf{x}-axis.

Secondary \rightarrow Algebrs \rightarrow Curved Grsphs

426b: Recognise the shape of simple quadratic, cubic, reciprocal and exponential graphs.

Four graphs are sketched below.

Match each equation in the table with a graph above.

Equation | Graph Number |
| :--- |
| $y=-x^{2}$ |
| $y=x^{3}$ |
| $y=\frac{1}{x^{2}}$ |
| $y=-0.5^{x}$ |
| |
| Submit Answer | $\quad \square$

Secondary \rightarrow Algebrs \rightarrow Curved Grsphs

426b: Recognise the shape of simple quadratic, cubic, reciprocal and exponential graphs.

Four graphs are sketched below.

Match each equation in the table with a graph above.

Equation
$y=x^{2}$
$y=x(-x+2)(x+2)$
$y=\frac{1}{x}$
$y=-0.5^{x}$

Secondary \rightarrow Algebra \rightarrow Curved Graphs

426c: Recognise graphs for directly proportional and inversely proportional relationships.

Four graphs are sketched below.

Match each equation in the table with a graph above.
Type of proportionality Figure Number
$y \propto \sqrt{x}$

$y \propto x^{2}$

$y \propto x$
$y \propto x^{3}$

Secondary \rightarrow Algebra \rightarrow Curved Graphs

426c: Recognise graphs for directly proportional

 and inversely proportional relationships.Four graphs are sketched below.

Match each equation in the table with a graph above.

Type of proportionality Figure Number
$y \propto x^{4}$
$y \propto x$
$y \propto x^{2}$
$y \propto \sqrt{x}$

\square

[^0]
Trigonometric graphs

Recap of Exact Trigonometric Values

Angle $(\theta$ Degrees $)$	0°	30°	45°	60°	90°	180°	270°	360°
$\sin \theta$								
$\cos \theta$								
$\tan \theta$								

8. $y=\sin x$	```Key Coordinates: \((0,0),(90,1),(180,0),(270,-1),(360,0\) \(y\) is never more than 1 or less than -1 . Pattern repeats every \(360^{\circ}\).```	
9. $y=\cos x$	Key Coordinates: $(0,1),(90,0),(180,-1),(270,0),(360,1$ y is never more than 1 or less than -1 . Pattern repeats every 360°.	
10. $y=\tan x$	Key Coordinates: $\begin{gathered} (0,0),(45,1),(135,-1),(180,0) \\ (225,1),(315,-1),(360,0) \end{gathered}$ Asymptotes at $\boldsymbol{x}=\mathbf{9 0}$ and $\boldsymbol{x}=\mathbf{2 7 0}$ Pattern reneats everv 360°.	

trigonometric graphs

The unit circle is centered on the origin and has a radius of 1 .

1. Work out a and b in terms of θ.

2. Sketch the graph of $y=\sin (x)$ for $0 \leq x \leq 360^{\circ}$.

3. Sketch the graph of $y=\cos (x)$ for $0 \leq x \leq 360^{\circ}$.

the sine graph

1．Solve for $0 \leq x \leq 360^{\circ}$ ．Give your answers to 1 decimal place．
a） $\sin (x)=0.7$
b） $\sin (x)=0.4$
c） $\sin (x)=-0.3$
d） $\sin (x)=-0.8$

2．Solve for $0 \leq x \leq 360^{\circ}$ ．Give your answers to 1 decimal place where necessary．
a） $\sin (x)=0.55$
b） $\sin (x)=-0.9$
c） $\sin (x)=-0.5$
d） $\sin (x)=1$
e） $\sin (x)=\frac{\sqrt{3}}{2}$
f） $\sin (x)=0$
g） $2 \sin (x)=1$
h） $\sin (x)=0.95$
i） $\sin (x)=-\frac{1}{3}$

