Year 7

Mathematics Unit 3 - Student

Name:

Class:

Contents

1 Rounding and Approximation
1.1 Midpoint of Two Numbers
1.2 Rounding to the Nearest Multiple
1.3 Rounding to Decimal Places
1.4 Significant Figures
1.5 Review and Problem Solving
1.6 Estimations

2 Area and Perimeter
2.1 Perimeter on a Grid
2.2 Perimeter
2.3 Review and Problem Solving
2.4 Area on a Grid
2.5 Area of Rectangles
2.6 Area of Rectilinear Shapes
2.7 Area of Parallelograms
2.8 Area of Triangles
2.9 Area of Trapeziums
2.10 Review and Problem Solving
2.11 Area of Compound Shapes without Circles
2.12 Parts of the Circle
2.13 Circumference of Circles
2.14 Area of Circles
2.15 Review and Problem Solving
2.16 Area and Perimeter of Compound Shapes

3 Fractions, Decimals and Percentages
3.1 Decimals to Percentages
3.2 Percentages to Decimals
3.3 Percentages to Fractions
3.4 Fractions to Percentages
3.5 Decimals to Fractions
3.6 Recurring Decimals
3.7 Fractions to Decimals
3.8 Review and Problem Solving

1 Rounding and Approximation

An approximation is anything that is similar, but not exactly equal, to something else. A number can be approximated by rounding.

- Numbers are said to "round up" or "round down" depending on whether they get bigger or smaller.
- By convention, numbers halfway between two values are rounded up.

1.1 Midpoint of Two Numbers

In case of numbers, a midpoint is a number that is exactly in between the two numbers. You can find the midpoint by adding both the numbers and dividing it by two, i.e., the average of the two numbers.

Intelligent Practice

Find the midpoints of the circled numbers on each number line.

Intelligent Practice

Intelligent Practice

Intelligent Practice

Find the midpoints of the circled numbers on each number line.

1.2 Rounding to the Nearest Multiple

It is important to think about how accurately numbers are needed in different contexts. For example, football crowds to the nearest 1000 or country populations to the nearest 1000000 .

Worked Example	Your Turn
Round 63 to the nearest:	Round 65 to the nearest:
10	10
2	2
3	

Intelligent Practice

Round:

1) 73 to the nearest 1
2) 73 to the nearest 10
3) 73 to the nearest 100
4) 73 to the nearest 50
5) 73 to the nearest 25
6) 73 to the nearest 5
7) 73 to the nearest 2
8) 73 to the nearest 4
9) 73 to the nearest 3
10) 73 to the nearest 0.5
11) 73 to the nearest 1.5
12) 73 to the nearest 7.3

Round:

1) 75 to the nearest 1
2) 75 to the nearest 10
3) 75 to the nearest 100
4) 75 to the nearest 50
5) 75 to the nearest 25
6) 75 to the nearest 5
7) 75 to the nearest 2
8) 75 to the nearest 4
9) 75 to the nearest 3
10) 75 to the nearest 0.5
11) 75 to the nearest 1.5
12) 75 to the nearest 7.5

Intelligent Practice

15) A number has been rounded to 20 to the nearest
10. What are the integers values for this number?
16) A number has been rounded to 20 to the nearest 5 .
What are the integers values for this number?
17) A number has been rounded to 20 to the nearest 4 .
What are the integers values for this number?
18) A number has been rounded to 20 to the nearest 6 .
How do you know a mistake has been made?
19) Round 17 to the nearest 6.

20) Round 17 to the nearest 5.
21) Round 17 to the nearest 2.
22) Round 59 to the nearest 7.
23) Round 58 to the nearest 7.
24) Round 60 to the nearest 7.
25) Round 61 to the nearest 7.
26) Round 53 to the nearest 5.
27) Round 53 to the nearest 11.
28) Round -7 to the nearest 3.
29) Round -12 to the nearest 5.
30) Round $\mathbf{- 3 . 9 8 7}$ to the nearest 5.
[^0]
Intelligent Practice

```
What would be a midpoint
    if I were rounding to the
    nearest 10? Nearest 100?
    Nearest 348?
```

At which point did you recognise that you need to use the same number
line for these questions?

1) Round 17 to the nearest 6.
2) Round 17 to the nearest 8 .
3) Round 17 to the nearest 5 .
4) Round 17 to the nearest 2.
5) Round 59 to the nearest 7.
6) Round 58 to the nearest 7 .
7) Round 60 to the nearest 7.
8) Round 61 to the nearest 7 .
9) Round 53 to the nearest 5 .
10) Round 53 to the nearest 11.
11) Round -7 to the nearest 3.
12) Round -12 to the nearest 5.
13) Round -3.987 to the nearest 5.
14) Round -3.987 to the nearest 8 .

At which point did you recognise that you need to use the same number line for these questions?

How does this change as we round 17 to different numbers?

Why do both of these have the same question and answer even though they're rounding to different numbers? Write another pair of questions that do this.

Did this question round up or down to zero? How does this compare to 3.987 to the nearest 8 ? Why does this happen?

Did you recognise that we'd done this before when it was
in amongst other questions?

If we know this for rounding a number to the nearest 6, what would this means for rounding to the nearest 10? The nearest 100? The nearest 348 ?
15) A number has been rounded to $\mathbf{2 0}$ to the nearest
10. What is the range of integer values for the number?
16) A number has been rounded to $\mathbf{2 0}$ to the nearest 5.

What is the range of integer values for the number?
17) A number has been rounded to $\mathbf{2 0}$ to the nearest
4. What is the range of integer values for the number?
18) A number has been rounded to $\mathbf{2 0}$ to the nearest
6.

How do you know a mistake has been made?

Maths Venns

Page 13

1.3 Rounding to Decimal Places

Step 1: Imagine underlining up to the required accuracy, counting from the decimal point.

Step 2: Look at the number after the last underlined. If 5 or more, we increase the last number by 1 (ensure you propagate left any carries).

Step 3: Check that you have actually given the number to the required accuracy (if it is 1 dp , then ensure there is one digit after the decimal point even if it is a zero).

Worked Example	Your Turn
Round 8.7337 to:	Round 8.3773 to:
1 decimal place	
2 decimal place	
	2 decimal places
3 decimal places	3 decimal places

Worked Example	Your Turn
Round 0.0337 to:	Round 0.0377 to:
	1 decimal place
2 decimal places	2 decimal places
3 decimal places	3 decimal places

Worked Example	Your Turn
Round 8.7339 to:	Round 8.3779 to:
1 decimal place	
2 decimal place	
	2 decimal places
3 decimal places	3 decimal places

Intelligent Practice

Number	1 decimal place	2 decimal places	3 decimal places
0.1234			
0.2345			
0.3456			
0.4567			
0.04567			
0.40567			
9.45067			
9.45067			
9.95967			

Purposeful Practice

Rounding Square Roots

Use a calculator to find the square root of the number x each time.
Round your answers to $3 \mathrm{dp}, 2 \mathrm{dp}, 1 \mathrm{dp}$ and to the nearest integer.
Round from the original answer each time and not from your previous rounding.

x	\sqrt{x} (as on calculator)	3 dp	2 dp	1 dp	nearest integer
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					

How many square roots are equal to 1 when rounded to the nearest integer?
How many round to 2 ?
How many round to 3 ?
Is there a pattern? How many do you think would round to 20 ?

