Year 7

Mathematics Unit 4

Name:

Class:

Contents

1 Rounding
1.1 Midpoint of Two Numbers
1.2 Rounding to the Nearest Multiple
1.3 Rounding to Decimal Places
1.4 Rounding to Significant Figures

2 Metric Units
2.1 Metric Units of Length
2.2 Metric Units of Mass
2.3 Metric Units of Capacity
2.4 Metric Units of Time

3 Properties of 2D Shapes
3.1 Names of 2D Shapes
3.2 Line Symmetry
3.3 Rotational Symmetry
3.4 Types and Properties of Triangles
3.5 Types and Properties of Quadrilaterals

4 Area and Perimeter
4.1 Perimeter on a Grid
4.2 Perimeter
4.3 Area on a Grid
4.4 Area of Rectangles
4.5 Area of Rectilinear Shapes
4.6 Area of Parallelograms
4.7 Area of Triangles
4.8 Area of Trapeziums
4.9 Area of Compound Shapes without Circles

1 Rounding

Page 2

1.1 Midpoint of Two Numbers

In this section you will look at how to find the midpoint of two numbers.

You can find the midpoint of two numbers by adding both the numbers and dividing by two, i.e., the mean of the two numbers.

Find the midpoint of -5 and 6	Find the midpoint of -6 and 5

1.2 Rounding to the Nearest Multiple

In this section you will look at how to round numbers to the nearest multiple.

- Numbers are said to "round up" or "round down" depending on whether they get bigger or smaller.
- By convention, numbers halfway between two values are rounded up.

Worked Example

Round 63 to the nearest:
a) 10
b) 2
c) 3

Round 65 to the nearest:
a) 10
b) 2
c) 3

1.3 Rounding to Decimal Places

In this section you will look at how to round numbers to a certain amount of decimal places.

Step 1: Imagine underlining up to the required accuracy, counting from the decimal point.

Step 2: Look at the number after the last underlined. If 5 or more, we increase the last number by 1 (ensure you propagate left any carries).

Step 3: Check that you have actually given the number to the required accuracy (if it is 1 dp , then ensure there is one digit after the decimal point even if it is a zero).

Round 8.7337 to:
a) 1 decimal place
b) 2 decimal places
c) 3 decimal places

Round 8.3773 to:
a) 1 decimal place
b) 2 decimal places
c) 3 decimal places

Round 0.0337 to:
a) 1 decimal place
b) 2 decimal places
c) 3 decimal places

Round 0.0377 to:
a) 1 decimal place
b) 2 decimal places
c) 3 decimal places

Round 8.7997 to:
a) 1 decimal place
b) 2 decimal places
c) 3 decimal places

Round 7.8998 to:
a) 1 decimal place
b) 2 decimal places
c) 3 decimal places

1.4 Rounding to Significant Figures

In this section you will look at how to round numbers to a certain amount of significant figures.

Suppose it is your $11^{\text {th }}$ birthday party and 16439 people attend. If you were casually saying to someone how many people came, what figure might you quote?

We might say 16000 people came.
We seem to have taken ' 2 digits' of accuracy. However, unlike 2 dp , where we would count 2 digits from the decimal point, we are counting digits from the start of the number. We say we have rounded to 2 significant figures.

This is exactly the same as rounding to decimal places, except:
a) We start counting from the first non-zero digit (not the decimal point).
b) We have to 'zero-out' any digits before the decimal point not used (otherwise we would have changed the place value of the digits we kept).

Worked Example

Circle the $2^{\text {nd }}$ significant figure:

7800

7008
7.008
0.0078
0.7008

Circle the $2^{\text {nd }}$ significant figure:

1) 456
2) 406
3) 400
4) 4000
5) 4500
6) 4506
7) 45.06
8) 4.506
9) 0.4506
10) 0.04506
11) 0.004506
12) 0.004006
13) 3.004006
14) 0.304006

Worked Example

1) 8

Number of significant figures $=$
2) 0.8

Number of significant figures $=$
3) 800
4) 0.800
5) 0.008

Number of significant figures $=$

	Your Turn
1) 456	Number of significant figures $=$
2) 450	Number of significant figures $=$
3) 406	Number of significant figures $=$
4) 400	Number of significant figures $=$
5) 40	Number of significant figures $=$
6) 4	Number of significant figures $=$
7) 0.4	Number of significant figures $=$
8) 0.40	Number of significant figures $=$
9) 0.04	Number of significant figures $=$
10) 0.004	Number of significant figures $=$
11) 0.00456	Number of significant figures $=$
12) 0.456	Number of significant figures $=$
13) 0.406	Number of significant figures $=$
14) 0.450	Number of significant figures $=$
15) 0.4500	Number of significant figures $=$
16) 0.45006	Number of significant figures $=$
17) 0.450067	Number of significant figures $=$
18) 450067	Number of significant figures $=$
19) 45067	Number of significant figures $=$
20) 4506.7	Number of significant figures $=$
21) 450.67	Number of significant figures $=$
22) 45.067	Number of significant figures $=$
23) 45.0067	Number of significant figures $=$
24) 4.50067	Number of significant figures $=$
25) 4.00067	Number of significant figures $=$
26) 0.00067	Number of significant figures $=$
27) 0.0067	Nunificant figures $=$
28) 6.0007	Number of significant figures $=$
29) 0.6007	0.0607

