Pearson Edexcel

Level 1/Level 2 GCSE (9-1)
 Mathematics (1MA1)

Content Guidance: FAQs

First teaching from September 2015
First certification from June 2017

About this content exemplification

This content guidance booklet has been produced to support mathematics teachers delivering the GCSE (9-1) in Mathematics specification (first assessment summer 2017).

This booklet provides commentary from the senior examiner team beneath the GCSE (9-1) in Mathematics content statements. The commentary is intended to provide more detail on how the specification is assessed, and supplies generic examples and relevant question references from recent exam papers and Specimen Papers (Sets 1 and 2) to exemplify this content, along with answers to frequently asked questions (FAQs).

Content

All students need to develop confidence and competence with the content identified by standard type.

All students are assessed on the content identified by the standard and the underlined type; more highly attaining students will develop confidence and competence with all of this content.

Only the more highly attaining students are assessed on the content identified by bold type. The highest-attaining students need to develop confidence and competence with the bold content.

Content in standard and underlined type is assessed at Foundation tier; content in bold type is assessed at Higher tier only.

Assessment examples

The column for Assessment examples contains references to relevant questions from exam papers since June 2017, from the specimen papers and from the specimen assessment materials. SAMs stands for Specimen Assessment Materials,SP1 for Specimen Papers Set 1 and SP2 for Specimen Papers Set 2. All of these documents are available from the Pearson website or from the Mathematics Emporium.

Assessment: P marks

The P (process) mark denotes those questions that have been classified as AO3 (problem solving) and therefore may have a number of different methods of solution. In our mark schemes we exemplify the most common methods of solution seen; examiners are instructed to apply the mark scheme to alternative methods of solution (or refer these to their team leader if necessary).

The P mark works in exactly the same way as the M (method) mark. We use a different letter to remind examiners that they should be looking for alternative processes (and have used this language rather than method in our mark schemes for AO3 questions). So if a candidate gives a partially correct solution they will be awarded the appropriate P (process) marks provided the working they show is a possible route through to the solution. If a solution is fully correct, then full marks will usually be awarded. The exception will be in questions where candidates are specifically instructed to show working. In these questions, the correct solution with no working will score no marks.

Knowledge, skills and understanding

1. Number

Structure and calculation

What students need to learn:
N1 order positive and negative integers, decimals and fractions; use the symbols $=, \neq,<,>, \leq, \geq$

Assessment examples

Foundation tier

June 2019 1F Q8
June 2019 2F Q2
June 2019 2F Q10
Nov 2018 1F Q1
Nov 2018 2F Q6
June 2018 1F Q2

Higher tier

Nov 2017 1H Q8

Foundation tier

June 2019 1F Q6
June 2019 1F Q11
June 2019 1F Q19
June 2019 2F 6
June 2019 3F Q7
June 2019 3F Q11a
June 2019 3F Q14
Nov 2018 2F Q1
Nov 2017 1F Q21

Higher tier

June 2017 1H Q3
For example, for the question 45×289, full marks would be given for a correct answer of 13005 .

If the answer was incorrect then the working would be looked at and partial marks, if appropriate, would be awarded for any correct method used to multiply the two numbers examiners will not be prescribing the method that candidates should use.

N3 recognise and use relationships between operations, including inverse operations (e.g. cancellation to simplify calculations and expressions); use conventional notation for priority of operations, including brackets, powers, roots and reciprocals
use the concepts and vocabulary of prime numbers, factors (divisors), multiples, common factors, common multiples, highest common factor, lowest common multiple, prime factorisation, including using product notation and the unique factorisation theorem

Foundation tier

June 2019 1F Q3
Nov 2018 1F Q5
Higher tier
June 2019 3H Q7
Nov 2017 2H Q8

Foundation tier

June 2019 1F Q4, Q24
June 2019 2F Q3
June 2019 3F Q2
Nov 2018 1F Q3, Q10
Nov 2018 3F Q15
June 2018 2F Q21
Nov 2017 1F Q23

Higher tier

June 2019 1H Q3
June 2018 2H Q2
June 2018 3H Q10
Nov 2017 1H Q1

The unique factorisation theorem is tested by the requirement to carry out the prime factorisation of a given number.

N5 apply systematic listing strategies, including use of the product rule for counting (i.e. if there are \boldsymbol{m} ways of doing one task and for each of these, there are \boldsymbol{n} ways of doing another task, then the total number of ways the two tasks can be done is $\boldsymbol{m} \times \boldsymbol{n}$ ways)

N6 use positive integer powers and associated real roots (square, cube and higher), recognise powers of $2,3,4,5$; estimate powers and roots of any given positive number

Foundation tier

June 2018 2F Q7
June 2017 3F Q7

Higher tier

June 2019 1H Q16
Nov 2018 2H Q11
June 2018 3H Q14

Foundation tier

June 2019 1F Q15
June 2019 3F Q4
Nov 2018 2F Q4
Higher tier
June 2019 1H Q8a

The accuracy that candidates are expected to use in estimating a square root of a positive number depends on the context of the question. For a straightforward AO1 question such as "estimate the square root of 85 ", knowing that the answer lies between 9 and 10 and is closer to 9 is all that examiners would expect.

N7
calculate exactly with fractions, surds and multiples of π; simplify surd expressions involving squares
(e.g. $\sqrt{ } 12=\sqrt{ }(4 \times 3)=\sqrt{ } 4 \times \sqrt{ } 3=2 \sqrt{ } 3$) and rationalise denominators
To include the laws of indices applied to numbers with integer powers (integer power could be positive, negative or zero; positive and negative fractional powers on the Higher tier only).