Maths Venns

1.4 Significant Figures

Suppose it is your $11^{\text {th }}$ birthday party and 16439 people attend. If you were casually saying to someone how many people came, what figure might you quote?

We might say 16000 people came.

We seem to have taken ' 2 digits' of accuracy. However, unlike 2dp, where we would count 2 digits from the decimal point, we are counting digits from the start of the number. We say we have rounded to 2 significant figures.

This is exactly the same as rounding to decimal places, except:
(a) We start counting from the first non-zero digit (not the decimal point).
(b) We have to 'zero-out' any digits before the decimal point not used (otherwise we would have changed the place value of the digits we kept).

Worked Example

Circle the $2^{\text {nd }}$ significant figure:

7800

7008
7.008
0.0078
0.7008

Your Turn

Circle the $2^{\text {nd }}$ significant figure:

1) 456
2) 406
3) 400
4) 4000
5) 4500
6) 4506
7) 45.06
8) 4.506
9) 0.4506
10) 0.04506
11) 0.004506
12) 0.004006
13) 3.004006
14) 0.304006
15) 8

Number of significant figures $=$
2) 0.8

Number of significant figures $=$
3) 800

Number of significant figures $=$
4) 0.800

Number of significant figures $=$
5) 0.008

Number of significant figures $=$

	Your Turn
1) 456	Number of significant figures $=$
2) 450	Number of significant figures $=$
3) 406	Number of significant figures $=$
4) 400	Number of significant figures $=$
5) 40	Number of significant figures $=$
6) 4	Number of significant figures $=$
7) 0.4	Number of significant figures $=$
8) 0.40	Number of significant figures $=$
9) 0.04	Number of significant figures $=$
10) 0.004	Number of significant figures $=$
11) 0.00456	Number of significant figures $=$
12) 0.456	Number of significant figures $=$
13) 0.406	Number of significant figures $=$
14) 0.450	Number of significant figures $=$
15) 0.4500	Number of significant figures $=$
16) 0.45006	Number of significant figures $=$
17) 0.450067	Number of significant figures $=$
18) 450067	Number of significant figures $=$
19) 45067	Number of significant figures $=$
20) 4506.7	Number of significant figures $=$
21) 450.67	Number of significant figures $=$
22) 45.067	Number of significant figures $=$
23) 45.0067	Number of significant figures $=$
24) 4.50067	Number of significant figures $=$
25) 4.00067	Number of significant figures $=$
26) 0.00067	Number of significant figures $=$
27) 0.0067	Number of significant figures $=$
28) 6.0007	Number of significant figures $=$
29) 0.6007	Number of significant figures $=$
30) 0.0607	Number of significant figures $=$

Worked Example	Your Turn
Round 271828 to:	Round 738906 to:
	1 significant figure
2 significant figures	
	2 significant figures
3 significant figures	3 significant figures

$\begin{aligned} & \bar{\otimes} \\ & \stackrel{y}{0} \\ & \frac{n}{4} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \underset{\sim}{2} \end{aligned}$							
	\bigcirc							
	$\begin{aligned} & 8 \\ & 0 \\ & - \end{aligned}$	$\begin{aligned} & 0 \\ & 8 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	O				8 8 -1	$\begin{aligned} & 8 \\ & 8 \\ & 0 \\ & 0 \\ & -\quad \end{aligned}$
	N	\checkmark	m	m	m	N		
	$\begin{aligned} & \text { 응 } \\ & \infty \\ & \text { Y } \end{aligned}$	$\begin{aligned} & \text { O} \\ & \infty \\ & \text { N } \\ & \text { Y } \end{aligned}$	$\begin{aligned} & \text { 응 } \\ & \infty \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { 애 } \\ & \text { o } \\ & \text { of } \end{aligned}$	$\begin{aligned} & \text { 아 } \\ & \text { o } \\ & \text { of } \end{aligned}$	$\begin{aligned} & \text { 융 } \\ & \text { o } \\ & \text { i} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\infty} \\ & \underset{\sim}{\circ} \\ & \cdots \end{aligned}$	$\begin{aligned} & \underset{\sim}{*} \\ & \underset{\infty}{\circ} \\ & \underset{\sim}{\circ} \end{aligned}$

Fill in the Gaps

$\begin{aligned} & \overline{0} \\ & \sum_{n}^{2} \\ & \frac{n}{4} \end{aligned}$			8 0 m	$\begin{aligned} & 8 \\ & 8 \\ & + \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{\circ}{0} \\ & \underset{N}{\infty} \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{0} \\ & \infty \\ & \underset{N}{2} \end{aligned}$	$\stackrel{\bigcirc}{\circ}$
$\begin{aligned} & \bar{o} \\ & \text { an } \\ & \text { an } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$					\bigcirc	¢	
	$\underset{\sim}{\underset{\sigma}{4}}$	$\begin{aligned} & \underset{\sim}{*} \\ & \underset{N}{n} \end{aligned}$	$\begin{aligned} & \text { or } \\ & \underset{\sim}{6} \end{aligned}$	a बे m			

For which questions could you have more than one answer? For each of these explain the types of answers allowed and not allowed.

Worked Example	Your Turn
Round 2.71828 to:	Round 7.38906 to:
1 significant figure	
2 significant figures figure	
	2 significant figures
3 significant figures	3 significant figures

Worked Example	Your Turn
Round 0.00271828 to:	Round 0.00738906 to:
	1 significant figure
2 significant figures figure	2 significant figures
3 significant figures	3 significant figures

Worked Example	Your Turn
Round 0.00279999 to:	Round 0.00739999 to:
	1 significant figure
2 significant figures	
	2 significant figures
3 significant figures	3 significant figures

Fluency Practice

Number	Rounded to 1 significant figure	Rounded to 2 significant figures	Rounded to 3 significant figures
1254			
59287			
699721			
0.3451			
0.005231			
0.050554			
0.050999			

Extension

A number is rounded to 1 sf to 1000 . How many possible integers could the original number have been?

Maths Venns

1.5 Review and Problem Solving

Fluency Practice

(1) Complete this table, rounding each number to appropriate degree of accuracy.

Number	Nearest 10	Nearest 100	Nearest 1000
56	60	100	0
75			
123			
149			
152			
501			
753			
1204			
3428			
5007			
6043			
8989			

Fluency Practice

(2) Complete this table, rounding each number to appropriate degree of accuracy.

Number	1 decimal place	2 decimal places	3 decimal places
5.6	6.0	5.60	5.600
7.5			
1.23			
1.49			
0.152			
1.5015			
1.2753			
0.1204			
2.3428			
12.5007			
1.6043			
9.9899			

Fluency Practice

1.6 Estimations

Calculating an approximate answer to a calculation by rounding the numbers used in the calculation prior to carrying out the calculation.