Round 271828 to:
a) 1 significant figure
b) 2 significant figures
c) 3 significant figures

Round 738906 to:
a) 1 significant figure
b) 2 significant figures
c) 3 significant figures

Worked Example

Round 2.71828 to:
a) 1 significant figure
b) 2 significant figures
c) 3 significant figures

Your Turn
Round 7.38906 to:
a) 1 significant figure
b) 2 significant figures
c) 3 significant figures

Round 0.00271828 to:
a) 1 significant figure
b) 2 significant figures
c) 3 significant figures

Round 0.00738906 to:
a) 1 significant figure
b) 2 significant figures
c) 3 significant figures

Round 0.00279999 to:
a) 1 significant figure
b) 2 significant figures
c) 3 significant figures

Round 0.00739999 to:
a) 1 significant figure
b) 2 significant figures
c) 3 significant figures

2 Metric Units

Conversions

Unit of measurement	Useful conversions	Examples - what would usually be measured in these units?
Distance		
Millimetres (mm)		
Centimetres (cm)		
Metres (m)		
Kilometres (km)		
Weight		
Grams (g)		
Tonnes (T)		
Millilitres (ml)		
Capacity		

2.1 Metric Units of Length

In this section you will look at the metric units of length.
The commonly used metric units of length include:

- kilometre (km)
- metre (m)
- centimetre (cm)
- millimetre (mm)

Convert 3.54 kilometres into:
a) metres
b) centimetres
c) millimetres

Convert 5.3 kilometres into:
a) metres
b) centimetres
c) millimetres

Convert 3.54 metres into:
a) kilometres
b) centimetres
c) millimetres

Convert 5.3 metres into:
a) kilometres
b) centimetres
c) millimetres

Convert 3.54 centimetres into:
a) kilometres
b) metres
c) millimetres

Convert 5.3 centimetres into:
a) kilometres
b) metres
c) millimetres

Convert 3.54 millimetres into:
a) kilometres
b) metres
c) centimetres

Convert 5.3 millimetres into:
a) kilometres
b) metres
c) centimetres

2.2 Metric Units of Mass

In this section you will look at the metric units of mass.
The commonly used metric units of mass include:

- tonne (t)
- kilogram (kg)
- gram (g)

Convert 3.54 tonnes into:
a) kilograms
b) grams

Convert 5.3 tonnes into:
a) kilograms
b) grams

Convert 3.54 kilograms into:
a) grams
b) tonnes

Convert 5.3 kilograms into:
a) grams
b) tonnes

Convert 3.54 grams into:
a) kilograms
b) tonnes

Convert 5.3 grams into:
a) kilograms
b) tonnes

2.3 Metric Units of Capacity

In this section you will look at the metric units of capacity.
The commonly used metric units of capacity include:

- litre (I)
- centilitre (cl)
- millilitre (ml)

Convert 3.54 litres into:
a) millilitres
b) centilitres

Convert 5.3 litres into:
a) millilitres
b) centilitres

Convert 3.54 millilitres into:
a) litres
b) centilitres

Convert 5.3 millilitres into:
a) litres
b) centilitres

Convert 3.54 centilitres into:
a) millilitres
b) litres

Convert 5.3 centilitres into:
a) millilitres
b) litres

2.4 Metric Units of Time

In this section you will look at the metric units of time.
The commonly used metric units of time include:

- second (s)
- minute (min)
- hour (hr)

3 Properties of 2D Shapes

3.1 Names of 2D Shapes

In this section you will look at the names of 2D Shapes.
2-dimensional (2D) shapes have only two dimensions, length and width.

A polygon is a closed 2D shape with straight sides. Polygons are named depending on the number of sides.

Triangle

Quadrilateral

Pentagon

Nonagon

Hexagon

Decagon

3.2 Line Symmetry

In this section you will look at line symmetry in shapes.

3.3 Rotational Symmetry

In this section you will look at rotational symmetry in shapes.

3.4 Types and Properties of Triangles

In this section you will look at the different types of triangles and their properties.

Types and Properties of Triangles

Name	Examples	Properties
Equilateral		
Isosceles		
Scalene		
Right-Angled		

3.5 Types and Properties of Quadrilaterals

In this section you will look at the different types of quadrilaterals and their properties.

Name	Examples	Properties	Diagonals
Square			
Rectangle			
Parallelogram			
Trapezium			
Rhombus			
Kite	Sy		

4 Area and Perimeter

4.1 Perimeter on a Grid

In this section you will look at perimeter of shapes on a grid.
The perimeter is the total distance around the edge of a 2D shape. Units: mm, cm, in, $\mathrm{ft}, \mathrm{m}, \mathrm{km}$, miles

Worked Example

Your Turn

Calculate the perimeter of the shape below:

Calculate the perimeter of the shape below:

Fluency Practice

Question 1: The following shapes are drawn on centimetre-squared paper. Find the perimeter of each shape.
(a)
(b)
(c)

(d)

(e)

(f)

Question 2: The following shapes are drawn on centimetre-squared paper. Find the perimeter of each shape.