Foundation tier

Nov 2018 1F Q20
Nov 2017 1F Q22b

Higher tier

June 2019 1H Q8c
Nov 2018 1H Q1, Q14
June 2018 1H Q9
Nov 2017 1H Q10

Simplify $2^{7} \times 2^{-4}$;
write down the value of 3^{0}

Foundation tier

June 2019 1F Q14
Nov 2018 1F Q11b
June 2018 1F Q19
Higher tier
June 2019 1H Q9
June 2019 1H Q18
Nov 2018 1H Q20
June 2018 1H Q1
June 2018 1H Q13
June 2018 2H Q20
Candidates could be asked to rationalise the denominator of any fraction, which may involve utilising the difference of two squares.

For example, $\frac{\sqrt{2}}{\sqrt{2}+1}$

N9 calculate with and interpret standard form $A \times 10^{n}$, where $1 \leq A<10$ and n is an integer

Foundation tier

June 2019 2F Q27
Nov 2018 2F Q27
June 2018 3F Q 18
Nov 2017 3F Q25
Higher tier
Nov 2018 2H Q7
June 2018 3H Q9
Nov 2017 3F Q7

Fractions, decimals and percentages

What students need to learn:

N10 work interchangeably with terminating decimals and their corresponding fractions (such as 3.5 and $\frac{7}{2}$ or 0.375 or $\frac{3}{8}$); change recurring decimals into their corresponding fractions and vice versa

Students may need to change a fraction into a recurring decimal in the context of a problem.

N11 identify and work with fractions in ratio problems

N12 interpret fractions and percentages as operators

Foundation tier

June 2019 2F Q1
Nov 2018 2F Q5
Higher tier
Nov 2018 1H Q16
Nov 2017 1H Q15
Order $30 \%, 0.35, \frac{\mathbf{1}}{\mathbf{3}}, 32 \%$

Foundation tier

June 2017 3F Q5

Foundation tier
June 2019 1F Q14
June 2019 3F Q6
June 2019 3F Q8
June 2019 3F Q23
Nov 2018 2F Q11
June 2018 1F Q14

Higher tier

June 2017 3H Q4
Interpret $\frac{2}{5}$ of 40 as $\frac{2}{5} \times 40$;
interpret 20% of 40 as 0.2×40

Measures and accuracy

What students need to learn:
N13 use standard units of mass, length, time, money and other measures (including standard compound measures) using decimal quantities where appropriate

Foundation tier

Nov 2018 2F Q17
Nov 2018 3F Q8
June 2018 1F Q8, Q10
June 2018 1F Q13, Q21
Higher tier
June 2018 1H Q3
Standard compound measure:
speed (e.g. m/s, miles per hour),
acceleration (e.g. $\mathrm{m} / \mathrm{s}^{2}$),
density (e.g. g/cm ${ }^{3}$),
pressure (e.g. $\mathrm{N} / \mathrm{m}^{2}$)

N14
estimate answers; check calculations using approximation and estimation, including answers obtained using technology

Foundation tier

June 2019 3F Q11b
Nov 2018 1F Q24
June 2018 1F Q22
Nov 2017 1F Q20

Higher tier

Nov 2018 1H Q5
June 2018 1H Q4

Foundation tier

June 2019 2F Q25
June 2019 3F Q1
Nov 2018 1F Q4
Nov 2018 3F Q20a
Nov 2017 3F Q23b

Higher tier

Nov 2018 2H Q9
Nov 2018 3H Q1a
Nov 2017 3H Q5b
$x=2.3$ correct to 2 s.f. implies that $2.25 \leq x<2.35$

If a piece of wood has been measured as 7 cm to the nearest whole number. how long could the piece of wood actually be?
(Answer: $6.5 \leq L<7.5$)

Jim used his calculator to work out the value of a number x. He wrote down the first two digits of the answer on his calculator.
He wrote down 4.6
Write down the error interval for x.
(Answer: $4.6 \leq x<4.7$)
OR (more suitable for Higher tier):
Jim truncates to 1 digit a number x. The result is 5 .
Write down the error interval for x (Answer: $5 \leq x<6$)

N16 apply and interpret limits of accuracy, including upper and lower bounds

Foundation tier

June 2017 3F Q23a

Higher tier

June 2019 3H Q19
Nov 2018 3H Q18
June 2018 2H Q21
A gap between two cupboards is 0.90 m correct to the nearest centimetre. Is it possible that a cupboard of width 90.4 cm will fit into this gap?

2. Algebra

Notation, vocabulary and manipulation
What students need to learn:
A1 use and interpret algebraic manipulation, including:

- $a b$ in place of $a \times b$
- $3 y$ in place of $y+y+y$ and $3 \times y$
- a^{2} in place of $a \times a, a^{3}$ in place of $a \times a \times a$, $a^{2} b$ in place of $a \times a \times b$
- $\frac{a}{b}$ in place of $a \div b$
- coefficients written as fractions rather than as decimals
- brackets

A2 substitute numerical values into formulae and expressions, including scientific formulae

Foundation tier

June 2019 2F Q8
June 2018 1F Q6a

Foundation tier

June 2019 2F Q11
June 2019 3F Q15
Nov 2018 1F Q9
June 2018 1F Q16a
Higher tier
June 2018 3H Q9

Numerical values could be given in any form (integer, decimal or fraction) or given in standard form.

A3 understand and use the concepts and vocabulary of expressions, equations, formulae, identities, inequalities, terms and factors

Examiners do not anticipate using the identity symbol on Foundation tier papers.

Foundation tier

June 2019 2F Q7
Nov 2017 1F Q6
Nov 2017 3F Q17
Pick a word from the list of equation, formula, identity that would best describe
(i) $3 x+5=12$
(ii) $2 x+4=2(x+2)$
simplify and manipulate algebraic expressions (including those involving surds and algebraic fractions) by:

- collecting like terms
- multiplying a single term over a bracket
- taking out common factors
- expanding products of two or more binomials
- factorising quadratic expressions of the form $x^{2}+b x+c$, including the difference of two squares; factorising quadratic expressions of the form $a x^{2}+b x+c$
- simplifying expressions involving sums, products and powers, including the laws of indices

Foundation tier

June 2019 1F Q16
June 2019 3F Q9
Nov 2018 2F Q7
Nov 2018 2F Q19b, Q26
June 2018 1F Q6b, Q16b
June 2018 2F Q20
June 2018 3F Q20
Nov 2017 2F Q24
Higher tier
June 2019 2H Q13
June 2019 3H Q18a
Nov 2018 1H Q10
Nov 2018 2H Q12
Nov 2018 3H Q9ab
June 2018 1H Q15
June 2018 1H Q17
June 2018 2H Q1
June 2018 3H Q2

This is limited to expanded products of three binomials (i.e. cubics).