- Typically, number used in the calculation will be rounded to 1 significant figure.
- The result of the calculation will be close to the actual real answer.
- Do not forget to use the correct notation: \approx 'approximately equal to'

Estimate:

(a) $409+571$
(b) $\frac{409+571}{0.53}$
(C) $\frac{409+571}{0.53-0.11}$

Estimate:
(a) $593+401$
(b) $\frac{593+401}{0.47}$
(c) $\frac{593+401}{0.47-0.13}$

Intelligent Practice

1) $211+317 \approx$

$$
\text { 10) } \frac{317+211}{0.47} \approx
$$

2) $317+211 \approx$
3) $\frac{317+211}{0.47-0.29} \approx$
4) $317+21.1 \approx$
5) $317+2.11 \approx$
6) $317+0.211 \approx$
7) $\frac{3.17+2.11}{0.47-0.29} \approx$
8) $\frac{0.47-0.29}{3.17+2.11} \approx$
9) $317 \times 0.211 \approx$
10) $\frac{0.29-0.47}{3.17+2.11} \approx$
11) $317 \times 0.47 \approx$
12) $317 \div 0.47 \approx$
13) $\frac{317}{0.47} \approx$

Worked Example

Estimate:
a) $354 \div 6.9$
b) $\sqrt{17} \times 14$

Estimate:
a) $357 \div 8.9$
b) $\frac{\sqrt{150}}{3}$

1) $681 \times 42 \approx$
2) $78 \times 722 \approx$
3) $232 \times 494 \approx$
4) $722 \div 9.3 \approx$
5) $6344 \div 7.21 \approx$
6) $1421 \div 72.3 \approx$
7) $\sqrt{17} \times \sqrt{24} \approx$
8) $\sqrt{142} \times \sqrt{99} \approx$
9) $\sqrt{121} \times 5.23 \approx$
10) $2.345 \times 9.873 \approx$
11) $5.745 \times 0.9873 \approx$
12) $4.796 \times 0.56 \approx$
13) $12 \times 34 \times 56 \approx$
14) $29 \times 41 \times 79 \approx$
15) $13 \times 4.7 \times 0.42 \approx$
16) $\frac{84 \times 91}{2.3} \approx$
17) $\frac{67}{0.52} \approx$
18) $\frac{55 \times 31}{5.3 \times 3.78} \approx$

Exam Questions

Estimate the value of

68×401
 198

Work out an estimate for

$$
\frac{10.1 \times 29.7}{5.9-3.1}
$$

Work out an estimate for the value of

$$
\frac{5.79 \times 312}{0.523}
$$

Work out an estimate for the value of

6.8×191
 0.051

2 Area and Perimeter

2.1 Perimeter on a Grid

The perimeter is the total distance around the edge of a 2 D shape.

Worked Example

Your Turn

Calculate the perimeter of the shape below:

Calculate the perimeter of the shape below:

Intelligent Practice

In each question, a section of the shape gets nibbled away. Find the perimeter of each shape.

Intelligent Practice

For each question, nibble off one square
each time but keep the same perimeter

Intelligent Practice

For each question, draw a shape using the

following instructions on the grids below

1) Draw a shape	2) Draw a shape	3) Draw a shape
where the value of	where the value of	where the value of
the perimeter is more	the perimeter is less	the perimeter is
than the number of	than the number of	equal to the number
squares used.	squares used.	of squares used.

4) Draw a shape where the value of the perimeter is three times larger the number of squares used.

2) Draw a shape
where the value of the perimeter is less than the number of

5) Draw a shape where the value of the perimeter is twice as large the number of squares used.

6) The largest perimeter you can make on a 5 by 5 grid has a length of 34 . Draw a shape with a perimeter of 34 units.

Intelligent Practice

For each grey grid, find the maximum perimeter shape that will fit inside it

9) Without drawing them, can you use what you know from your answers to questions 5-8 to predict the maximum perimeters for grey grids that are:
a) 3×18
b) 3×21
c) 3×30

2.2 Perimeter

The perimeter is the total distance around the edge of a 2D shape. Units: mm, cm, in, ft, m, km, miles

Calculate the perimeter of the rectangle:

6 cm

Calculate the perimeter of the square:

Calculate the perimeter of the rectangle:

12 cm

Calculate the perimeter of the square:

Fluency Practice

Question 1: Work out the perimeter of each shape below
(a)

(b)

(c)

(f)

(d)

(e)

Question 2: Find the perimeter of each of these rectangles.
(a)
6 cm

(b)

(c)
36 mm

(d)
1.8 m

(e)

(f)

Question 3: Work out the perimeter of each of these squares
(a)
15 cm
(b)

(c)

Fluency Practice

Question 4: Work out the perimeter of each of these equilateral triangles
(a)

(b)

(c)

(d)

Question 5: Calculate the perimeter of each of these isosceles triangles
(a)

14 cm
(b)

10 cm
(c)

Question 6: Work out the perimeter of each of these regular shapes
(a)

(b)

(c)

Question 7: Find the perimeter of each of these shapes
(a)

10 cm
(b)

(c)

$12 m$
(d)

(e)

Fluency Practice

c)

Page 58

Worked Example

Your Turn

Find an expression for the perimeter of the following shape:

15

Find an expression for the perimeter of the following shape:

Fluency Practice

Worked Example

Your Turn

Calculate the length of x if the perimeter of the rectangle is 44 cm :

15 cm

Calculate the length of x if the perimeter of the rectangle is 44 cm :
$x \mathrm{~cm}$

15 cm

Fluency Practice

Question 8: The perimeter of each shape is given. Find the length of the missing side
(a)

Perimeter $=26 \mathrm{~cm}$
(b)

Perimeter $=80 \mathrm{~cm}$
(c)

Perimeter $=20 \mathrm{~cm}$
(e)

Perimeter $=25 \mathrm{~cm}$
Perimeter $=36 \mathrm{~cm}$
(f)

Perimeter $=79 \mathrm{~cm}$
(g)

Perimeter $=45 \mathrm{~cm}$
(h)

Perimeter $=2 m$
(i)

Perimeter $=163 \mathrm{~cm}$

Fluency Practice

2.3 Review and Problem Solving

Harder Perimeter

©
notes: the diagrams are not drawn accurately and the angles between lines are right angles
what are the overall perimeters of each shape?
(2)
๓

$\xrightarrow[\substack{\text { E } \\ \text { N }}]{ }$

Harder Perimeter

L-Shaped Perimeters

2.4 Area on a Grid

The area of a 2D shape is the space inside the shape. Units: $\mathrm{mm}^{2}, \mathrm{~cm}^{2}, \mathrm{in}^{2}, \mathrm{ft}^{2}, \mathrm{~m}^{2}, \mathrm{~km}^{2}$, miles 2

Calculate the area of the shape below:

Calculate the area of the shape below:

Fluency Practice

Question 1: The following shapes are drawn on centimetre-squared paper. Find the area of each shape.
(a)

(b)

(c)

(d)

(e)

(f)

Question 2: The following shapes are drawn on centimetre-squared paper.
Find the area of each shape.
(a)

(b)

(c)

Question 3: The following shapes are drawn on centimetre-squared paper. Estimate their areas.
(a)

(b)

(c)

Fluency Practice

Here are two methods for finding the area of a polygon.

Shaded area $=1+2+2+3=8$
Unshaded area $=20-8$
$=12 \mathrm{~cm}^{2}$

- Copy these shapes on to squared paper.

