

Year 7 2023 Mathematics 2024 Unit 1 Booklet

HGS Maths

Dr Frost Course

Name:

Class:

Contents

- 1 Factors, Multiples and Primes
- 1.1 <u>Types of Numbers</u>
- 1.2 <u>Multiples</u>
- 1.3 Common Multiples
- 1.4 Lowest Common Multiple
- 1.5 **Divisibility Tests**
- 1.6 <u>Factors</u>
- 1.7 <u>Prime Numbers</u>
- 1.8 <u>Common Factors</u>
- 1.9 Highest Common Factor
- 1.10 HCF and LCM Worded Problems
- 2 Sets and Venn Diagrams
- 2.1 <u>Sets</u>
- 2.2 Multiple Sets and The Universal Set
- 2.3 Venn Diagrams with Two Circles
- 2.4 Venn Diagrams with Three Circles
- 3 <u>Negative Numbers</u>
- 3.1 Adding and Subtracting Negative Numbers
- 3.2 Multiplying Negative Numbers
- 3.3 Dividing Negative Numbers
- 3.4 Real Life Applications
- 3.5 Mixed Operations

1 Factors, Multiples and Primes

1.1 Types of Numbers

Frayer Model – Integers					
Definition	Characteristics				
Examples	Non-Examples				

Frayer Model – Square Numbers						
Definition	Characteristics					
Examples	Non-Examples					

Frayer Model – Cube Numbers							
Definition	Characteristics						
Examples	Non-Examples						

	Worked Example						Your Turn											
1) a) b)	 Write down The fifth square number The second cube number 					 Write down The eighth square number The third cube number 												
2)	Sq	uar	e 11	2					2)	Sq	quare 9							
3)	Cu	ıbe	8						3)	Cı	ıbe	5						

Frayer Model – Triangular Numbers						
Definition	<u>Characteristics</u>					
Examples	Non-Examples					

1.2 Multiples

Frayer Model – Multiples					
Definition	Characteristics				
Examples	Non-Examples				

Worked Example	Your Turn							
Write down the first six multiples of 6	six Write down the first six multiples of 8							

1.3 Common Multiples

	Worked Example						Your Turn												
Fin mu	d t Iltip	he f ples	irst of	thr 6 ar	ee a nd 1	com 5	mo	n	Find the multiples				first three common s of 6 and 20						

1.4 Lowest Common Multiple

Can you suggest a reason why there is no such thing as highest common multiple?

Frayer Model – Lowest Common Multiple

Definition	Characteristics
Examples	Non-Examples

Worked Exam	ple	Your Turn						
Find the LCM of 6 and	15 Fin	d the LCM of 6 and	d 20					

1.5 Divisibility Tests

A divisibility test is a rule for determining whether one whole number is divisible by another.

Divisibility Tests for 2, 5 and 10

Number	Test	Example	Non-Example
2	Number ends in 0, 2, 4, 6 or 8	1246	3273
5	Number ends in 0 or 5	3825	1011
10	Number ends in 0	4890	3568

Divisibility Tests for 4 and 8

Number	Test	Example	Non-Example
4	Last two digits divisible by 4	7356	9382
8	Last three digits divisible by 8	4512	8148

Divisibility Tests for 3 and 9

Number	Test	Example	Non-Example
3	Sum of digits divisible by 3	1353	4567
9	Sum of digits divisible by 9	1458	3057

Divisibility Test for 7

Number	Test	Example	Non-Example
7	Multiply the last digit by 5 and add it to the remaining part of the number, and see if the result is divisible by 7	9961	3581

This divisibility test was discovered by a 12 year old! https://www.westminsterunder.org.uk/chikas-test/

Divisibility Test for 11

Number	Test	Example	Non-Example
11	Sum of odd-positioned digits subtract sum of even-positioned digits and see if the result is divisible by 11	2761 8261	5476

Divisibility Tests for 6 and 12

Number	Test	Example	Non-Example
6	Divisible by both 2 and 3	4728	7352
12	Divisible by both 3 and 4	3576	1222

1.6 Factors

Frayer Model – Factors			
Definition	Characteristics		
<u>Examples</u>	Non-Examples		

Worked Example						Yo	ur	Tu	rn				
Find all the factors of 44			Fir	nd a	ll th	ne fa	acto	ors c	of 8	8	 		

1.7 Prime Numbers

Here is a quote from the Swiss mathematician Leonhard Euler about the prime numbers:

Mathematicians have tried in vain to this day to discover some order in the sequence of prime numbers, and we have reason to believe that it is a mystery into which the human mind will never penetrate.