A5 understand and use standard mathematical formulae; rearrange formulae to change the subject

Foundation tier
June 2019 3F Q19
Nov 2018 1F Q21
June 2018 3F Q28
Higher tier
June 2019 2H Q15
Nov 2018 1H Q2

The rearrangement of formulae where the intended subject appears twice (and so needs to be taken out as a common factor) is tested on Higher tier only.

A6 know the difference between an equation and an identity; argue mathematically to show algebraic expressions are equivalent, and use algebra to support and construct arguments and proofs

Foundation tier

Nov 2017 2F Q14

Higher tier

June 2019 1H Q13
Nov 2018 3H Q15
June 2018 1H Q12

A7 where appropriate, interpret simple expressions as functions with inputs and outputs; interpret the reverse process as the 'inverse function'; interpret the succession of two functions as a 'composite function' (the use of formal function notation is expected)

Foundation tier

Nov 2018 2F Q10

Higher tier

June 2019 1H Q21
Nov 2018 1H Q19
Nov 2018 3H Q10
June 2018 2H Q11

Candidates could be asked to produce the graph of a function or an inverse function. It is possible that this could then be linked into a geometrical interpretation. Candidates are expected to use notation $f^{-1}(x)$ for work on inverse functions and $\mathrm{gf}(x)$ for work on composite functions.

Graphs

What students need to learn:

A8 work with coordinates in all four quadrants

To include finding the midpoint of a line joining two coordinates.

A10 identify and interpret gradients and intercepts of linear functions graphically and algebraically

A9 plot graphs of equations that correspond to straight-line graphs in the coordinate plane; use the form $y=m x+c$ to identify parallel and perpendicular lines; find the equation of the line through two given points or through one point with a given gradient

Foundation tier

Nov 2018 1F Q8
Nov 2018 3F Q22
June 2018 1F Q24
Nov 2017 1F Q7

Higher tier

Nov 2018 3H Q3
June 2018 1H Q6

Foundation tier

June 2019 2F Q21
June 2018 1F Q25
June 2018 2F Q22

Higher tier

June 2019 2H Q2
June 2019 2H Q16
Nov 2018 2H Q18
June 2018 1H Q19
Nov 2017 1H Q19

Foundation tier

Nov 2018 1F Q12
Higher tier
Nov 2018 2H Q18

A11 identify and interpret roots, intercepts, turning points of quadratic functions graphically; deduce roots algebraically and turning points by completing the square

Foundation tier

June 2019 1F Q29

Higher tier

June 2019 1H Q19

The coordinates of the max/min can be determined either by completing the square or by considerations of symmetry.
No use of calculus is expected - however, if candidates use an AS/A level skill correctly then they will be awarded marks; partial marks would be awarded for a partially correct answer. The only exception to this could be if a particular method is specified in the question in which case that method should be used.
Candidates at Higher tier could be asked to complete the square for any quadratic expression of the form $a x^{2}+b x+c$. The difficulty of the expression will affect the demand at which the question is set.

A12 recognise, sketch and interpret graphs of linear functions, quadratic functions, simple cubic functions, the reciprocal function $y=\frac{1}{x} \underline{\text { with }}$ $\underline{x} \neq 0$, exponential functions $\boldsymbol{y}=\overline{\boldsymbol{k}^{x}}$ for positive values of k, and the trigonometric functions (with arguments in degrees) $y=\sin x, y=\cos x$ and $y=\tan \boldsymbol{x}$ for angles of any size

Foundation tier

Nov 2018 3F Q22
June 2018 3F Q13

Higher tier

June 2019 3H Q17
Nov 2018 2H Q14
Nov 2018 3H Q3, Q11

Students are expected to be able to sketch quadratic functions showing any intercepts with axes and possibly the maximum/minimum as well. For recognition and/or sketching other functions then the general shape of the graph should be known.

A13 sketch translations and reflections of a given function

Stretches are not on the new specification; transformations are limited to reflections and translations.

Higher tier

June 2019 3H Q15
Nov 2018 1H Q18
June 2018 1H Q18
Given the graph of $y=\mathrm{f}(x)$, sketch the graph of $y=\mathrm{f}(x+2)$

A14 plot and interpret graphs (including reciprocal graphs and exponential graphs) and graphs of non-standard functions in real contexts to find approximate solutions to problems such as simple kinematic problems involving distance, speed and acceleration

Foundation tier

SP1 1F Q24
SP1 3F Q7a, b
SP2 2F Q10
SP2 3F Q11
Higher tier
Nov 2017 2H Q10

At Higher tier, to include $\boldsymbol{y}=\frac{\boldsymbol{k}}{\boldsymbol{x}}$ and $\boldsymbol{y}=\boldsymbol{a} \boldsymbol{k}^{\boldsymbol{x}}$.
Candidates are expected to be able to answer simple kinematics problems from graphs involving speed, distance and time.
The suvat formulae were included on our formula sheet which has now been withdrawn. Knowledge of the suvat formulae is not part of our specification and does not form part of our assessment.
There may be questions that students could solve by using the suvat formulae but no questions will be set where these formulae have to be used.
Students could be presented with one of the suvat equations and asked, for example, to change the subject of the formula or substitute in values to find the value of one of the variables but no application of these formulae is expected.