Choose one of the methods or your own to find the areas of these shapes.

2.5 Area of Rectangles

$$
\begin{gathered}
\text { Area }=\text { base } \times \text { height } \\
\qquad A=b \times h
\end{gathered}
$$

Calculate the area of the rectangle:

6 cm

Calculate the area of the square:

Calculate the area of the rectangle:

12 cm

Calculate the area of the square:

Fluency Practice

Question 1: Calculate the area of each of these rectangles
(a)
(b)

(c)

(d)

(e)
(f)

(g)
(h)

50 cm

(i)

(j)

(k)
5 mm

(1)

Question 2: Work out the area of each of these squares
(a)

(b)

(c)

(d)

Question 3: Work out the area of each of these rectangles
(a)

(b)

(c)

(d)

(e)
(f)
(g)
(h)

Question 4: Work out the area of each of these rectangles.
State your units for each answer.
(a)

(b)
(c)
(d)

(e)

(f)

(
(g)
$0.1 \mathrm{~m} \begin{array}{r}\square \\ 9000 \mathrm{~mm}\end{array}$

Calculate x if the area of the rectangle is $12 \mathrm{~cm}^{2}$:

6 cm

$x \mathrm{~cm}$

Calculate x if the area of the rectangle is $48 \mathrm{~cm}^{2}$:
$x \mathrm{~cm}$

Fluency Practice

Question 5: The area of each of these rectangles have been given. Find the length of the missing sides.
(a)
(b)

(c)

(d)
(e)

(f)

(g)

(h)

(i)

(j)
(k)

(1)

2.6 Area of Rectilinear Shapes

A rectilinear shape is one whose edges all meet at right angles.

Calculate the area of the shape below:

Additive Method 1

6 cm

Calculate the area of the shape below:

Calculate the area of the shape below:

Worked Example

Your Turn

Calculate the area of the shape below:

Calculate the area of the shape below:

Subtractive Method

6 cm

Fluency Practice

Question 1: Work out the area of each of these shapes.
(a)

(b)

(c)

Question 2: Work out the area of each of these shapes.
(a)

(b)

(c)

(d)

(e)

(f)

Question 3: The area of each shape is given.
Work out the size of the missing sides.
(a)

Total area $=48 \mathrm{~cm}^{2}$
(b)

Total area $=91 \mathrm{~cm}^{2}$
Total area $=228 \mathrm{~cm}^{2}$

Total area $=283 \mathrm{~cm}^{2}$
(e)

Total area $=151 \mathrm{~cm}^{2}$

Fluency Practice

Question 1: Work out the area of each of these shapes.
(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Question 2: Work out the shaded area.
(a)

(b)

(c)

2.7 Area of Parallelograms

Area of a parallelogram $=$ base \times perpendicular height $\mathrm{A}=\mathrm{b} \times \mathrm{h}$

The two lengths used in the formula need to be perpendicular.

Frayer Model - Perpendicular

Worked Example

Calculate the area of the parallelogram:

Calculate the area of the parallelogram:

Fluency Practice

Question 1: The following parallelograms are drawn on centimetre-squared paper. Find the area of each.
(a)

(b)

(c)

Question 2: Work out the area of each of the parallelograms below. Include suitable units.
(a)

(b)

(c)

(d)

(e)

(f)

(i)

Question 3: A parallelogram has a base of 8 cm and a perpendicular height of 6 cm . Calculate the area of the parallelogram.

Worked Example

Calculate x if the area of the parallelogram is $54 \mathrm{~cm}^{2}$:

Calculate x if the area of the parallelogram is $66 \mathrm{~cm}^{2}$:

Fluency Practice

Question 4: The areas of each of the parallelograms has been given. Calculate the length of the missing sides.
(a)

(d)

(b)

(c)

(f)

Area $=29.14 \mathrm{~cm}^{2}$

Fluency Practice

Alpha Exercise

Find the area of each of the following parallelograms:
(1)

(4)

(2)
(5)

(3)

(6)

Beta Exercise

Find the area of each of the following parallelograms:
(1)

(2)

(3)

(4)

Fluency Practice

Gamma Exercise

Find the area of each of the following parallelograms:
(1)

(3)

(2)

(4)

Delta Exercise

Here are four parallelograms. Fill in the missing values in each diagram.
(1)

(3)

(2)

(4)

Area= \qquad mm ${ }^{2}$

Exam Questions

Exam-style question 1

Six identical parallelograms are tiled as shown to form one large parallelogram with a base of 8 metres, as shown in the diagram.

This large parallelogram has a total area of $32 \mathrm{~m}^{2}$.

Work out the height, h, of one tile, in metres.

Exam-style question 2

Keith draws a parallelogram whose base is twice its perpendicular height.
The area of the parallelogram is $72 \mathrm{~cm}^{2}$ and the two sides which are not parallel to the base are 8 cm long.

Find the base and height of the parallelogram.

Exam-style question 3

Here is a grid made up of equilateral triangles. Each small triangle has an area of $5 \mathrm{~cm}^{2}$.

What is the area of the shaded parallelogram?

Fill in the Gaps

Question	Diagram	Base	Perpendicular Height	Calculation	Area
(a)		8 cm	2 cm	8×2	$16 \mathrm{~cm}^{2}$
(b)					
(c)					
(d)					
(e)					
(f)					$27 \mathrm{~cm}{ }^{2}$
(g)		5 cm			$40 \mathrm{~cm}^{2}$
(h)					$48 \mathrm{~mm}{ }^{2}$
(i)					
(j)					$x y \mathrm{~cm}^{2}$

2.8 Area of Triangles

$$
\begin{gathered}
\text { Area of a triangle }=\frac{\text { base } \times \text { perpendicular height }}{2} \\
\qquad A=\frac{b \times h}{2}
\end{gathered}
$$

Fluency Practice

Fluency Practice
5) Some of the parallelograms A - D can be used to help find the areas of the triangles $\mathrm{E}-\mathrm{H}$.
Match each parallelogram up with the triangle you could use it with.
6) Find the area of each triangle:

a) What is the height?
b) What is the base?

a) What is the height?
b) What is the base?

Calculate the area of the triangle:

Calculate the area of the triangle:

Fluency Practice

Question 1: Find the area of each triangle.
(a)

(b)

(c)

(d)

(e)

(f)

Question 2: Find the area of each triangle.
(a)

(b)

(c)

(d)

(e)

(f)

Question 3: Find the area of each triangle.
(a)

(b)

(c)

(d)

(e)

(f)

Question 4: Find the area of the triangle with a base of 12 cm and perpendicular height of 9 cm .

Question 5: Find the area of the triangle with a base of 9 cm and perpendicular height of 14 cm .

Question 6: Find the area of the triangle with a base of 19 cm and perpendicular height of 7 cm .

Calculate x if the area of the triangle is $27 \mathrm{~cm}^{2}$:

Calculate x if the area of the triangle is $33 \mathrm{~cm}^{2}$:

6 cm

Fluency Practice

Question 7: The area of the triangle is $20 \mathrm{~cm}^{2}$, find x .

Question 8: The area of the triangle is $30 \mathrm{~cm}^{2}$, find y .

Question 9: The area of the triangle is $12 \mathrm{~cm}^{2}$, find z .