3．a）Given $\sin \left(40^{\circ}\right)=0.643$ ，complete： $\sin \left(140^{\circ}\right)=$ \qquad
国
b）Given $\sin \left(25^{\circ}\right)=0.423$ ，complete： $\sin \left(205^{\circ}\right)=$ \qquad
c）Given $\sin \left(165^{\circ}\right)=0.259$ ，complete： $\sin \left(15^{\circ}\right)=$ \qquad
d）Given $\sin \left(315^{\circ}\right)=-0.707$ ，complete： $\sin \left(45^{\circ}\right)=$ \qquad

the cosine graph

1. Solve for $0 \leq x \leq 360^{\circ}$. Give your answers to 1 decimal place.
a) $\cos (x)=0.75$
b) $\cos (x)=0.2$
c) $\cos (x)=-0.6$
d) $\cos (x)=-0.35$
2. Solve for $0 \leq x \leq 360^{\circ}$. Give your answers to 1 decimal place where necessary.
a) $\cos (x)=0.45$
[No Title]
b) $\cos (x)=-0.08$
c) $\cos (x)=0.6$
d) $\cos (x)=-1$
e) $\cos (x)=\frac{1}{2}$
f) $\cos (x)=0$
g) $4 \cos (x)=1$
h) $\cos (x)=-0.65$
i) $\cos (x)=\frac{7}{8}$
3. a) Given $\cos \left(25^{\circ}\right)=0.906$, complete: $\cos \left(335^{\circ}\right)=$ \qquad
b) Given $\cos \left(80^{\circ}\right)=0.174$, complete: $\cos \left(100^{\circ}\right)=$ \qquad
c) Given $\cos \left(160^{\circ}\right)=-0.940$, complete: $\cos \left(20^{\circ}\right)=$ \qquad
d) Given $\cos \left(235^{\circ}\right)=-0.574$, complete: $\cos \left(125^{\circ}\right)=$ \qquad

Sort It Out.es

Trigonometric Graphs

Sort these properties of trigonometric graphs into each of the categories $-y=\sin x$, $y=\cos x$ or $y=\tan x$. Some properties may apply to more than one graph, and some may apply to none.

$\mathbf{1}$	Passes through $(0,0)$	$\mathbf{2}$	Graph repeats itself every 360°	$\mathbf{3}$	Has a maximum y-value of 1
$\mathbf{4}$	Symmetrical about the y-axis	$\mathbf{5}$	Passes through $(0,1)$	$\mathbf{6}$	Symmetrical about the x-axis
$\mathbf{7}$	Has rotational symmetry order 2 about origin	$\mathbf{8}$	Has an asymptote at $x=90^{\circ}$	$\mathbf{9}$	Has a minimum y-value of -1
$\mathbf{1 0}$	Passes through $(0,-1)$	$\mathbf{1 1}$	Symmetrical about the line $x=180^{\circ}$	$\mathbf{1 2}$	Passes through $(360,0)$
$\mathbf{1 3}$	Has an asymptote at $x=180^{\circ}$	$\mathbf{1 4}$	Graphs repeats itself every 180°	$\mathbf{1 5}$	Has rotational symmetry order 2 about $(90,0)$

Worked Example

Your Turn

425a: Determine the values of p and q in the exponential function $y=p q^{x}$

The sketch graph shows a curve with equation $y=p q^{2}$ The curve passes through the points $(1,10)$ and $(4,80)$.

Calculate the value of p and the value of q

The sketch graph shows a curve with equation $y=p q^{x}$
The curve passes through the points $(1,3)$ and $(3,12)$.
Calculate the value of p and the value of q.

Worked Example

Your Turn

425b: Use a graph to determine the function $y=p q^{x}$

The graph below shows a curve with equation $y=p q^{x}$

Calculate the value of p and q.

The graph below shows a curve with equation $y=p q^{x}$

Calculate the value of p and q.

Worked Example

Your Turn

425c: Determine an exponential model $y=p q^{x}$ from two data points to make a prediction.

Initially, a capacitor held a charge of 2000 mC .
It begins discharging, and after 3 seconds, it holds 900 mc .
The charge of the capacitor is given by the formula

$$
Q=a r^{t}
$$

where Q is the charge of the capacitor in mC, t seconds after it began discharging.

Calculate the charge of the capacitor 5 seconds after it began discharging, giving your answer to 3 significant figures.

425 c : Determine an exponential model $y=p q^{x}$ from two data points to make a prediction.

At the start of 2010 , a savings account contained $\$ 80000$.
At the start of 2015, the value of the savings account was $\$ 190000$.

The value of the account is given by the formula

$$
V=a r^{t}
$$

where V is the amount in the account, t years after the start of 2010.