A15 calculate or estimate gradients of graphs and areas under graphs (including quadratic and other non-linear graphs), and interpret results in cases such as distance-time graphs, velocitytime graphs and graphs in financial contexts (this does not include calculus)

Higher tier
June 2019 2H Q14
June 2018 2H Q14
June 2018 3H Q15
Nov 2017 2H Q10
Nov 2017 3H Q18

When estimating area under a curve, a maximum of four equal intervals is expected.
At Higher tier, candidates are expected to be able to find gradients of graphs and areas under graphs and interpret these results in distance-time and velocity-time graphs.

A16 recognise and use the equation of a circle with centre at the origin; find the equation of a tangent to a circle at a given point

Higher tier

Nov 2018 2H Q15
June 2018 2H Q16
Nov 2017 3H Q19

Solving equations and inequalities

What students need to learn:

A17 solve linear equations in one unknown algebraically (including those with the unknown on both sides of the equation); find approximate solutions using a graph

Foundation tier

June 2019 1F Q10
Nov 2018 2F Q19a
Nov 2018 3F Q17b
June 2018 1F Q16c
June 2018 3F Q25
Nov 2017 2F Q16
Higher tier
June 2018 3H Q7
Nov 2017 2H Q1

Foundation tier

Nov 2018 3F Q22c
Higher tier
June 2019 1H Q17
Nov 2018 3H Q3c
Nov 2018 3H Q9c
Nov 2017 1H Q23

> The solution of quadratic equations on the Foundation tier is limited to solution by factorising only and to the type $x^{2}+b x+c=0$.
> Candidates at Higher tier could be asked to complete the square for any quadratic expression of the form $a x^{2}+b x+c$. The difficulty of the expression will affect the demand at which the question is set.

A19 solve two simultaneous equations in two variables (linear/linear or linear/quadratic) algebraically; find approximate solutions using a graph

Foundation tier

June 2019 3F Q30
Nov 2018 1F Q25
Nov 2017 3F Q27
Higher tier
June 2019 1H Q10
June 2019 3H Q20
Nov 2018 1H Q6
Nov 2018 3H Q19
June 2018 2H Q16
To include, at Higher tier, solve $x^{2}+y^{2}=10$ and $x+y=4$

A20 find approximate solutions to equations numerically using iteration

Higher tier

June 2018 3H Q18
Nov 2017 3H Q15
Students are given a rearranged equation to use in their iteration along with a starting value, x_{1}, and asked to carry out, say, three iterations, feeding their solution each time into $x_{n+1}=f\left(x_{n}\right)$ to get an improved solution and so generating x_{2}, x_{3}, etc. They may first be given an equation and asked to show that it can be rearranged into a given form. Students are expected to realise that the values they are generating are converging to a root of the equation.
Candidates are given the iterative formula within the question but might also be asked to show the rearrangement of a given equation into a particular form.
Students will be required to know the rule that 'where there is a sign change, there is a solution'.

A21 translate simple situations or procedures into algebraic expressions or formulae; derive an equation (or two simultaneous equations), solve the equation(s) and interpret the solution

Foundation tier

June 2019 1F Q28
Nov 2018 3F Q17a
Nov 2017 1F Q24
Nov 2017 1F Q28
Nov 2017 3F Q24
Higher tier
June 2019 1H Q7
Nov 2018 2H Q18
Nov 2017 1H Q2, Q6
Nov 2017 1H Q11, Q23
Nov 2017 3H Q6

A22 solve linear inequalities in one or two variable(s), and quadratic inequalities in one variable; represent the solution set on a number line, using set notation and on a graph

Foundation tier

June 2019 2F Q20
Nov 2018 3F Q19
Higher tier
June 2019 2H Q1
June 2019 3H Q18b
Nov 2018 2H Q19
June 2018 1H Q20
Nov 2017 2H Q14
The solution of $x^{2}-1<0$ is
$-1<x<1$ or $\{x:-1<x<1\}$
Represent the solution set to a given number of linear inequalities in two variables as a region on a graph

Sequences

What students need to learn:
A23 generate terms of a sequence from either a term-to-term or a position-to-term rule

Foundation tier

June 2019 3F Q13
June 2018 3F Q4
Nov 2017 1F Q5

Higher tier

June 2018 3H Q16

A24 recognise and use sequences of triangular, square and cube numbers, simple arithmetic progressions, Fibonacci type sequences, quadratic sequences, and simple geometric progressions (r^{n} where n is an integer, and r is a rational number >0 or a surd) and other sequences

Foundation tier

June 2019 2F Q28
Nov 2018 2F Q9

Higher tier

June 2018 3H Q16
Nov 2017 2H Q23
Let $a=2$ and $r=\sqrt{2}$ so the sequence reads:
$2 \sqrt{2}, 4,4 \sqrt{2}, 8,8 \sqrt{2}, \ldots$
$1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}, \ldots$

A25 deduce expressions to calculate the nth term of linear and quadratic sequences

Foundation tier

Nov 2018 3F Q26
Nov 2017 3F Q18
Higher tier
June 2019 3H Q16
June 2018 3H Q16
At the Higher tier, students might have to find complex nth terms, such as $n^{2}+3 n-5$, when given the sequence only.

Questions using sequences such as $2 n^{2}, n^{2}-3, n^{2}+5 n$, etc, could be set.

3. Ratio, proportion and rates of change

What students need to learn:

R1 change freely between related standard units (e.g. time, length, area, volume/capacity, mass) and compound units (e.g. speed, rates of pay, prices, density, pressure) in numerical and algebraic contexts

Any necessary conversions from metric units to imperial units will be given within the question.

R2 use scale factors, scale diagrams and maps

Foundation tier
June 2019 1F Q13
June 2019 2F Q4
June 2019 3F Q3
Nov 2018 2F Q3
Nov 2018 3F Q7

Higher tier

Nov 2018 3H Q18
A piece of wood has a mass of $x \mathrm{~kg}$ and a volume of $0.002 \mathrm{~m}^{3}$. Show that the density of the wood is $0.5 \mathrm{xg} / \mathrm{cm}^{3}$.