Question 10: The area of the triangle is $56 \mathrm{~cm}^{2}$, find a.

Question 11: The area of the triangle is $165 \mathrm{~cm}^{2}$, find b .

Fluency Practice

Alpha Exercise

Find the area of each of the following triangles:
(1)

(2)

(3)

(4)

(5)

(6)

Beta Exercise

Find the area of each of the following triangles:
(1)

(2)

(3)

(4)

Gamma Exercise

Find the area of each of the following triangles:
(1)

(2)

(3)

(4)

Exam Questions

Exam-style question 1

Four identical triangles are tiled as shown to form one large triangle with a base of 12 metres, and a height of 10 metres, as shown in the diagram.

Work out the area of one tile.

Exam-style question 2

Tyler draws a triangle whose base is equal to its perpendicular height.
The area of the triangle is $18 \mathrm{~cm}^{2}$, and one of the sides is 9 cm long.
Find the base and height of the triangle.

Exam-style question 3

Here is a grid made up of equilateral triangles. Each small triangle has an area of $5 \mathrm{~cm}^{2}$.

What is the area of the shaded triangle?

Fill in the Gaps

Question	Diagram	Base	Height	Calculation	Area
(a)		6 cm	8 cm	$\frac{6 \times 8}{2}$	$24 \mathrm{~cm}^{2}$
(b)					
(c)					
(d)					
(e)					
(f)		7 m	6 m	$\frac{7 \times 6}{2}$	
(g)				$\frac{3 \times 5}{2}$	
(h)		8 mm			$12 \mathrm{~mm}{ }^{2}$
(i)					$18 \mathrm{~cm}^{2}$

2.9 Area of Trapeziums

Area of a trapezium $=\frac{\text { sum of parallel sides }}{2} \times$ perpendicular height

$$
\mathrm{A}=\frac{\mathrm{a}+\mathrm{b}}{2} \times h
$$

a

b

Trapeziums

Formula

Definition Straight lines that will never meet no matter how far they are extended.	Characteristics - All lines must be straight. - Arrows are often used to show parallel lines.
Examples	Non Examples
	 \because $\therefore \because \vdots$

Your Turn

Calculate the area of the trapezium:

Fluency Practice

Question 1: Find the area of each trapezium.
(a)

(b)

(c)

(d)

(e)

(f)

Question 2: Find the area of each trapezium.
(a)

(b)

(c)

(d)

(e)

(f)

Worked Example

Your Turn

Calculate x if the area of the trapezium is $57 \mathrm{~cm}^{2}$:

Worked Example

Your Turn

Calculate x if the area of the trapezium is $57 \mathrm{~cm}^{2}$:

Fluency Practice

Question 3: Find x for each trapezium.
(a)
(b)

(c)

Question 4: Find x for each trapezium.
(a)

(b)

(c)

Fluency Practice

Alpha Exercise

Find the area of each of the following trapeziums:
(1)

(2)

(3)

(4)

Beta Exercise

Find the area of each of the following trapeziums:
(1)

(3)

(2)

(4)

Fluency Practice

Gamma Exercise

Find the missing length in each trapezium, given its area:
(1)

(2)

(3)

(4)

8 cm

Delta Exercise

The area of this trapezium is $8 \mathrm{~cm}^{2}$. You want to increase its area to $9 \mathrm{~cm}^{2}$ by extending the length of one of the three indicated sides. You can do this in three ways:

Trapezium 1

Trapezium 2

5 cm

Trapezium 3

(a) Find the values of p, q and r.
(b) Which trapezium has the longest unlabelled edge?

Exam Questions

Exam-style question 1

The trapezium in the diagram has an area of $18 \mathrm{~cm}^{2}$. Find its height.

Exam-style question 2

An $8 \times 12 \mathrm{~cm}$ rectangle of paper has had a piece cut out of it, as shown in the diagram.

By calculating the area of the piece that was cut out, show that the remaining paper has an area of $76 \mathrm{~cm}^{2}$.

2.10 Review and Problem Solving

Fluency Practice

1. Calculate the area.	2. Calculate the perimeter.	3. Calculate the area.
4. Calculate the perimeter.	5. Calculate the area.	6. Calculate the area.
7. Calculate the perimeter.	8. Calculate the area.	9. Calculate the area.
10. Calculate the area.	11. Calculate the area.	12. Calculate the perimeter.
13. Calculate the area.	14. Calculate the area.	15. Calculate the perimeter.
16. Calculate the area.	17. Calculate the area.	18. Calculate the perimeter.

Fluency Practice

 7 cm

Intelligent Practice

Extension

1) Find the blue parallelogram's area in two different ways.

2) a) Explain why the area of this parallelogram is not $99 \mathrm{~cm}^{2}$
b) Will its area be greater than or less than $99 \mathrm{~cm}^{2}$?
Explain how you know.

3) Draw two different parallelograms with area $24 \mathrm{~cm}^{2}$ and perimeter 22 cm .
4) This shape is a parallelogram. Find the value of a.

5) This shape is made from two parallelograms. Explain why its area is $a b$

Find the area of this rhombus.

Here is a grid made up of equilateral triangles. Each small triangle has an area of $5 \mathrm{~cm}^{2}$.

What is the area of the shaded triangle?

Find the area of this trapezium.
The dashed line segment joins the midpoints of the 10 m and 12 m edges shown.

Can you find the perimeter of this trapezium?

Problem Solving

The shapes below have the same area. Fill in the gaps using only the numbers 1 to $\mathbf{1 0}$. You can only use each number once.

2.11 Area of Compound Shapes without Circles

Your Turn

Calculate the area of the compound shape:

Worked Example

Your Turn

Calculate the area of the compound shape:

Calculate the area of the compound shape:

Calculate the area of the compound shape:

Calculate the area of the compound shape:

10 cm

Fluency Practice

Question 3: Work out the area of each of these shapes.
(a)

(b)

(c)

(d)

(e)

(f)

Question 4: Work out the shaded area.
(a)

(b)

(c)

Question 5: Work out the area of each of these shapes.
(a)

(b)

(c)

2.12 Parts of the Circle

Radius

Chord

Segment

Diameter

Arc

Sector

Fluency Practice

2.13 Circumference of Circles

The circumference is the perimeter of a circle.
Circumference $=\pi x$ diameter

$$
C=\pi x d
$$

What is π ?

- π is a mathematical constant (it is a constant because its value can't change), with the value 3.14159265357989 ...
- The digits of π go on forever, and it can't be expressed as a fraction involving whole numbers.
- For that reason, it is not possible to give an exact answer involving π in 'decimal form' (i.e. where we list out all the digits), as at some point we would have to round.
- We leave the π in the answer if we wish to express the answer 'exactly'.
- You can find it on your calculator.
- It is defined as the scale factor between the diameter of a circle and the circumference, but is used in other parts of maths.

