KING EDWARD VI

Year 7

2023 Mathematics 2024

Unit 1 Tasks - Part 1

DO NOT WRITE INSIDE

KING EDWARD VI

Year 7

2023 Mathematics 2024

Unit 1 Tasks - Part 2

DO NOT WRITE INSIDE

Contents

$1 \quad$ Factors, Multiples and Primes

2 Sets and Venn Diagrams
3 Negative Numbers

Fluency Practice

square numbers
5) find two consecutive square numbers (like 5^{2}
and 6^{2}) which when added together make a) 545 b) 841 .
6) find two consecutive square numbers (like 4^{2}
and 3^{2}) which when subtracted make 47 .
7) find the squares of numbers ending in a 5 (like
¿sıəqunu əsəપł u! suıəŋеd Kue pu!! noर ueo 8) write down any two digits.
add the digits and square this
> † Кq әр!̣!p pue səлenbs əsəપł łכeયłqns explore for several starting pairs of digits what do you notice?
9) find the squares of two consecutive numbers
 can you find any patterns?
10) square an odd number (like 7^{2} or 11^{2}) then
subtract 1
can you find any patterns?

c) which end with an 8?
sdnoı6 ınof ołu! sıəquinu Ło słəs əsə૫ł l!!ds (乙
 square number:
a) $1,2,2,2,3,3,3,3,3,4,4,4,5$
b) $1,1,3,4,4,4,4,5,5,6,6,11,12,13,20$
3) what happens when you divide a square number by 4 ? what remainders are
possible? why is this?
4) make any size square and take away 4
try this for several starting square numbers
and look for patterns
what happens if you take away 9 rather than
taking away 4 ?

Problem Solving

Page 5

Fluency Practice

triangular numbers
(5) what happens when you multiply a triangular number by 3 and add the one before it?
what have these series to do with the triangular numbers?
©
(7) what happens when you square a triangular number
and subtract the square of the previous triangular
number?
(8) what happens when you multiply a triangular number
by 8 and add 1?
what have these series to do with the
triangular numbers? triangular numbers?
3
$3+7$
$3+7+11$
$3+7+11+15$
can you see why?
5
can you see why?
厅
(1) what pattern do you get when you add a triangular number to the one after it? (e.g. $45+55=100$)
(2) what do you need to add to the

$$
\begin{aligned}
& \text { a) } 3^{\text {rd }} \text { plus the } 4^{\text {th }} \text { triangular number } \\
& \text { to get the } 7^{\text {th }} ? \\
& \text { b) } 1^{\text {st }} \text { plus the } 6^{\text {th }} \text { triangular number } \\
& \text { to get the } 7^{\text {th }} ? \\
& \text { c) } 2^{\text {nd }} \text { plus the } 5^{\text {th }} \text { triangular number } \\
& \text { to get the } 7^{\text {th }} ? \\
& \text { suggest a general rule } \\
& \text { test it out for another triangular number }
\end{aligned}
$$

(3) which number triangular numbers
(4) what pattern do you get in the remainders when you divide each of the triangular numbers by 3 ?
can you explain why?

Fluency Practice

Question 1: Write down the first six multiples of these numbers
(a) 5
(b) 3
(c) 4
(d) 10
(e) 7
(f) 9
(g) 11
(h) 20
(i) 100
(j) 50
(k) 12
(l) 35

Question 2: Below is a list of numbers.

12	15	17	20	22	25	27	30	32	35	39	40

From the list write down any numbers that are multiples of:
(a) 2
(b) 5
(c) 10
(d) 3
(e) 4
(f) 8

Question 3: List all the numbers between 40 and 60 (inclusive) that are multiples of:
(a) 5
(b) 3
(c) 6
(d) 8
(e) 9
(f) 14

Question 4: Below is a list of numbers.
$\begin{array}{llllllllll}100 & 101 & 102 & 103 & 104 & 105 & 106 & 107 & 108 & 109\end{array}$
From the list write down any numbers that are multiples of:
(a) 2
(b) 3
(c) 5
(d) 10
(e) 4
(f) 15

Question 1: A light flashes every 8 seconds. How many times will it flash in 3 minutes?
Question 2: Find the smallest number over 200 that is a multiple of 6.
Question 5: A crate can hold 12 cans of lemonade.
Thomas has 200 cans of lemonade.
How many crates can be filled?