Foundation tier
June 2019 2F Q19
Nov 2018 2F Q8
June 2018 3F Q12
Nov 2017 2F Q9

Higher tier

June 2017 2H Q3

R3 express one quantity as a fraction of another, where the fraction is less than 1 or greater than 1

R4 use ratio notation, including reduction to simplest form

Foundation tier

June 2019 3F Q10
June 2018 3F Q11
Higher tier
June 2019 1H Q12

Foundation tier
June 2019 2F Q14
Nov 2018 3F Q16
June 2018 1F Q17

Higher tier

June 2019 2H Q17
June 2018 2H Q4

R5 divide a given quantity into two parts in a given part:part or part:whole ratio; express the division of a quantity into two parts as a ratio; apply ratio to real contexts and problems (such as those involving conversion, comparison, scaling, mixing, concentrations)

Foundation tier

June 2019 1F Q27
June 2019 2F Q26
June 2019 3F Q21
June 2019 3F Q22
June 2019 3F Q23
Nov 2018 3F Q25
June 2018 1F Q14, Q20
Nov 2017 1F Q15, Q19

Higher tier

June 2019 1H Q6
June 2019 2H Q7
Nov 2018 3H Q6
June 2018 1H Q2
June 2018 1H Q8

To include division of a quantity into three (or more) parts.

R6 express a multiplicative relationship between two quantities as a ratio or a fraction

Foundation

June 2019 1F Q23
Nov 2018 1F Q13
June 2018 3F Q7

Higher

June 2019 1H Q2
There are twice as many blue beads as red beads in a jar. Write down the ratio of the number of blue beads to the number of red beads in the jar.

R7 understand and use proportion as equality of ratios
Foundation tier
Nov 2017 1F Q11
Higher tier
June 2019 2H Q17

R10 solve problems involving direct and inverse proportion, including graphical and algebraic representations

R8
relate ratios to fractions and to linear functions

R9 define percentage as 'number of parts per hundred'; interpret percentages and percentage changes as a fraction or a decimal, and interpret these multiplicatively; express one quantity as a percentage of another; compare two quantities using percentages; work with percentages greater using percentages; work with percentages greater
than 100%; solve problems involving percentage change, including percentage increase/decrease and original value problems, and simple interest including in financial mathematics

Foundation tier

June 2019 3F Q12
Nov 2017 2F Q6
Higher tier
SP2 2H Q21
SP2 3H Q10
Purple paint is made using red paint and blue paint in the ratio 1:2.
Write an equation for y in terms of x to show the relationship between the amount of red paint (y) and the amount of blue paint (x).

Foundation tier

June 2019 3F Q5
Nov 2018 1F Q18
Nov 2018 2F Q15
Nov 2018 3F Q18, Q21
June 2018 1F Q21
June 2018 2F Q23
Nov 2017 1F Q15, Q18, Q30

Higher tier

June 2019 3H Q10
Nov 2018 1H Q11
Nov 2018 2H Q10
Nov 2018 3H Q2
June 2018 1H Q3
June 2018 2H Q4
June 2018 3H Q11

Foundation tier
June 2019 2F Q17
June 2019 2F Q18
Nov 2018 1F Q23
Nov 2018 3F Q13

Higher tier

June 2019 3H Q17
Nov 2018 1H Q4

R11 use compound units such as speed, rates of pay, unit pricing, density and pressure

Foundation tier

June 2019 1F Q9
Nov 2018 1F Q24
June 2018 1F Q22
June 2018 2F Q9
June 2018 2F Q19, Q25
Higher tier
June 2019 3H Q11
June 2019 3H Q13
Nov 2018 1H Q5
Nov 2018 2H Q20
Nov 2018 3H Q18
June 2018 1H Q4
June 2018 2H Q6

R12 compare lengths, areas and volumes using ratio notation; make links to similarity (including trigonometric ratios) and scale factors
understand that X is inversely proportional to Y is equivalent to X is proportional to $\frac{1}{Y}$; construct and interpret equations that describe direct and inverse proportion

Foundation tier
June 2018 3F Q27

Higher tier

June 2019 2H Q9
June 2018 3H Q13

Foundation tier
SP2 3F Q27a

Higher tier

June 2019 1H Q20
Nov 2018 3H Q14
June 2018 1H Q14

At Foundation tier it is appropriate to test y is directly proportional to x or $\frac{1}{x}$ only.
Note that constructing equations that describe inverse and direct proportion is in bold in the specification and so is Higher tier only.

R14 interpret the gradient of a straight line graph as a rate of change; recognise and interpret graphs that illustrate direct and inverse proportion

Foundation tier
SP2 2F Q14

Higher tier

June 2018 2H Q12
June 2018 3H Q12

R15 interpret the gradient at a point on a curve as the instantaneous rate of change; apply the concepts of average and instantaneous rate of change (gradients of chords and tangents) in numerical, algebraic and graphical contexts (this does not include calculus)

Unless the method of solution is specified in the question then any correct method, including calculus, is acceptable.
However, be aware that questions do not always state the equation of the curve under consideration so candidates may have to use methods other than calculus.

R16 set up, solve and interpret the answers in growth
and decay problems, including compound interest and work with general iterative processes

General iterative processes: for example, population growth or decay.

Higher tier

June 2018 2H Q14

Foundation tier

June 2019 3F Q25
Nov 2018 2F Q23

Higher tier

June 2019 1H Q12
June 2019 3H Q2
Nov 2018 2H Q4
Nov 2018 3H Q13
June 2018 2H Q9
Nov 2017 2H Q18
For example, $P_{n+1}=k P_{n}$

Given $N_{t+1}=k N_{t}$ and $N_{0}=120$,
find the value of N_{3}.

4. Geometry and measures

Properties and constructions

What students need to learn:

G1 use conventional terms and notations: points, lines, vertices, edges, planes, parallel lines, perpendicular lines, right angles, polygons, regular polygons and polygons with reflection and/or rotation symmetries; use the standard conventions for labelling and referring to the sides and angles of triangles; draw diagrams from written description.