Calculate the circumference of the circle:

Calculate the circumference of the circle:

Calculate the circumference of the circle:

Calculate the circumference of the circle:

Fluency Practice

Question 1: Calculate the circumference of the following circles.
Give your answers to 1 decimal place.
(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Question 2: Calculate the circumference of the following circles. Give your answers to 1 decimal place.
(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Question 3: Work out the circumference of the following circles. Give your answers to 1 decimal place.
(a) A circle with diameter 2 cm
(d) A circle with radius 0.15 km
(b) A circle with diameter 14 m
(e) A circle with diameter 90 inches
(c) A circle with radius 3 cm
(f) A circle with radius 5.7 yards

Fluency Practice

Question 4: Calculate the circumference of the following circles.
Give your answers to 1 decimal place.
(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Question 5: Calculate the circumference of the following circles. Leave your answer in terms of π
(a)

(b)

(c)

(d)

Question 6: Work out the circumference of the following circles. Leave your answer in terms of π
(a) A circle with diameter 12 cm
(b) A circle with diameter 52 cm
(c) A circle with radius 10 cm
(d) A circle with diameter 3 cm
(e) A circle with radius 4 km

Worked Example

Your Turn

Calculate the perimeter of the semi-circle:

Fluency Practice

Question 1: Calculate the perimeter of each of these semi-circles.
Give your answers to 1 decimal place and include suitable units.
(a)

(b)

(c)

(d)

(e)

(f)

Question 2: Work out the perimeter of each of these semi-circles.
Give your answers in terms of $\boldsymbol{\pi}$ and include suitable units.
(a)

(b)

(c)

(d)

(e)

(f)

Diagram	Radius	Diameter	Calculation	Circumference (in terms of π)	Circumference (1 dp)
2 cm					

Diagram	Radius	Diameter	Calculation	circumference (in terms of π)	Circumference $(1 \mathrm{dp})$
				$16 \pi \mathrm{~km}$	
0.5 cm					

Diagram	Radius	Diameter	Calculation	Perimeter (in terms of $\boldsymbol{\pi})$	Perimeter (1 dp)

2.14 Area of Circles

$$
\text { Area }=\pi \times \text { radius }^{2}
$$

$$
A=\pi \times r^{2}
$$

Calculate the area of the circle:
Calculate the area of the circle:

Calculate the area of the circle:
Calculate the area of the circle:

Fluency Practice

Question 1: Calculate the area of the following circles. Give your answers to 1 decimal place.
(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Question 2: Calculate the area of the following circles. Give your answers to 1 decimal place.
(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Question 3: Work out the area of the following circles. Give your answers to 1 decimal place.
(a) A circle with radius 9 cm
(b) A circle with radius 12 m
(c) A circle with diameter 40 cm
(d) A circle with diameter 1 km
(e) A circle with diameter 5 yards
(f) A circle with radius 10.5 m

Fluency Practice

Question 4: Calculate the area of the following circles. Give your answers to 1 decimal place.
(a)

(b)

(c)

(d)

(e)
(f)

(g)

(h)

Question 5: Calculate the area of the following circles. Leave your answer in terms of π
(a)

(b)

(c)

(d)

Question 6: Work out the area of the following circles. Leave your answer in terms of π
(a) A circle with radius 7 cm
(b) A circle with radius 1 cm
(c) A circle with diameter 10 cm
(d) A circle with radius 3 cm
(e) A circle with diameter 4 cm

Worked Example

Your Turn

Calculate the area of the semicircle:

Calculate the area of the semicircle:

Fluency Practice

Question 1: Calculate the area of each of these semi-circles.
Give your answers to 1 decimal place and include suitable units.
(a)

(b)

(c)

(d)

(e)

(f)

Question 2: Work out the area of each of these semi-circles.
Give your answers in terms of $\boldsymbol{\pi}$ and include suitable units.
(a)

(b)

(c)

(d)
(e)

(f)

Fill in the Gaps

Diagram	Radius	Diameter	Calculation	Area (interms of π)	Area (1 dp)

Fill in the Gaps

Diagram	Radius	Diameter	Calculation	Area (in terms of π)	Area (1 dp)

Fill in the Gaps

Diagram	Radius	Diameter	Calculation	Area (in terms of $\boldsymbol{\pi})$	Area (1 dp)

Eight Circles

The figure below is composed of eight circles, seven small circles and one large circle containing them all. Neighboring circles only share one point, and two regions between the smaller circles have been shaded. Each small circle has a radius of 5 cm .

Calculate:
a. The area of the large circle.
b. The area of the shaded part of the figure.

2.15 Review and Problem Solving

Formulae

Apple pies are square: $A=\pi \times r^{2}$

Cherry pie delicious!: $C=\pi \times d$

Fluency Practice
Find the perimeters and areas of the following shapes. The shapes are not to scale.

Changing Areas

Changing Areas
Choose a value greater than 1.
Put the value into the boxes and calculate
the areas of the shapes.
Put the shapes in order from largest to smallest.

- Choose different values greater than 1 and repeat (you could try really large numbers, decimals or fractions). decimals or fractions).
- How does the order change each time?
- What do you notice about the areas of the triangle and the parallelogram? Explain why this may be happening.
- Pick any pair of shapes. Decide whether their areas are Always, Sometimes or Never equal, given that the values in the
axes are are same.

$$
\text { Design } 2 \text { of your own shapes, each with a }
$$ missing length, so that their areas are sometimes equal.

2.16 Area and Perimeter of Compound Shapes

Worked Example

Find the perimeter of this shape:

Find the perimeter of this shape:

Find the area of this shape:

Find the area of this shape:

Fluency Practice

Find the area and perimeter of each shape. Round to 1 d.p.

Extension

3 Fractions, Decimals and Percentages

3.1 Decimals to Percentages

Decimal

Convert the following decimals into percentages:
a) 0.37
b) 0.037
c) 3.7

Convert the following decimals into percentages:
a) 0.38
b) 0.038
c) 3.8

Intelligent Practice

Convert the following decimals into percentages:

1) 0.48
2) 1.085
3) 0.49
4) 2.085
5) 0.50
6) 2.058
7) 0.5
8) 0.05
9) 2.5
10) 0.005
11) 2
12) 0.085
13) 0.2
14) 0.85
15) 1.85

Extension

Question 1: Match up any decimal and percentage that are equivalent. Not all the decimals and percentages will match up

Question 2: Arrange in order from smallest to largest
(a) $0.4,20 \%, 0.5,45 \%, 0.09$
(b) $0.59,85 \%, 20 \%, 0.8,13 \%$
(c) $29 \%, 0.3,35 \%, 0.33,25 \%$

Question 3: Jessica and Daniel are incorrect. Explain why.

Question 4: Which is larger, 0.306 or 31% ?
Explain your answer.

3.2 Percentages to Decimals

Decimal

Convert the following percentages into decimals:
a) 82%
b) 8.2%
c) 820%

Convert the following percentages into decimals:
a) 81%
b) 8.1%
c) 810%

Intelligent Practice

Convert the following percentages into decimals:

1) 32%
2) 1023%
3) 31%
4) 1003%
5) 30%
6) 3%
7) 0.3%
8) 129%
9) 1.3%
10) 12.9%
11) 1.23%
12) 12.92%
13) 12.3%
14) 123%

Extension

Question 1: Match up any decimal and percentage that are equivalent.
 Not all the decimals and percentages will match up.