Calculate the value of the account at the start of 2017.

Composite Functions

A composite function is a function consisting of two or more functions.

The term composition is used when one operation is performed after another operation.
For instance:

This function can be written as $f(x)=5(x+3)$

Composite Functions

Here are two number machines.
Input $\rightarrow \times 9 \rightarrow-2 \rightarrow$ Output \rightarrow Input $\rightarrow+4 \rightarrow+2 \rightarrow$ Output
What is the output of the second machine, when the input of the first machine is 2 .

Here are two functions:
$f(x)=9 x-2$
$g(x)=\frac{x}{4}+2$
Calculate the value of $g f(2)$

Worked Example

$$
\begin{aligned}
& \text { If } f(x)=3 x+4, \\
& g(x)=2 x-5 \\
& \text { a) } f g(6)= \\
& \text { b) } g f(7)=
\end{aligned}
$$

$$
\text { If } f(x)=4 x-3
$$

$$
g(x)=5 x+2
$$

$$
\text { a) } f g(8)=
$$

$$
\text { b) } g f(8)=
$$

If $f(x)=3 x^{2}$,
$g(x)=x-4$
a) $f g(5)=$
b) $g f(6)=$

$$
\begin{aligned}
& \text { If } f(x)=5 x^{2}, \\
& g(x)=x+3 \\
& \text { a) } f g(7)= \\
& \text { b) } g f(7)=
\end{aligned}
$$

Your Turn

$$
\begin{aligned}
& \text { If } f(x)=5 x^{2}, \\
& g(x)=2 x+3 \\
& \text { a) } \quad f g(2)= \\
& \text { b) } g f(3)=
\end{aligned}
$$

$$
\begin{aligned}
& \text { If } f(x)=4 x^{2}, \\
& g(x)=3 x+2 \\
& \text { a) } \quad f g(4)= \\
& \text { b) } g f(4)=
\end{aligned}
$$

Worked Example

Your Turn

$$
\begin{aligned}
& \text { If } f(x)=x+3 \text {, } \\
& g(x)=\frac{1}{x-2} \\
& \text { a) } f g(5)= \\
& \text { b) } g f(5)=
\end{aligned}
$$

$$
\begin{aligned}
& \text { If } f(x)=x-5 \text {, } \\
& g(x)=\frac{1}{x+4} \\
& \text { a) } f g(8)= \\
& \text { b) } g f(8)=
\end{aligned}
$$

Question 8: The functions $f(x)$ and $g(x)$ are given by the following

$$
\begin{aligned}
& f(x)=x+5 \\
& g(x)=3 x-1
\end{aligned}
$$

Calculate the value of:
(a) $f g(1)$
(b) $f g(-5)$
(c) $g f(4)$
(d) $g f(0)$
(e) $\quad f f(2)$
(f) $\quad f f(-4)$
(g) $g g(10)$
(h) $g g(-2)$

Question 9: The functions $f(x), g(x)$ and $h(x)$ are given by the following:

$$
\begin{aligned}
& f(x)=x^{2}+7 \\
& g(x)=3 x-8 \\
& h(x)=\frac{x}{4}
\end{aligned}
$$

Calculate the value of:
(a) $f g(3)$
(b) $h f(5)$
(c) $g h(20)$
(d) $g f(-2)$
(e) $f h(12)$
(f) $f f(1)$
(g) $g g(4)$
(h) $h h(40)$

Question 10: The functions $f(x), g(x)$ and $h(x)$ are given by the following:

$$
f(x)=\frac{32}{x^{2}} \quad g(x)=2 x^{3} \quad h(x)=\frac{12-2 x}{5}
$$

Calculate the value of:
(a) $f g(1)$
(b) $g f(4)$
(c) $g h(-19)$
(d) $h f(2)$
(e) $f f(2)$
(f) $\quad g g g(1)$
(g) $\operatorname{hgf}(8)$
(h) $h g h(6)$