Symmetry does not exist as a topic within GCSE (9-1) so there will no questions asking students about the number of lines of symmetry or the order of rotation symmetry. However, symmetry could be used to describe a shape.
Students will have to carry out the transformations of reflection and rotation (see G7).

G2 use the standard ruler and compass constructions (perpendicular bisector of a line segment, constructing a perpendicular to a given line from/at a given point, bisecting a given angle); use these to construct given figures and solve loci problems; know that the perpendicular distance from a point to a line is the shortest distance to the line.

To include the locus of points equidistant from a given point; the locus of points that are a given distance from a line.

Foundation tier
June 2019 3F Q28
June 2018 2F Q15b
Nov 2017 1F Q25

Higher tier

June 2019 3H Q5
Nov 2017 1H Q3

Foundation tier

June 2019 2F Q19

Higher tier

SAMs 1H Q4

G3 apply the properties of angles at a point, angles at a point on a straight line, vertically opposite angles; understand and use alternate and corresponding angles on parallel lines; derive and use the sum of angles in a triangle (e.g. to deduce and use the angle sum in any polygon, and to derive properties of regular polygons)

Foundation tier

June 2019 1F Q12
Nov 2018 1F Q28
Nov 2018 2F Q22
June 2018 3F Q26
Nov 2017 1F Q25
Higher tier
Nov 2018 2H Q3
June 2018 3H Q8
Nov 2017 1H Q3

To include the sum of interior angles of polygons and the exterior angles of polygons.

G4 derive and apply the properties and definitions of: special types of quadrilaterals, including square, rectangle, parallelogram, trapezium, kite and rhombus; and triangles and other plane figures using appropriate language

G5 use the basic congruence criteria for triangles (SSS, SAS, ASA, RHS)

Foundation tier

June 2019 3F Q20
Nov 2018 1F Q14
June 2018 2F Q15a
Higher tier
SP1 3H Q5a

Foundation tier

Nov 2018 3F Q9b

Higher tier

June 2018 3H Q 21

> The requirement to prove two triangles are congruent is Higher tier only.

G6 apply angle facts, triangle congruence, similarity and properties of quadrilaterals to conjecture and derive results about angles and sides, including Pythagoras' theorem and the fact that the base angles of an isosceles triangle are equal, and use known results to obtain simple proofs
To include proving that two triangles are similar at Higher tier only.

G7 identify, describe and construct congruent and similar shapes, including on coordinate axes, by considering rotation, reflection, translation and enlargement (including fractional and negative scale factors)

Foundation tier

Nov 2018 1F Q14
Higher tier
June 2018 1H Q11

Foundation tier

Nov 2018 1F Q19
Nov 2018 2F Q16
Nov 2018 3F Q10
June 2018 2F Q18
Nov 2017 2F Q20
Higher tier
Nov 2018 1H Q13
June 2018 2H Q7
Nov 2017 2H Q5

G8 describe the changes and invariance achieved by combinations of rotations, reflections and translations

Higher tier

Nov 2018 2H Q8
Nov 2018 3H Q20
June 2018 1H Q7
Describe the single transformation that would map A onto C given that shape A is mapped onto shape B by a reflection in the x-axis.
Shape B is mapped onto shape C by a reflection in the line $y=-2$
Given the above mappings, would shape C be in the same orientation as shape A ?

If the triangle with vertices at coordinates $(0,0),(0,2)$ and $(2,0)$ is reflected in the y-axis, which vertices will stay in the same position?

G9 identify and apply circle definitions and properties, including: centre, radius, chord, diameter, circumference, tangent, arc, sector and segment

Foundation tier

June 2018 1F Q9

Higher tier

Nov 2018 2H Q13

Higher tier

June 2019 2H Q18
Nov 2018 1H Q12
Nov 2018 2H Q21
June 2018 1H Q11
Nov 2017 3H Q20

Foundation tier
June 2018 1F Q24

Higher tier

June 2018 1H Q6
2D coordinates only.

G12 identify properties of the faces, surfaces, edges and vertices of: cubes, cuboids, prisms, cylinders, pyramids, cones and spheres

Foundation tier

Nov 2018 3F Q5
SP2 1F Q 4

G13 construct and interpret plans and elevations of 3D shapes

Foundation tier

June 2019 1F Q25
June 2018 1F Q23a
Higher tier
June 2019 1H Q4
June 2018 1H Q5a

Mensuration and calculation

What students need to learn:

G14 use standard units of measure and related concepts (length, area, volume/capacity, mass, time, money, etc.)

G15 measure line segments and angles in geometric figures, including interpreting maps and scale drawings and use of bearings

G16 know and apply formulae to calculate: area of triangles, parallelograms, trapezia; volume of cuboids and other right prisms (including cylinders)

Foundation tier

SP2 1F Q23
SP2 2F Q6a
Higher tier
SP2 1H Q5

Foundation tier
Nov 2017 2F Q9
Nov 2017 3F Q8
Higher tier
SP1 2H Q9

Foundation tier
June 2019 2F Q23
June 2019 3F Q29
Nov 2018 2F Q13
Nov 2018 2F Q24
June 2018 2F Q25

Higher tier

June 2019 2H Q4
June 2019 3H Q6
Nov 2018 2H Q5, Q13
June 2018 1H Q 8

G17 know the formulae:
circumference of a circle $=2 \pi r=\pi d$, area of a circle $=\pi r^{2}$;
calculate: perimeters of 2D shapes, including circles; areas of circles and composite shapes; surface area and volume of spheres, pyramids, cones and composite solids

Foundation tier

June 2019 3F Q16
Nov 2018 2F Q24
June 2018 1F Q23b
June 2018 2F Q19
Nov 2017 1F Q13
Higher tier
June 2019 1H Q15
Nov 2018 2H Q5, Q13
Nov 2018 2H Q20
Nov 2018 3H Q8, Q16
June 2018 1H Q5b
June 2018 2H Q19

To include the surface area of cuboids and cylinders.