Question 2: Arrange in order from largest to smallest.
(a) $21 \%, 0.25,16 \%, 0.2,3 \%$
(b) $64 \%, 0.05,100 \%, 0.99,1.25,3 \%$

Question 3: James says "1.45 is equal to 145% "
Matt says "that is impossible, you cannot have a percentage greater than 100% " Who do you agree with? Explain your answer.

3.3 Percentages to Fractions

Decimal

Convert the following percentages into fractions in their simplest form:
a) 6%
b) 66%
c) 66.6%
d) 666%

Convert the following percentages into fractions in their simplest form:
a) 8%
b) 88%
c) 88.8%
d) 888%

Intelligent Practice

Convert the following percentages into fractions in their simplest form:

1) 4%
2) 40%
3) 44%
4) 400%
5) 45.5%
6) 455.5%
7) 440%
8) 444%
9) 44.4%
10) 45%
11) 450%

Extension

Question 1: Match up any fraction and percentage that are equivalent.
30%
50\%

Question 2: $\quad 10 \%$ of the world are left handed.
What fraction of the world are right handed?

Question 3: 32% of people voted for the Yellow Party in an election. What fraction of people voted for the Yellow Party?

Question 4: Rebecca spent 85\% of her pocket money this week.
What fraction of her pocket money did she spend?
Question 5: Neil got 52\% of questions correct on a test.
What fraction of questions did he get correct?
Question 6: In a school, students either study French, German or Spanish.
They study one language each.
11% of students study French
27% of students study Spanish
What fraction of the students study German?

Question 7: Louis is completing his homework.
Can you spot any mistakes?

Q1

Write 30% as a fraction.
Give your answer in its simplest form.

Q2

Write 6\% as a fraction.
Give your answer in its simplest form.

$$
\frac{30}{100}=\frac{15}{50}
$$

3.4 Fractions to Percentages

 as 100 then cancel down

Convert the following fractions into percentages:
a) $\frac{6}{10}$
b) $\frac{6}{5}$
c) $\frac{6}{60}$
d) $\frac{6}{600}$

Convert the following fractions into percentages:
a) $\frac{8}{10}$
b) $\frac{8}{5}$
c) $\frac{8}{40}$
d) $\frac{8}{400}$

Intelligent Practice

Convert the following fractions into percentages:

1) $\frac{7}{10}$
2) $\frac{3}{10}$
3) $\frac{7}{5}$
4) $\frac{7}{50}$
5) $\frac{700}{50}$
6) $\frac{350}{50}$
7) $\frac{35}{50}$
8) $\frac{35}{500}$
9) $\frac{350}{500}$
10) $\frac{175}{500}$
11) $\frac{6}{800}$

Extension

Question 1: There are 20 apples on a tree.
3 of the apples are bad.
What percentage of the apples are bad?

Question 2: James sat an English test.
He scored 39 out of 50 .
What percentage did he get right?
Question 3: Helen takes 25 shots at basketball training. She misses 7 shots.

What percentage of the shots did Helen miss?
Question 4: There are 40 passengers on a bus.
14 passengers are going to Newport.
What percentage of the passengers are going to Newport?
Question 5: Randalstown Rugby Club play 8 matches and win 7 of the matches.
What percentage of the matches did Randalstown win?
Question 6: Freddy sits a physics test.
He gets 38 out of 40 correct.
What percentage did he get right?

Question 7: There are 500 students at a school.
141 of the students study Spanish.
What percentage of the students study Spanish?
Question 8: There are 30 students in a class.
4 of the students are left handed.
What percentage of the students are right handed?

3.5 Decimals to Fractions

Decimal

Use equivalent fractions to change denominator to 100 then read off numerator

Fraction
Percentage
Write percentage as numerator and denominator as 100 then cancel down

Frayer Model - Terminating Decimal

Definition A decimal with a finite number of digits following the decimal point.	Characteristics - The decimal stops after a given number of decimal places. - You could count the number of digits after the decimal point.
Examples - 0.2 - 0.278 - 1.87 - 12.76578 - 10000.1 - 4.0000000001 - 80.987654321	Non Examples - $0 . \dot{6}$ - $0.123 \dot{4}$ - $\pi=$ 3.1415926535897932 ... - $\sqrt{2}=1.41421 \ldots$ - $e=2.7182818 \ldots$

Worked Example

Convert the following decimals into fractions in their simplest form:
a) 0.8
b) 0.08
c) 0.085
d) 8.5

Your Turn

Convert the following decimals into fractions in their simplest form:
a) 0.2
b) 0.02
c) 0.025
d) 2.5

Intelligent Practice

Convert the following decimals into fractions in their simplest form:

1) 0.6
2) 0.06
3) 0.66
4) 0.65
5) 0.56
6) 0.55
7) 0.006
8) 0.055
9) 0.065
10) 0.605
11) 6.5
12) 6.05
13) 6.005
14) 5.06

Extension

		0.6
Question 1:	Match up any decimal and fraction that are equivalent.	
		1.3

Question 2: Danny has tried to complete his homework.
Can you spot any mistakes?

Q1 ${ }_{\text {Write }} 0.6$ as a traction.
Give your answer in its simplest form.

Write 0.08 as a fraction.
Give your answer in its simplest form.

Q3 Write 0.902 as a fraction.
Give your answer in its simplest form.

$$
\frac{46}{500}=\frac{23}{250}
$$

3.6 Recurring Decimals

- $0.123 \dot{4}$
- $0 . \dot{6}$
- $2 . \dot{3} 7$
- $0.14285 \dot{7}$
- $7846.1 \dot{3}$

Frayer Model - Recurring Decimals

Definition A decimal with an infinite number of digits after the decimal point that form a predictable pattern.	Characteristics - The decimal continues forever, which may be shown using the recurring symbol(${ }^{\circ}$) - The digits following the decimal point continue in a predictable pattern.
$\begin{array}{\|ll} \mid l & \text { Examples } \\ \hline- & 0.123 \dot{4} \\ - & 0 . \dot{6} \\ - & 2 . \dot{3} \dot{7} \\ - & 0 . \dot{1} 4285 \dot{7} \\ \cdot & 7846.1 \dot{3} \end{array}$	Non Examples - 0.278 - 10000.1 - 80.987654321 - $\pi=$ 3.1415926535897932 ... - $\sqrt{2}=1.41421 \ldots$ - $\quad e=2.7182818$...

Intelligent Practice

Write the following out fully:
Write the following using dot notation:

1) 0.5
2) $0.666 \ldots$
3) $0.4 \dot{5}$
4) $0.7666 \ldots$
5) $0 . \dot{4} \dot{5}$
6) $0.767676 \ldots$
7) $0.3 \dot{4} \dot{5}$
8) $0.8767676 \ldots$
9) $0 . \dot{3} 4 \dot{5}$
10) $0.876876876 \ldots$
11) $0.2 \dot{3} 4 \dot{5}$
12) $0.9876876876 \ldots$
13) $0 . \dot{2} 34 \dot{5}$
14) $0.987698769876 \ldots$
15) $1 . \dot{2} 34 \dot{5}$
16) $10.987698769876 \ldots$

3.7 Fractions to Decimals

Convert the following fractions into decimals:
a) $\frac{1}{4}$
b) $\frac{1}{3}$

Convert the following fractions into decimals:
a) $\frac{3}{4}$
b) $\frac{2}{3}$

Intelligent Practice

Convert the following fractions into decimals:

1) $\frac{1}{5}$
2) $\frac{2}{5}$
3) $\frac{3}{5}$
4) $\frac{3}{50}$
5) $\frac{30}{50}$
6) $\frac{3}{500}$
7) $\frac{5}{3}$
8) $\frac{1}{6}$
9) $\frac{2}{6}$

Extension

Question 1: Match up any fraction and decimal that are equivalent. Not all the fractions and decimals will match up.