28

Question 11: The functions $f(x)$ and $g(x)$ are given by the following:

$$
\begin{aligned}
& f(x)=2 x+1 \\
& g(x)=x-5
\end{aligned}
$$

Find:
(a) $f g(x)$
(b) $g f(x)$
(c) $\quad f f(x)$
(d) $g g(x)$

Question 12: The functions $f(x), g(x)$ and $h(x)$ are given by the following:

$$
f(x)=4 x-3 \quad g(x)=2 x+6 \quad h(x)=x^{2}
$$

Find
(a) $f g(x)$
(b) $\quad g f(x)$
(c) $\quad h f(x)$
(d) $f h(x)$
(e) $h g(x)$
(f) $\quad g h(x)$
(g) $f g h(x)$
(h) $\operatorname{hg} f(x)$

Question 13: Find $f^{-1}(x)$ for each of the following:
(a) $f(x)=2 x$
(b) $f(x)=x-6$
(c) $f(x)=\frac{x}{3}$
(d) $f(x)=5 x+1$
(e) $f(x)=\frac{2 x}{7}$
(f) $f(x)=\frac{x-2}{6}$

Question 14: Given $h(x)=\frac{x}{4}$
(a) Find $h^{-1}(x)$
(b) Calculate the value of $h^{-1}(1.5)$

Question 15: Given $f(x)=2 x-3$
(a) Find $f^{-1}(x)$
(b) Calculate the value of $f^{-1}(7)$

Functions

Question 5: The function f is such that $f(x)=k x+7$
The function g is such that $g(x)=3 x-2$
Given that $g f(1)=34$
Work out the value of k

Question 6: The function g is such that $\quad f(x)=\frac{k x+2}{4}$
The function h is such that $g(x)=2 x+5$
Given that $f g(4)=-9.25$
Work out the value of k

Question 7: For all values of x

$$
\begin{aligned}
& f(x)=x^{2}+5 \\
& g(x)=x-4
\end{aligned}
$$

Solve $\quad f g(x)=g f(x)$

Question 8: $\quad f(x)=x^{2}+3 x+8$

Show that $f(x+1)-f(x)=2 x+4$
(a) $f(x+2)$
(b) $f(x-1)$
(c) $f(2 x)$
(d) $f(3 x)$
(e) $f(2 x-1)$
(f) $f(4 x+3)$

Graph transformation Rules you must learn

11. $f(x)+a$	Vertical translation up a units. $\binom{0}{a}$	
12. $f(x+a)$	Horizontal translation left a units. $\binom{-a}{0}$	
13. $-f(x)$	Reflection over the x -axis.	
14. $f(-x)$	Reflection over the y-axis.	

Worked Example

448c: Understand the effect on a point under the transformation
$y=f(x+a)$
The curve with equation $y=f(x)$ has the minimum point $P(-9,2)$.

Find the image of P on the curve with equation $y=f(x-3)$

448d: Understand the effect on a point under the transformation
$y=f(x)+a$
The point $P(1,-6)$ lies on the curve with equation $y=f(x)$.

Find the image of P on the curve with equation $y=f(x)-2$

> The point $P(-7,-1)$ lies on the curve with equation $y=f(x)$.

Find the image of P on the curve with equation $y=f(x+2)$

The point $P(-4,1)$ lies on the curve with equation $y=f(x)$.

Find the image of P on the curve with equation $y=f(x)+3$

Worked Example

Your Turn

448g: Determine the equation in $f(x)$ after a translation of a given graph to $f(x)+a$ and $f(x+a)$

The graph of $y=f(x)$ is shown in Figure 1 .

The graph of $y=f(x)+a$ is shown in Figure 2 .

Determine the value of a.

The graph of $y=f(x)$ is shown in Figure 1 .

The graph of $y=f(x)+a$ is shown in Figure 2.

Determine the value of a.

448h: Determine the new equation of
a function after a translation by $\binom{a}{0}$
or $\binom{0}{a}$
The curve $y=2 \tan (4 x)$ is translated by 1 unit in the positive y-direction.
State the equation of the new curve after this transformation.

448h: Determine the new equation of a function after a translation by $\binom{a}{0}$ or $\binom{0}{a}$
The curve $y=\frac{2}{2 x-1}$ is translated by $\binom{0}{3}$.
State the equation of the new curve after this transformation.

The curve $y=5 \sqrt{2 x-1}$ is translated by $\binom{-5}{0}$.
State the equation of the new curve after this transformation.

The curve $y=\frac{2}{3 x+1}$ is translated by 1 unit in the negative y-direction.

State the equation of the new curve after this transformation.