G18 calculate arc lengths, angles and areas of sectors of circles

Foundation tier
Nov 2018 1F Q26
June 2018 2F Q19

Higher tier

June 2019 2H Q12
Nov 2018 1H Q7
Nov 2018 3H Q16

G19 apply the concepts of congruence and similarity, including the relationships between lengths, areas and volumes in similar figures

Foundation tier

June 2018 3F Q27
Higher tier
Nov 2018 1H Q15
June 2018 3H Q13
Nov 2017 1H Q22
Nov 2017 3H Q14

G20 know the formulae for: Pythagoras' theorem
$a^{2}+b^{2}=c^{2}$, and the trigonometric ratios,
$\underline{\sin \theta}=\frac{\text { opposite }}{\text { hypotenuse }}, \underline{\cos \theta}=\frac{\text { adjacent }}{\text { hypotenuse }}$ and
$\underline{\tan \theta}=\frac{\text { opposite }}{\text { adjacent }} ;$ apply them to find angles and
lengths in right-angled triangles and, where possible, general triangles in two and three dimensional figures

Foundation tier

June 2019 2F Q24
Nov 2018 3F Q25
June 2018 2F Q25
June 2018 3F Q23
Nov 2017 2F Q22
Higher tier
June 2019 2H Q5
June 2019 2H Q19
Nov 2018 1H Q8b
Nov 2018 3H Q6, Q12
June 2018 3H Q5
June 2018 2H Q18
Nov 2017 2H Q7

To include finding the angle between a line and a plane at Higher tier only.

G21 know the exact values of $\sin \theta$ and $\cos \theta$ for $\theta=0^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}$ and 90°; know the exact value of $\tan \theta$ for $\theta=0^{\circ}, 30^{\circ}, 45^{\circ}$ and 60°

G22 know and apply the sine rule
$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$, and
cosine rule $a^{2}=b^{2}+c^{2}-2 b c \cos A$, to find unknown lengths and angles

G23 know and apply Area $=\frac{1}{2} a b \sin C$ to calculate the area, sides or angles of any triangle

Higher tier

June 2019 1H Q14
Nov 2018 1H Q8a
Nov 2017 1H Q20

Higher tier

June 2019 3H Q23
Nov 2018 3H Q16
June 2018 3H Q17
Nov 2017 3H Q17

Higher tier

June 2019 3H Q14
Nov 2017 2H Q20
Nov 2017 3H Q17

Vectors

What students need to learn:
G24 describe translations as 2D vectors

Foundation tier

June 2019 1F Q26

Higher tier

June 2019 1H Q5
apply addition and subtraction of vectors, multiplication of vectors by a scalar, and diagrammatic and column representations of vectors; use vectors to construct geometric arguments and proofs

Foundation tier

June 2019 2F q29
June 2018 1F Q26
Higher tier
June 2019 2H Q20
Nov 2018 1H Q21
June 2018 2H Q10
Nov 2017 3H Q21

5. Probability

What students need to learn:
P1 record, describe and analyse the frequency of outcomes of probability experiments using tables and frequency trees

Foundation tier

Nov 2018 1F Q17
Nov 2017 1F Q12
Nov 2017 1F Q17
Nov 2017 2F Q12
Higher tier
June 2018 2H Q8

P2 apply ideas of randomness, fairness and equally likely events to calculate expected outcomes of multiple future experiments

Foundation tier

June 2019 2F Q16c
Nov 2018 3F Q14c

Higher tier

June 2017 2H Q1

P3 relate relative expected frequencies to theoretical probability, using appropriate language and the $0-1$ probability scale

Foundation tier

June 2019 2F Q16a
Nov 2018 1F Q17
Nov 2018 2F Q12
Nov 2018 3F Q6
June 2018 1F Q7
Higher tier
June 2018 1H Q16
June 2018 2H Q8

P4 apply the property that the probabilities of an exhaustive set of outcomes sum to one; apply the property that the probabilities of an exhaustive set of mutually exclusive events sum to one

P5 understand that empirical unbiased samples tend towards theoretical probability distributions, with increasing sample size

Foundation tier

June 2019 1F Q22
Nov 2018 3F Q14a
June 2018 3F Q24

Higher tier

June 2019 1F Q1
June 2018 3H Q6

Foundation tier
June 2019 1F Q17
Nov 2017 3F Q26

Higher tier

Nov 2017 3H Q8

P6 enumerate sets and combinations of sets systematically, using tables, grids, Venn diagrams and tree diagrams

Foundation tier

June 2019 3F Q24
Nov 2018 2F Q14c
Nov 2018 2F Q20
June 2018 1F Q18
June 2018 3F Q22
Higher tier
June 2019 3H Q1
Nov 2018 2H Q1
June 2018 3H Q4

To include set notation: $\xi, \cap, \cup, \in, \mathrm{A}^{\prime}$
Students are not expected to use the (] bracket notation as part of set notation.

P7 construct theoretical possibility spaces for single and combined experiments with equally likely outcomes and use these to calculate theoretical probabilities

P8 calculate the probability of independent and dependent combined events, including using tree diagrams and other representations, and know the underlying assumptions

Foundation tier

Nov 2018 2F Q14c

Higher tier

Nov 2017 2H Q21

Foundation tier

Nov 2018 1F Q27

Higher tier

June 2019 1H Q22
June 2019 2H Q10
Nov 2018 1H Q22
Nov 2018 2H Q16

Higher tier

June 2018 2H Q15
June 2018 3H Q20

6. Statistics

What students need to learn:

S1 infer properties of populations or distributions from a sample, while knowing the limitations of sampling

Foundation tier

June 2019 2F Q22

Higher tier

June 2019 2H Q3|

Questions concerning questionnaires will no longer be set.
To include the calculation of summary statistics from a sample, knowing that these are estimates for the population.
Stratified sampling is not part of the GCSE 9-1 specification.
At Higher tier, to include the Peterson capturerecapture method.