Problem Solving

three consecutive numbers
(1) are multiples of 2,3 and 4 (in this order) what could they be? in general?
(2) are multiples of 3,4 and 5 (in this order) what could they be? in general?
(3) are multiples of 4,5 and 6 (in this order) what could they be? in general?
four consecutive numbers
(4) are multiples of $2,3,4$ and 5 (in this order) what could they be? in general?
five consecutive numbers
(5) are multiples of $2,3,4,5$ and 6 (in this order) what could they be? in general?

Fluency Practice

Question 5: (a) List the first ten multiples of 3.
(b) List the first ten multiples of 4.
(c) Write down any numbers listed that are multiples of both 3 and 4 .

Question 6: (a) List the first ten multiples of 5.
(b) List the first ten multiples of 6 .
(c) Write down any numbers listed that are multiples of both 5 and 6 .

Question 7: (a) List the first ten multiples of 6.
(b) List the first ten multiples of 9 .
(c) Write down any numbers listed that are multiples of both 6 and 9 .

Question 8: Write down three common multiples of 8 and 12.
Question 9: Write down three common multiples of 4 and 6.
Question 10: Write down three common multiples of 15 and 20.

Question 1: (a) Write down the first ten multiples of 2.
(b) Write down the first ten multiples of 3.
(c) List the first three common multiples of 2 and 3.

Question 2: (a) Write down the first ten multiples of 4.
(b) Write down the first ten multiples of 5 .
(c) List the first three common multiples of 4 and 5 .

Question 3: Write down three common multiples of each of these pairs of numbers.
(a) 2 and 5
(b) 3 and 4
(c) 4 and 6
(d) 10 and 15
(e) 20 and 30
(f) 3 and 5
(g) 6 and 9
(h) 6 and 12

Question 4: Find the first even number that is a multiple of 5 and 7.
Question 6: Find a number that is a multiple of $2,3,4,5$ and 6 .

Problem Solving

product puzzles (i)

(4)

(8)

(1)

(5)

(9)

(2)

(6)

(10)

(3)

(7)

(11)

product puzzles (ii)
(12)

(13)

(17)

(14)

(18)

(15)
(22)

(19)

(23)

Problem Solving

use 1 to 9 , once only in the cells so that you obtain row and column products as shown:
(1)

			15
			108
			224
144	8	315	I? T.

(3)

			80
			63
			72
72	48	105	ITT.

(2)

			21
			64
			270
36	30	336	ITY?

(4)

use 1 to 9 , once only in the cells so that you obtain row and column products as shown:
(5)

			48
			105
			72
96	45	84	T.T.?

(7)

			96
			45
			84
32	70	162	T.T.

(6)

			54
			56
			120
16	210	108	$\boxed{\text { ITYTS}}$

(8) two solutions

			42
			54
			160
35	144	72	?T?

Fluency Practice

Question 4: (a) Write down the first ten multiples of 5.
(b) Write down the first ten multiples of 8 .
(c) Find the lowest common multiple (LCM) of 5 and 8.

Question 5: (a) Write down the first ten multiples of 6.
(b) Write down the first ten multiples of 8.
(c) Find the lowest common multiple (LCM) of 6 and 8.