Worked Example

449a: Sketch a graph of $y=-f(x)$ given the graph of $y=f(x)$

The graph of $y=f(x)$ is drawn in black on the grid below.

Select the graph which represents the transformation $y=-f(x)$.

OA
OB
OC

The graph of $y=f(x)$ is drawn in black on the grid belov

Select the graph which represents the transformation $y=-f(x)$.

- A

OB
OC

Worked Example

449c: Understand the effect on a point under the transformation $y=-f(x)$

The point $P(6,0)$ lies on the curve with equation $y=f(x)$.
Find the image of P on the curve with equation $y=-f(x)$

449d: Understand the effect on a point under the transformation $y=f(-x)$

The curve with equation $y=f(x)$ has the maximum point $P(2,-5)$.

Find the image of P on the curve with equation $y=f(-x)$

The point $P(5,4)$ lies on the curve with equation $y=f(x)$

Find the image of P on the curve with equation $y=-f(x)$

The curve with equation $y=f(x)$ has the maximum point $P(5,1)$.

Find the image of P on the curve with equation $y=f(-x)$

Worked Example

449f: Determine the equation in $f(x)$ notation after a reflection of a given graph in one axis only.

The graph of $y=f(x)$ is drawn in black on the grid below.
The graph drawn in green is a transformation of $y=f(x)$.

Determine which of the following functions represents the transformation?
$f(x)-1$
$-f(x)$
$f(-x)$
$f(x-2)$
$f(x-1)$

Your Turn

The graph of $y=f(x)$ is drawn in black on the grid below.
The graph drawn in green is a transformation of $y=f(x)$.

Determine which of the following functions represents the transformation?
$f(x-1)$
$-4 f(x)$

- $-f(x)$
- $f(-2 x)$
$f(-x)$

(c)
(b)

The graphs of $y=\sin x$ and $y=b \sin (x)$ are shown below. Find the value of b.

(d)

The graph of $y=f(x)$ is transformed to
give the equation $y=-f(x)$. Describe the transformation in words.

The graph of $y=f(x)$ is transformed to
give the equation $y=f(x-4)$. Describe the transformation in words.

(e)

(f)

The graph of $y=f(x)$ is transformed to give the equation $y=f(2 x)$. Describe the transformation in words.

(g)

The graph of $y=x^{2}$ has been transformed to give the graph shown below. Write down the equation of the transformed graph

The graph of $y=f(x)$ is transformed to give the equation $y=f(-x)$. Describe the transformation in words.

(a)	(b)
Here is a graph of $y=f(x)$. On the same axes, draw the graph of $y=f(x)-2$.	Here is a graph of $y=f(x)$. On the same axes, draw the graph of $y=-f(x)$
(c)	(d)
Here is a graph of $y=f(x)$. On the same axes, draw the graph of $y=3 f(x)$	Here is a graph of $y=f(x)$. On the same axes, draw the graph of $y=f(x+1)$
(e)	(f)
Here is a graph of $y=f(x)$. On the same axes, draw the graph of $y=f(2 x)$	Here is a graph of $y=f(x)$. On the same axes, draw the graph of $y=2 f(x)-1$

Transformations of Points on Graphs

(a)

(b)

The point $P(3,2)$ lies on the curve with equation $y=f(x)$ shown below. Write down the coordinates of the point P on the transformed curve $y=-f(x)$

(c)

The curve $y=f(x)$ shown below has a maximum point with coordinates $(-2,2)$

Write down the coordinates of the maximum point of the transformed curve (i) $y=f(2 x)$
(ii) $y=f(x+5)$
(ii) $y=f(-x)$

(f)

The curve C with equation $y=f(x)$ is transformed to give the curve D with equation $y=-f(x+1)-2$. The point $(3,-2)$ lies on the curve C. What point does this map to on the transformed curve D ?

1. Here is the graph of $y=f(x)$ The point $P(4,1)$ is a point on the graph.

What are the coordinates of the new position of P when the graph $y=f(x)$ is transformed to the graph of
(a) $y=-f(x)$
\qquad
(b) $y=f(x)+4$
\qquad
(c) $\mathrm{y}=\mathrm{f}(-\mathrm{x})$
\qquad
(d) $y=f(x+5)$

Shown is the curve with equation $y=f(x)$
The coordinates of the minimum point of the curve are $(5,2)$.
Write down the coordinates of the minimum point of the curve with equation
(a) $y=f(x)-4$

$$
(\ldots \ldots .
$$

(b) $y=f(x-2)$
\qquad
(c) $y=f(-x)$
3. The graph of $y=f(x)$ is shown below.