(a)
(d)

(b)

(e)

(c)

(f)

4.2 Perimeter

In this section you will look at perimeter of shapes.
The perimeter is the total distance around the edge of a 2D shape.
Units: mm, cm, in, ft, m, km, miles

Calculate the perimeter of the rectangle:

6 cm

Calculate the perimeter of the square:

Calculate the perimeter of the rectangle:

12 cm

Calculate the perimeter of the square:

Worked Example

Your Turn

Find an expression for the perimeter of the following shape:

15

Find an expression for the perimeter of the following shape:

Worked Example

Your Turn

Calculate the length of x if the perimeter of the rectangle is 44 cm :

15 cm

Calculate the length of x if the perimeter of the rectangle is 88 cm :
$x \mathrm{~cm}$

15 cm

4.3 Area on a Grid

In this section you will look at area of shapes on a grid.
The area of a 2D shape is the space inside the shape.
Units: $\mathrm{mm}^{2}, \mathrm{~cm}^{2}, \mathrm{in}^{2}, \mathrm{ft}^{2}, \mathrm{~m}^{2}, \mathrm{~km}^{2}$, miles 2

Calculate the area of the shape below:

Calculate the area of the shape below:

Fluency Practice

Question 1: The following shapes are drawn on centimetre-squared paper. Find the area of each shape.
(a)

(b)

(c)

(d)

(e)

(f)

Question 2: The following shapes are drawn on centimetre-squared paper. Find the area of each shape.
(a)

(b)

(c)

Question 3: The following shapes are drawn on centimetre-squared paper. Estimate their areas.
(a)

(b)

(c)

4.4 Area of Rectangles

In this section you will look at area of rectangles.

$$
\begin{gathered}
\text { Area }=\text { base } \times \text { height } \\
A=b \times h
\end{gathered}
$$

Calculate the area of the rectangle:

6 cm

Calculate the area of the square:

Calculate the area of the rectangle:

12 cm

Calculate the area of the square:

Worked Example

Calculate x if the area of the rectangle is $12 \mathrm{~cm}^{2}$:

6 cm

$x \mathrm{~cm}$

Calculate x if the area of the rectangle is $48 \mathrm{~cm}^{2}$:
$x \mathrm{~cm}$

4.5 Area of Rectilinear Shapes

In this section you will look at area of rectilinear shapes.
A rectilinear shape is one whose edges all meet at right angles.

Calculate the area of the shape below:

Calculate the area of the shape below:

Additive Method 1

6 cm

Calculate the area of the shape below:

Calculate the area of the shape below:

Additive Method 2

6 cm

Worked Example

Your Turn

Calculate the area of the shape below:

Calculate the area of the shape below:

Subtractive Method

6 cm

Worked Example

Your Turn
The area of the shape below is $36 \mathrm{~cm}^{2}$. Find x.

$x \mathrm{~cm}$

4.6 Area of Parallelograms

In this section you will look at area of parallelograms.
Area of a parallelogram $=$ base \times perpendicular height $\mathrm{A}=\mathrm{b} \times \mathrm{h}$

The two lengths used in the formula need to be perpendicular.

Worked Example

Calculate the area of the parallelogram:

Calculate the area of the parallelogram:

Worked Example

Calculate x if the area of the parallelogram is $54 \mathrm{~cm}^{2}$:

Calculate x if the area of the parallelogram is $66 \mathrm{~cm}^{2}$:

4.7 Area of Triangles

In this section you will look at area of triangles.

$$
\begin{gathered}
\text { Area of a triangle }=\frac{\text { base } \times \text { perpendicular height }}{2} \\
A=\frac{\mathrm{bxh}}{2}
\end{gathered}
$$

b

Calculate the area of the triangle:

Calculate the area of the triangle:

Calculate x if the area of the triangle is $27 \mathrm{~cm}^{2}$:

Calculate x if the area of the triangle is $33 \mathrm{~cm}^{2}$:

6 cm

4.8 Area of Trapeziums

In this section you will look at area of trapeziums.

$$
\begin{aligned}
& \text { Area of a trapezium }=\frac{\text { sum of parallel sides }}{2} \times \text { perpendicular height } \\
& \qquad A=\frac{a+b}{2} \times h
\end{aligned}
$$

a

b

Your Turn

Calculate the area of the trapezium:

Worked Example

Your Turn

Calculate x if the area of the trapezium is $57 \mathrm{~cm}^{2}$:

Worked Example

Your Turn

Calculate x if the area of the trapezium is $57 \mathrm{~cm}^{2}$:

4.9 Area of Compound Shapes without Circles

In this section you will look at area of compound shapes without circles.

Your Turn

Calculate the area of the compound shape:

Worked Example

Your Turn

Calculate the area of the compound shape:

Calculate the area of the compound shape:

Calculate the area of the compound shape:

Calculate the area of the compound shape:

10 cm