Question 6: Find the lowest common multiple (LCM) of each of these pairs of numbers.
(a) 5 and 6
(b) 2 and 7
(c) 3 and 8
(d) 4 and 10
(e) 9 and 4
(f) 6 and 7
(g) 6 and 8
(h) 9 and 12
(i) 15 and 40
(j) 12 and 20
(k) 13 and 4
(l) 18 and 6
(m) 25 and 35
(n) 22 and 33
(o) 16 and 24
(p) 20 and 28

Question 7: Find the lowest common multiple (LCM) of each of these sets of numbers.
(a) 2, 3 and 5
(b) 3, 4 and 5
(c) 2,5 and 7
(d) 5, 6 and 9
(e) 10, 12 and 15
(f) 2, 3, 4 and 5
(g) $1,2,3,4,5$ and 6 .

Question 6: Explain why Charlie is wrong

To find the LCM of two numbers, just multiply them together

Question 8: Jennifer says that the lowest common multiple of two consecutive numbers is equal to the product of the two numbers.
By trying four different pairs of consecutive numbers, explore her theory.

Intelligent Practice

Find the LCM of:

1) 5 and 10
2) 10 and 5
3) 20 and 5
4) 20 and 10
5) 20 and 30
6) 4 and 30
7) 28 and 30
8) 30 and 30
9) 30 and 48
10) 36 and 48
11) 24,36 and 48
12) 240,360 and 480
13) 5 and 30
14) 7 and 30
15) 14 and 30

Can you spot any patterns between questions and answers? Can you explain why they occur?

Fill in the Gaps

Find the LCM of...	Multiples of First Number	Multiples of Second Number	Answer
3 and 5	$3,6,9,12$, 15. $18, .$.	5, 10,(15) $20,25,30, .$.	15
2 and 5	$2,4,6,8$, 10 $12, .$.	5,(10) $15,20,25,30, .$.	
3 and 4	3, 6, 9, 12, 15, 18, ..	4, 8, 12, 16, 20, 24,..	
3 and 6	$3,6,9,12,15,18, .$.		
4 and 6	$4,8,12,16,20,24, .$.		
5 and 8			
6 and 8			
5 and 6			
6 and 10			
6 and 12			
8 and 12			
8 and 10			
10 and 25			
25 and 40			
\square and 5		5, 10, 15,20, 25, 30,..	20
6 and \square	6,12,18) $24,30, \ldots$		18

Problem Solving

4321

what is the remainder when 4321 is divided by: 2? 3? 4? 5? 6? (not 7) 8? 9? 10?
why is this?
what is the smallest number that has this property?

Fluency Practice

A) State whether the numbers are divisible by 2.

1) 7,462
2) 353
3) 97
4) 4,018
B) 1) Which of the following numbers is not divisible by 2?
a) 149
b) 22
c) 6,486
d) 3,170
5) Which of the following numbers is divisible by 2 ?
a) 5,993
b) 84
C) 721
d) 295
C) Choose the correct digits that will make each statement true.
6) $42 \ldots$ is divisible by 2 .
a) 2
b) 7
c) 0
d) 6
7) 1,06 _ is not divisible by 2 .
a) 0
b) 1
c) 4
d) 5
D) Nathan has 158 books. Can he make sets of 2 books each without any book remaining?

Fluency Practice

A) State whether the numbers are divisible by 5 .

1) 20,455
2) 6,852
3) 90,008 \qquad 4) 890
B) 1) Which of the following numbers is divisible by 5?
a) 53,760
b) 9,251
c) 654
d) 78,213
4) Which of the following numbers is not divisible by 5 ?
a) 5,685
b) 36,690
C) 287
d) 1,000
C) 1) A stationery store sells watercolor tubes in packs of 5. Will there be any individual tubes remaining after packing 310 tubes?
5) An order for 1,865 lights has been placed. Can the lights be equally grouped into 5 large cardboard boxes?

Fluency Practice

A) State whether the numbers are divisible by 10.

1) 530
2) 1,296
3) 81,707 \qquad 4) 3,650
B) 1) Which of the following numbers is divisible by 10 ?
a) 9,800
b) 65,146
c) 4,432
d) 843
4) Which of the following numbers is not divisible by 10 ?
a) 37,670
b) 79,561
c) 210
d) 2,390
C) 1) Mr. Burns, the art teacher, wants to distribute 10 paintbrushes each among his students. If there are a total of 456 brushes, will he be able to equally distribute them all?
5) A carton contains 10 matchboxes. Can 56,320 matchboxes be packed into such cartons without any left out?