Frayer Model – Prime Numbers				
Definition	Characteristics			
<u>Examples</u>	Non-Examples			

1.8 Common Factors

Worked Example	Your Turn					
Find the common factors of 6 and 15	Find the common factors of 6 and 20					

1.9 Highest Common Factor

Can you suggest a reason why there is no such thing as lowest common factor?

Frayer Model – Highest Common Factor Definition Characteristics Examples Non-Examples

Worked Example	Your Turn
Find the HCF of 6 and 15	Find the HCF of 6 and 20

1.10 HCF and LCM Worded Problems

Worked Example	Your Turn						
Two strings of different lengths, 15 cm and 24 cm are to be cut into equal integer lengths. What is the greatest possible length of each piece?	Two strings of different lengths, 18 cm and 30 cm are to be cut into equal integer lengths. What is the greatest possible length of each piece?						
Worked	Example	Your Turn					
--	---	--	--	--	--	--	--
Two lighthouses every 15 s and 2 They both flash a time. After how will they next bo same time.	flash their lights 24 s respectively. at the same many seconds oth flash at the	Two lighthouses flash their lights every 18 s and 30 s respectively. They both flash at the same time. After how many seconds will they next both flash at the same time.					

Worked Example	Your Turn						
Mary is organising a charity hot dog sale. There are 18 bread rolls in each packet. There are 15 hot dogs in each packet. Mary buys exactly the same number of bread rolls as hot dogs. What is the smallest number of each packet that Mary can buy?	Mary is organising a charity hot dog sale. There are 30 bread rolls in each packet. There are 24 hot dogs in each packet. Mary buys exactly the same number of bread rolls as hot dogs. What is the smallest number of each packet that Mary can buy?						

2 Sets and Venn Diagrams

2.1 Sets

A set is a collection of numbers, or letters, or symbols, or objects, etc., which are related in some way.

The items in a set are called 'members' or 'elements'

Curly brackets (often called 'braces') are usually used when listing or describing sets – this helps to distinguish sets from lists of unrelated items.

The elements within a set are usually described in words or listed

Examples:

Description in words	List of elements
{even numbers less than 11}	{2, 4, 6, 8, 10}
{the first five prime numbers}	{2, 3, 5, 7, 11}
{multiples of three between 10 and 20}	{12, 15, 18}
{factors of 27 which are even}	{}

More examples of sets:

Description in words	List of elements
{quadrilaterals with four equal length sides}	{square, rhombus}
{vowels}	{a, e, i, o, u}
{letters in the word 'banana'}	{a, b, n}
{yellow fruit}	{grapefruit, banana, lemon,}

Notes:

Elements are only ever included once – as shown with {letters in the word 'banana'} = $\{a, b, n\}$ {yellow fruits} is an imprecise description and the list of elements contains only examples.

	Worked Example														
Lis a) b) c) d)	List the following sets: a) {factors of 15} b) {the first four square numbers} c) {letters in the word LONDON} d) {possible outcomes when an ordinary coin is thrown}														

	Your Turn																	
Lis a) b) c)	List the following sets: a) {the first four multiples of 15} b) {the first four cube numbers} c) {letters in the word BIRMINGHAM}																	
d)	{p	ossi	ible	out	tcor	nes	wh	en a	an c	ordir	nary	/ dic	ce is	s thr	ow	n}		

2.2 Multiple Sets and The Universal Set

When we have more than one set, capital letters are usually used to represent them.

Examples:

Description in words	List of elements
$A = \{$ prime numbers between 10 and 20 $\}$	$A = \{11, 13, 17, 19\}$
$B = \{$ factors of 24 $\}$	$B = \{1, 2, 3, 4, 6, 8, 12, 24\}$
$C = \{\text{vowels}\}$	$C = \{a, e, i, o, u\}$

Note that it is often convenient to use letters that are in some way connected to the description of the set.

e.g. $P = \{\text{prime numbers between 10 and 20}\}, F = \{\text{factors of 24}\} \text{ and } V = \{\text{vowels}\}$

The Universal set is the set of all elements under consideration.