S2 interpret and construct tables, charts and diagrams, including frequency tables, bar charts, pie charts and pictograms for categorical data, vertical line charts for ungrouped discrete numerical data, tables and line graphs for time series data and know their appropriate use

Foundation tier

June 2019 1F Q7
June 2019 2F Q5
June 2019 3F Q26b
June 2019 3F Q27
Nov 2018 1F Q7
Nov 2018 3F Q12, Q23
June 2018 1F Q12
June 2018 3F Q14
Nov 2017 1F Q10b
Nov 2017 3F Q19

Higher tier

June 2019 3H Q3b
June 2019 3H Q4
Nov 2018 3H Q4
Nov 2018 3F Q7
Nov 2017 3H Q1

[^0]apply statistics to describe a population

Higher tier

June 2019 2H Q11
June 2019 3H Q21
Nov 2018 1H Q9
Nov 2018 3H Q17
June 2018 2H Q17

Foundation tier

June 2019 3F Q18
Nov 2018 3F Q23b
Nov 2017 1F Q27

Higher tier

June 2019 1H Q11
Nov 2018 1H Q9
Nov 2018 3F Q4b
June 2018 1H Q10
Nov 2017 1H Q5
Nov 2017 1H Q12

Foundation tier
June 2018 2F Q16
Nov 2017 1F Q10a
Nov 2017 1F Q27

Higher tier

Nov 2017 1H Q5
Nov 2017 1H Q12
use and interpret scatter graphs of bivariate data; recognise correlation and know that it does not indicate causation; draw estimated lines of best fit; make predictions; interpolate and extrapolate apparent trends while knowing the dangers of so doing

Foundation tier
Nov 2018 2F Q21
June 2018 3F Q19
Higher tier
Nov 2018 2H Q2
June 2018 3H Q1

Geometrical statements in GCSE Maths papers

These notes refer to the 2017 GCSE Edexcel Mathematics specifications.
In questions that relate to Geometry, candidates can be asked to give a reason for a calculation or proof. In many cases this is related to angles. This could also be part of a requirement for candidates to communicate in mathematical terms.
In Geometry, the need to communicate in mathematics terms is embodied in mathematical statements relating to geometrical properties. It is important that candidates show with clarity their understanding of the use of any geometrical property that they might use in solving problems.

The list below gives some examples of responses to questions that would be considered clear communication in these respects. These are not unique: there are other similar statements that could be used to earn the marks, but these statements contain those key words and phrases that are judged to be minimal in terms of a request to give reasons for mathematical deduction in geometry.

Lines

Vertically opposite angles are equal.
Angles on a straight line add up to 180°.
Angles at a point add up to 360°.

Triangles and quadrilaterals

Angles in a triangle add up to 180°.
Base angles of an isosceles triangle are equal.
Angles in an equilateral triangle are equal.
Angles in a quadrilateral add up to 360°.
An exterior angle (of a triangle) is equal to the sum of the internal opposite angles.

Polygons

Exterior angles of a polygon add up to 360°.
The interior and exterior angle of any polygon add up to 180°.

Parallel lines

Alternate angles are equal.
Corresponding angles are equal.
Allied (or co-interior) angles add up to 180°.

Circle theorems

The tangent to a circle is perpendicular (90°) to the radius.
Tangents from an external point are equal in length.
Angles in a semicircle are 90°.
Angles in the same segment are equal.
The angle at the centre of a circle is twice the angle at the circumference.
Opposite angles of a cyclic quadrilateral add to 180°.
Alternate segment theorem.

GCSE - command words

Note that this table is not exhaustive but lists the most commonly used command words.

Command word	What you need to know
Calculate	A calculator and some working will be needed.
Change	Usually convert from one unit to another; either using known metric unit conversions or the use of a conversion graph.
Complete	Fill in missing values.
	For example, on a probability tree diagram or a table of values.
Describe	Write a sentence that gives the features of the situation.
	For example, describing a transformation or trend in a graph.
Draw	Produce an accurate drawing (unless a sketch is being drawn).
	For example, draw a graph, draw an accurate elevation of a pyramid.
Draw a sketch of ... Sketch	Produce a drawing that does not have to be drawn to scale or a graph that is drawn without working out each coordinate.
	For example, sketch a graph, sketch a cylinder.
Expand	Remove brackets.
Expand and simplify	Remove brackets and then collect like terms.
Explain	Write a sentence or a mathematical statement to show how you got to your answer or reached your conclusion.
Express	Re-write in another form; some working may be needed.
Factorise	Insert brackets by taking out common factors.
Factorise fully	Insert brackets by taking out all the common factors.
Find	Some working will be needed to get to the final answer.
Give a reason	Must be clear and accurate reasons. If the reasons are geometrical then make sure you: provide a reason for each stage of working (if required) use correct geometric terminology.
Justify	Show all working and/or give a written explanation.
Prove	More formal than 'show' - all steps must be present. In the case of a geometrical proof, reasons must be given.
Prove algebraically	Use algebra in the proof.
Show	All working needed to get to a given answer or complete a diagram to show given information.
Simplify	Simplify the given expression.
Simplify fully	Simplify the given expression. Answer must be given in its simplest form.
Solve	Find the solution of an equation or inequality.
Solve algebraically	Find the solution of an equation or inequality; algebraic manipulation must be shown.
Write down	No working is needed.
Write	No working needed for 1 mark questions. Working may be needed questions with more than 1 mark.
Work out	Some working will be needed in order to get the answer.

[^0]: To include stem and leaf diagrams and frequency polygons.
 Candidates are expected to be able to draw a time series graph by plotting points from given information and take readings from time series graphs provided.
 Neither moving averages nor average seasonal trends are included. However, questions could be set on general trends.