Fluency Practice

A) State whether the numbers are divisible by 4.

1) 312
2) 44,827
3) 78,285 \qquad 4) 1,016
B) 1) Which of the following numbers is divisible by 4?
a) 204
b) 8,215
C) 983
d) 35,994
4) Which of the following numbers is not divisible by 4 ?
a) 4,544
b) 54,765
C) 132
d) 65,480
C) Choose the correct digits that will make each statement true.
5) 6,24 _ is divisible by 4 .
a) 0
b) 3
C) 4
d) 8
6) $80,3 _4$ is not divisible by 4 .
a) 4
b) 1
c) 8
d) 3
D) Bethany has 208 scented candles, which she must decorate a number of tables with. If she uses 4 candles to decorate each table, will there be any candles left?

Fluency Practice

A) State whether the numbers are divisible by 8 .

1) 38,562
2) 71,096
3) 9,384
4) 2,541
B) 1) Which of the following numbers is divisible by 8 ?
a) 6,473
b) 13,480
c) 82,695
d) 5,918
5) Which of the following numbers is not divisible by 8 ?
a) 46,976
b) 7,072
c) 3,549
d) 27,584
C) Choose the correct digits that will make each statement true.
6) $8,56 \ldots$ is divisible by 8 .
a) 8
b) 7
c) 0
d) 6
7) $58,2 _8$ is not divisible by 8 .
a) 4
b) 2
C) 1
d) 3
D) A candy-making factory has 26,936 candies, which they need to dispatch in packs of 8 . Will there be any candies left after the packaging process is complete?

Fluency Practice

A) State whether the numbers are divisible by 3.

1) 54
2) 5,053
3) 8,639
4) 774
B) 1) Which of the following numbers is not divisible by 3?
a) 3,102
b) 236
c) 27
d) 4,518
5) Which of the following numbers is divisible by 3 ?
a) 539
b) 85
C) 9,285
d) 640
C) Choose the correct digits that will make each statement true.
6) 15 __ is divisible by 3 .
a) 6
b) 3
c) 7
d) 9
7) 2,8 $\quad 6$ is not divisible by 3 .
a) 2
b) 5
c) 0
d) 4
D) There were 126 grilled pork chops prepared at a large barbecue party. If the guests ate 3 chops each, was there any left?

Fluency Practice

A) State whether the numbers are divisible by 9 .

1) 198
2) 8,000
3) 4,082
4) 53,523
B) 1) Which of the following numbers is divisible by 9 ?
a) 895
b) 23,509
C) 9,892
d) 32,130
5) Which of the following numbers is not divisible by 9 ?
a) 99,378
b) 264
c) 1,323
d) 3,015
C) Write the missing digit in each number so that the number formed is divisible by 9 .
6) $\quad 95$
7) $15, \ldots 49$
8) $2,0 _0$
9) $3 _2$
D) Delilah packed 9 pretzels in one basket. There were a total of 218 pretzels, and Delilah wanted to pack all of them into such baskets. Did any pretzel remain?

Fluency Practice

A) State whether the numbers are divisible by 7.

1) 10,871
2) 4,923
3) 356
4) 72,184
B) 1) Which of the following numbers is not divisible by 7 ?
a) 8,762
b) 63,546
C) 294
d) 3,885
5) Which of the following numbers is divisible by 7 ?
a) 904
b) 798
C) 1,236
d) 56,314
C) Fill in the missing digits.
6) Write the smallest digit to make the number divisible by 7 .
a) 45,92
b) 6 , _60
7) Write the largest digit to make the number divisible by 7 .
a) 1 2
b) 5
\qquad ,640
D) A gardener wants to plant 875 roses in the garden. Can he plant them in rows having 7 plants each without any plants left?