On the grid, sketch the graph of $y=f(x-1)$
4. Inis is a sketcn or the curve with the equation $y=r(x)$. The only minimum point of the curve is at the point $(5,2)$

Write down the coordinates of the minimum point of the curve with equation
(a) $y=f(x)+3$

(b) $y=f(x+1)-2$
5. Ine alagram deiow snows the grapn or $y=r(x)$

The point $A(-6,4)$ lies on the graph.
Sketch the graphs with the equations below, clearly giving the point corresponding to A .
(a) $y=-f(x)$

(b) $y=f(x-3)$

6. This is a sketch of the curve with equation $y=f(x)$

The vertex of the curve is at the point $(-6,1)$

Write down the coordinates of the vertex of the curve with equation
(a) $y=f(x+3)$
(.-.......................)
(1)
(b) $y=f(-x)$
(.............. ,)
(1)
(c) $y=f(x)-4$
7.

The curve with equation $y=f(x)$ is translated so that the point at $(-3,0)$ is mapped onto the point $(-3,-2)$.

Find an equation of the translated curve.

The graph of $\mathrm{y}=\mathrm{f}(\mathrm{x})$ cuts the x axis when $\mathrm{x}=-5,-2$ and 2
Write down the coordinates of the points where these graphs cut the x axis.
(a) $\mathrm{y}=\mathrm{f}(-\mathrm{x})$
(b) $y=f(x+2)$
9. Shown below is the curve with equation $y=f(x)$

The curve passes through the points $(-4,0),(-1,0)$ and $(0,5)$

Sketch the curve with equation:
(a) $y=f(x-1)$

(b) $\mathrm{y}=-\mathrm{f}(\mathrm{x})$

10. Shown below is a sketch of a curve with equation $y=f(x)$.

The curve has a minimum point at $(-7,-4)$.

The graph of $y=f(x)+a$ has a minimum point at $(-7,0)$, where a is a constant.
Write down the value of a.
11. The graph of $y=f(x)$ is shown on the grid.

The graph A is a translation of the graph $y=f(x)$
Write down the equation of graph A.
12. Shown below is the graph of $y=\cos x$

On the grid, sketch the graph of $y=3+\cos x$ for values of x from 0^{*} to 540^{*}
13. Shown below is the graph of $y=\cos x$

On the grid, sketch the graph of $y=\cos \left(x-90^{\circ}\right)$ for values of x from 0° to 360°
14. Describe the transtormation that maps the curve with equation $y=\sin (x)$ onto the curve with equation
(a) $y=-\sin (x)$
\qquad
(b) $y=1+\sin (x)$
\qquad
(2)
(c) $y=\sin \left(x-30^{\circ}\right)$
\qquad
(2)
15. Shown below is the graph of $y=\cos x$

On the grid, sketch the graph of $y=2-\cos (x)$ for values of x from 0° to 540°

Congruency

learn by heart

Congruent shapes are identical - they have the same shape and same size.
They could fit on top of each other. To prove that two triangles are congruent, we need to know that they meet one of these conditions:

AAS: 2 angles and a corresponding side are the same

SSS: 3 sides the same

RSS: 2 corresponding sides being equal in a right triangle means all 3 are the same using Pythagoras.

Making the right decision:

For each pair of triangles, decide whether...

- they are congruent, giving a reason (SSS, ...)
- they are not congruent
- there is not enough information to decide

$C D$ and $F E$ are parallel, and $C D=$ $A B C D$ is a parallelogram. Prove that triangles $A B D$ and $B C D$ are congruent.

Congruent Triangles

 Video 67 on www.corbettmaths.comCorbett moths

Congruent Triangles

 Video 67 on www.corbettmaths.com
Examples

Workout

Click here

Scan here

Question 1: The following pairs of triangles are congruent, state the condition that shows they are congruent.
(a)

(h)

(e)

(c)
(d)

(g)

2 cm 3 cm

2 cm

Question 2: Shown are six triangles. Which triangles are congruent?