Elements that can be in other sets are restricted to those within the Universal set. For example, if the Universal set was {integers less than 10}, then {prime numbers} would be limited to $\{2, 3, 5, 7\}$.

Likewise if the Universal set was {even numbers}, then {factors of 18} would be {2, 6, 18}

Notation

In Britain the special symbol ' \mathcal{E} ' is used to represent the Universal set but in some countries, such as America, the letter 'U' is used.

Thus we could write

 $\mathcal{E} = \{ \text{integers less than 10} \} \text{ or } \mathcal{E} = \{ \text{prime numbers} \}$

Worked Example

a) U = {odd numbers less than 15}
A = {prime numbers}
B = {multiples of 3}
List:

i) A

- ii) B
- b) U = {first 10 letters of the alphabet}
 X = {vowels}
 Y = {letters in the word 'ENGLISH'}
 List:
 - i) X

```
ii) Y
```

- c) U = {factors of 24}
 P = {prime numbers}
 E = {even numbers}
 O = {odd numbers}
 List:
 - i) P
 - ii) E
 - iii) O

Your Turn

a) U = {even numbers less than 15}
A = {prime numbers}
B = {multiples of 3}
List:

i) A

- ii) B
- b) U = {first 10 letters of the alphabet}
 X = {vowels}
 Y = {letters in the word 'FRENCH'}
 List:
 - i) X

```
ii) Y
```

- c) U = {factors of 30}
 P = {prime numbers}
 E = {even numbers}
 O = {odd numbers}
 List:
 - i) P
 - ii) E

iii) O

Your Turn Complete the Venn Diagram: 8 Wears glasses Boy Jess Anna May Jo Tom 60 30 Rob Pete $\xi = 3, 4, 5, 7, 10, 12,$ Multiple of 5 Odd ξ 13, 15, 20, 24, 25

ξ =	34	14	15	28
	21	70	20	13
	1	25	7	16
	6	35	18	41

B)

C) ξ = Numbers from 1 to 25

Worked Example	Your Turn						
Represent as a Venn diagram: $\xi = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ $A = \{0, 1, 3, 5, 8\}$ $B = \{2, 5, 8, 9\}$	Represent as a Venn diagram: $\xi = \{2, 3, 4, 5, 7, 11, 13, 17, 19\}$ $A = \{2, 3, 5, 11, 13\}$ $B = \{5, 7, 13, 17, 19\}$						

Worked Exam	ple		Your Turn					
Represent as a Venn dia $\xi =$ Positive integers bet and 10 inclusive $A = \{Prime numbers\}$ $B = \{Even numbers\}$	agram: tween 1	Reg ξ = incl A = B =	Represent as a Venn diagram: ξ = Integers between 0 and 5 inclusive A = {Prime numbers} B = {Odd numbers}					

Worked Example	Your Turn						
<pre>ξ = {Days of the week} A = {Tuesday, Thursday} B = {Days starting with S or T} Draw a Venn diagram to represent this information.</pre>	<pre>ξ = {Months of the year} A = {Months starting with A} B = {Months with six letters} Draw a Venn diagram to represent this information.</pre>						

Your Turn

2.4 Venn Diagrams with Three Circles

Worked Example

Represent in a Venn diagram: $\xi = \{$ *Integers between* 1 *and* 10 *inclusive* $\}$ $A = \{odd numbers\}$ $B = \{numbers greater than 4\}$ $C = \{numbers less than 3\}$

Your Turn Represent in a Venn diagram: $\xi = \{$ *Integers between* 1 *and* 20 *inclusive* $\}$ $A = \{ prime numbers \}$ $B = \{square numbers\}$ $C = \{even numbers\}$

Your Turn

Given the following information, complete the Venn diagram shown below.