Question 2: Which is larger, 0.65 or $\frac{3}{5}$?

$\frac{1}{2}$
$\frac{3}{4}$
$\frac{2}{5}$

Explain your answer.

Question 3: Arrange in order, from smallest to largest.

Question 4: In 2015, $\frac{13}{20}$ of adults in the UK owned a smart phone. Write $\frac{13}{20}$ as a decimal.

Question 5: Leon has completed his homework.
Can you spot any mistakes?

Write $\frac{4}{5}$ as a decimal. Write $\frac{3}{20}$ as a decimal.
$4 \longdiv { 5 . 2 5 }$
$2 0 \longdiv { 3 . 1 0 5 }$
Answer: 1.25
Answer: 0.105

Fluency Practice

Question 1: Write these decimals as percentages
(a) 0.31
(b) 0.16
(c) 0.22
(d) 0.06
(e) 0.02
(f) 0.8
(g) 0.4
(h) 0.185
(i) 0.204
(j) 0.092
(k) 1.24
(l) 2.8

Question 2: Write these percentages as decimals
(a) 18%
(b) 27%
(c) 60%
(d) 3%
(e) 55%
(f) 80%
(g) 1%
(h) 9.2%
(i) 41.5%
(j) 0.8%
(k) 180%
(l) 315%

Question 3: Write these decimals as fractions
(a) 0.7
(b) 0.4
(c) 0.15
(d) 0.88
(e) 0.79
(f) 0.04
(g) 0.404
(h) 0.125
(i) 0.625
(j) 0.123
(k) 1.6
(l) 2.25

Question 4: Write these fractions as decimals
(a) $\frac{3}{10}$
(b) $\frac{3}{5}$
(c) $\frac{81}{100}$
(d) $\frac{9}{20}$
(e) $\frac{1}{8}$
(f) $\frac{19}{40}$
(g) $\frac{7}{8}$
(h) $\frac{13}{20}$
(i) $\frac{33}{50}$
(j) $\frac{19}{10}$
(k) $\frac{83}{20}$
(l) $\frac{123}{40}$

Question 5: Write these percentages as fractions
(a) 70%
(b) 60%
(c) 95%
(d) 24%
(e) 79%
(f) 82%
(g) 37.5%
(h) 1.8%
(i) 11.5%
(j) 0.06%
(k) 160%
(l) 285%

Question 6: Write these fractions as percentages
(a) $\frac{9}{10}$
(b) $\frac{1}{5}$
(c) $\frac{99}{100}$
(d) $\frac{3}{25}$
(e) $\frac{17}{20}$
(f) $\frac{7}{8}$
(g) $\frac{7}{40}$
(h) $\frac{3}{8}$
(i) $\frac{43}{50}$
(j) $\frac{123}{200}$
(k) $\frac{5}{9}$
(l) $\frac{53}{20}$

Fluency Practice

Question 6: Which is larger? Show your working out
(a) 78% or 0.8
(b) $\frac{1}{5}$ or 0.23
(c) $\frac{3}{4}$ or 0.73
(d) $\frac{17}{20}$ or 0.87
(e) $\frac{5}{8}$ or 0.61
(f) 109% or 1.1
(g) 43% or $\frac{17}{40}$
(h) $\frac{13}{10}$ or 128%
(i) $\frac{5}{2}$ or 2.8

Question 7: Arrange the following in order, from smallest to largest.
(a) $\begin{array}{lllll}\frac{1}{4} & 0.19 & 0.3 & 26 \% & \frac{1}{5}\end{array}$
(b) $\quad 0.9 \quad \frac{17}{20} \quad \frac{4}{5} \quad 88 \%$
0.79
(c) $11 \% \quad 0.2 \quad 13 \% \quad \frac{3}{20} \quad \frac{1}{8}$
(d) $\quad \frac{2}{3} \quad 65 \% \quad 0.68 \quad \frac{7}{10} \quad \frac{5}{8}$
(e) $\quad 101 \% \quad \frac{11}{10} \quad 1.2 \quad \frac{19}{20} \quad 0.9$
(f) $\quad 1.5 \quad \frac{5}{3} \quad 82 \% \quad \frac{7}{4} \quad \frac{37}{40}$

Question 8: Copy and complete the tables below
(a)

Fraction	Decimal	Percentage
		10%
$\frac{4}{5}$		
	0.17	
$\frac{3}{20}$		

(c)

Fraction	Decimal	Percentage
$\frac{2}{3}$		
	0.003	
		10.5%
$\frac{9}{80}$		

(b)

Fraction	Decimal	Percentage
	0.11	
$\frac{9}{20}$		
		68%
$\frac{3}{8}$		

(d)

Fraction	Decimal	Percentage
	1.4	
$\frac{19}{10}$		
		265%
$\frac{11}{4}$		

Extension

Question 1: $\frac{3}{5}$ of a fruit punch is orange juice.
What percentage of the fruit punch is orange juice?
Question 2: 18% of a class wear glasses.
What fraction of the class wear glasses?
Question 3: Benny says that 0.2 is smaller than 19%.
Is he correct? Explain your answer.
Question 4: Mike got 58% of questions correct on a test.
What fraction of questions did he get correct?

Question 5: A school has three year groups: year 7, year 8 and year 9 .
30% of the students are in year 7
36% of the students are in year 8
What fraction of the students at the school are in year 9 ?
Question 6: In a crate, there are 40 apples.
3 of the apples are bad.
What percentage of apples in the crate are good?

Question 7: James sat an English quiz.
He scored 7 out of 8 .
What percentage did he get right?
Question 8: Randalstown Rugby Club play 20 matches and win 17 of the matches. What percentage of the matches did Randalstown win?

Question 9: Ricky has sat his summer exams.
His scores are below.
(a) Change his scores into percentages.

Give each answer to 1 decimal place.
(b) List Ricky's top 3 subjects

Maths: 17 out of 22
English: 19 out of 30
Science: 51 out of 60
French: 11 out of 12
German: 10 out of 14
Music: 19 out of 42
Geography: 19 out of 28
History: 30 out of 38
Welsh: 65 out of 70

FDP Connections

fill in the gaps

example
fpd connections 1

simplified fraction	decimal	percentage
	0.05	$\%$
		45%
$7 / 20$		$\%$
	0.12	$\%$
		55%
$23 / 50$	0.36	$\%$
		$\%$
		$62 \frac{1}{2} \%$
$13 / 20$	0.0375	$\%$
		$\%$
$9 / 40$		$333 / 4 \%$
		$\%$
		$871 / 2 \%$

fpd connections 3
the fraction should be in reduced form - with all of
the common factors
cancelled

Maths Venns

[^0]: ∞
 14) Round -3.987 to the nearest