Question 3: In triangle $\mathrm{ABC}, \mathrm{AB}=7 \mathrm{~cm}, \angle \mathrm{BAC}=50^{\circ}$ and $\angle \mathrm{ABC}=35^{\circ}$
In triangle $\mathrm{DEF}, \mathrm{EF}=7 \mathrm{~cm}, \angle \mathrm{DEF}=35^{\circ}$ and $\angle \mathrm{DFE}=50^{\circ}$ Are triangles ABC and DEF congruent? If they are, state the condition.

Question 4: In triangle $\mathrm{GHI}, \mathrm{GH}=7 \mathrm{~cm}, \mathrm{HI}=4 \mathrm{~cm}$ and $\mathrm{GI}=5 \mathrm{~cm}$.
In triangle $\mathrm{JKL}, \mathrm{JK}=7 \mathrm{~cm}, \mathrm{KL}=4.5 \mathrm{~cm}$ and $\mathrm{JL}=5 \mathrm{~cm}$.
Are triangles GHI and JKL congruent? If they are, state the condition.
Question 5: In triangle $\mathrm{MNO}, \angle \mathrm{MNO}=50^{\circ}, \angle \mathrm{NOM}=60^{\circ}$ and $\angle \mathrm{OMN}=70^{\circ}$ In triangle $\mathrm{PQR}, \angle \mathrm{PQR}=50^{\circ}, \angle \mathrm{QRP}=60^{\circ}$ and $\angle \mathrm{RPQ}=70^{\circ}$ Are triangles $M N O$ and $P Q R$ congruent? If they are, state the condition.

Question 6: In triangle $\mathrm{STU}, \mathrm{SU}=13 \mathrm{~cm}, \angle \mathrm{TSU}=20^{\circ}$ and $\angle \mathrm{TUS}=30^{\circ}$
In triangle $V W X, W X=13 \mathrm{~cm}, \angle W X V=30^{\circ}$ and $\angle X V W=20^{\circ}$
Are triangles STU and VWX congruent? If they are, state the condition.

Apply

Question 1: Hannah and Chris each draw a triangle with one side of 3 cm , one angle of 35° and one angle of 80°.
Hannah says their triangles must be congruent.
Is Hannah correct?
Question 2: Paul and Greg each draw a triangle with one side of 3 cm , one side of 9 cm and one side of 10 cm .
Greg says their triangles must be congruent Is Greg correct?
Question 3: Carl and Michael each draw a triangle with one angle of 58°, one angle of 68° and one angle of 54°.
Carl says their triangles must be congruent.
Is Carl correct?
Question 4: ABCD is a parallelogram.
Prove that triangles ABD and $B C D$ are congruent.

Question 5: In the diagram, the lines CE and DF intersect at G.
$C D$ and $F E$ are parallel and $C D=F E$.
Prove that triangles CDG and EFG are congruent.

Answers

Click here

Scan here
5. $A B C D$ is a parallelogram.

Prove that triangles ABD and BCD are congruent.
7. The diagram shows a rhombus DEFG.

The diagonals intersect at H .

Prove triangles DGH and EFH are congruent.
9. $D E F$ is an equilateral triangle.

G lies on EF.

DG is perpendicular to FE .

Prove DFG is congruent to DEG.

10. $A B C$ is an isosceles triangle in which $A C=B C$.

D and E are points on BC and AC such that $\mathrm{CE}=\mathrm{CD}$.

Prove triangles ACD and BCE are congruent.
11. ABCD and LMNO are squares

Angle CBL $=\mathrm{x}$

Prove that triangles ABO and CBL are congruent.
21. ABCDEFGH is a regular octagon.
M is a point on the line $D H$.
N is a point on the line FM.
The lines DN and FM are perpendicular.

Prove that triangles FHM and DFP are congruent.

Circle theorems and Proof

Circle theorems and Proof

Proving each Circle Theorem

See: Circle Theorems - GeoGebra (geogebra.org/m/PFf7ehXE)

Proof of angle at the centre twice angle at circumference

Proof of angle in a semi-circle is a right angle

Proof of angles in the same segment are equal

Proof of opposite angles in a cyclic quadrilateral add up to 180 deg.

Proof of Alternate segment theorem

[^0]: Submit Answer