- $\varepsilon = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$
 - A is the set of factors of 24
 - **B** is the set of multiples of 3
 - C is the set of common factors of 30 and 70

2. (i) Place each of the whole numbers 42, 43, 44, 45, 46, 47, 48, 49, 50 in the correct positions in the Venn diagram.

3.

The universal set, $\varepsilon = \{22, 23, 24, 25, 26, 27, 28, 29, 30\}$. Within this universal set ε ,

- set A is the multiples of 2
- set B is the multiples of 4
- set C is the multiples of 5
- (a) Complete the Venn diagram.

[3]

4. Place the whole numbers 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 in the correct positions in the Venn diagram. [3]

3 Negative Numbers

3.1 Adding and Subtracting Negative Numbers

Signs Not Next to Each Other

You will first look at how to add and subtract negative numbers when the signs are *not* next to each other.

Worked Example	Your Turn							
Calculate: a) $3 - 4 =$	Calculate: a) $-5 + 7 =$							
b) -3 + 4 =	b) -7 + 5 =							
c) $-3-4 =$	c) 5 − 7 =							
d) -4 + 3 =	d) $-7-5 =$							
e) -4 - 3 =	e) -5 - 7 =							

Signs Next to Each Other

You will now look at how to add and subtract negative numbers when the signs are next to each other.

Worked Example	Your Turn
1) Calculate:	1) Calculate:
a) $3 + (-4) =$	a) $(-5) + (-7) =$
b) $4 + (-3) =$	b) $5 + (-7) =$
c) $(-3) + (-4) =$	c) $(-7) + (-5) =$
d) $(-4) + (-3) =$	d) $7 + (-5) =$
2) Calculate:	2) Calculate:
a) $3 - (-4) =$	a) $(-5) - (-7) =$
b) $4 - (-3) =$	b) $5 - (-7) =$
c) $(-3) - (-4) =$	c) $(-7) - (-5) =$
d) $(-4) - (-3) =$	d) $7 - (-5) =$

3.2 Multiplying Negative Numbers

Worked Example	Your Turn
Calculate: a) $3 \times (-4) =$	Calculate: a) $(-5) \times (-7) =$
b) $(-3) \times 4 =$	b) $5 \times (-7) =$
c) $(-3) \times (-4) =$	c) $(-7) \times (-5) =$
d) $(-4) \times (-3) =$	d) $(-5) \times 7 =$
3.3 Dividing Negative Numbers

Worked Example	Your Turn				
Calculate: a) $12 \div (-3) =$	Calculate: a) $(-35) \div (-5) =$				
b) $12 \div (-4) =$	b) $35 \div (-5) =$				
c) $(-12) \div (-3) =$	c) $(-35) \div (-7) =$				
d) $(-12) \div (-4) =$	d) $35 \div (-7) =$				

3.4 Real Life Applications

Worked Example		Your Turn							
The temperature Wolverhampton – 15°C. On We temperature de Find the temperature Wolverhampto	re in n on Tuesda dnesday, th ecreases by rature in n on Wedne	ay is ne 5°C. Ssday.	The temperature in Lichfield on Saturday is -3° C. On Sunday, the temperature decreases by 6°C. Find the temperature in Lichfield on Sunday.						n n

Worked Example	Your Turn				
The temperature in Derby is -3° C. The temperature in Birmingham is 9°C. What is the difference between the temperature in Derby and the temperature in Birmingham?	The temperature in Birmingham is 8°C. The temperature in Newcastle upon Tyne is -5° C. What is the difference between the temperature in Birmingham and the temperature in Newcastle upon Tyne?				

3.5 Mixed Operations

Fill in the Gaps

Q	Number 1	+ or –	Amount		Number 2
1	8	_	3	=	
2	3	—	8	=	
3	3	—		=	-4
4		—	6	=	-4
5	-2	—	6	=	
6	-2	+	6	=	
7	-2	+		=	5
8		+	7	=	4
9	-3	+	-7	=	
10	-3	—		=	-10
11	-3	_	-7	=	
12	-3	—		=	-4
13		—	-1	=	-4
14	-5	+	1	=	
15	-5	+		=	-6
16		+	-1		0
17		—	-1	=	0
18	-1	—	-0.5	=	
19		—	-0.5	=	0.5
20		+	-0.5	=	0.5