Fluency Practice

State whether the number is divisible by 11.

1) $\mathbf{1 , 1 4 4}$ \qquad 2) 450
2) 54,780 \qquad
3) 977 \qquad 6) 2,761
4) 712,712 \qquad
5) 86,856 \qquad
6) 601,178 \qquad
7) 177,210 \qquad 10) 5,476 \qquad
8) 64,614 \qquad
9) 238,095 \qquad
10) 3,309 \qquad
11) 286
12) 35,651 \qquad 16) 421,411 \qquad
13) 456,753 \qquad
14) 45,782
15) 28,324 \qquad 20) 548,746 \qquad

Fluency Practice

A) State whether the numbers are divisible by 6.

1) 2,376
2) 6,431
3) 91,403
4) 582
B) 1) Which of the following numbers is divisible by 6 ?
a) 769
b) 8,527
c) 450
d) 13,814
5) Which of the following numbers is not divisible by 6 ?
a) 30,006
b) 52,628
c) 9,672
d) 282
D) Victor, a food stand owner, prepared and steamed 354 fresh dumplings. He sold them in plates, and each plate contained 6 dumplings. Did any dumplings remain?

Fluency Practice

State whether the number is divisible by 12.

1) 761,004 \qquad 2) 12,405
2) 3,576
3) 10,188 \qquad
4) 1,222 \qquad 6) 36,943
5) 732
6) 78,420 \qquad
\qquad
7) 599 \qquad 10) 323,170 \qquad
8) 816 \qquad 12) 571,752 \qquad
9) 278,940 \qquad 14) 47,316 \qquad
10) 65,172 \qquad 16) 56,546 \qquad
11) 900,101 \qquad 18) 965,388 \qquad
12) 4,510 \qquad 20) 7,392

Fluency Practice

Use divisibility rule to circle the factors of each number.

Fluency Practice

Is the number to the left of each row divisible by the number at the top of each column? Check the boxes.

	2	3	4	5	6	7	8	9	10	11	12
497,652											
8,118											
28,755											
640											
874,629											
981,274											
19,746											
6,804											
246,972											
30,630											
176											
78,900											

Problem Solving

What is the largest multiple you can make using the digits below?
You don't have to use each digit and can use each one at most once

$$
\begin{array}{llll}
2 & 3 & 4 & 5
\end{array}
$$

Multiple of 2
Multiple of 3
Multiple of 6

What are the smallest and largest multiples of 4 you can make using all the digits below?
4
5
6
7
8

Smallest \qquad Largest \qquad

Using the digits 1 to 6, create a 6 digit number so that the first two digits are divisible by two, the first three digits are divisible by three, etc How many answers are there?

Do the same using the digits 0 to 9 (one answer!)

Problem Solving

4 friends are playing a game where they need to match 3 cards. If they find a match, they can keep all 3 cards. At the end of the game they counted their cards. Who has miscounted their cards?

478,512 is divisible by 3

When I type $478,512 \div 3$ into a calculator. I accidently mistype the third digit.

The result is still an INTEGER

What number could I have typed?

Problem Solving

Can you rearrange the 4 cards above to
Make a number that is divisible by 3 ?

Is it possible to find a number divisible by 3 with just 3 of the cards above?

3 digits are written onto cards
The cards are arranged to create a 3 digit number: 752

Can you rearrange the 3 cards above to a number that is divisible by 3 ?

Each of the three 3-digit numbers in the calculation below are divisible by 3

The last digit in each number is hidden. Explain why the last digit cannot be an 8 in any of the 3 numbers

How many numbers between

$$
25310 \text { and } 25319
$$

are divisible by 6 ?

How many numbers between 25320 and 25329 are divisible by 6 ?

4 digits are written onto cards The cards are arranged to create a 4 digit number: 3178

How many ways can you arrange the 4 cards so they make a 4 digit number that is divisible by 6 ?

Problem Solving

[1] in the number
235, A11B
replace A and B by digits so that the number divides exactly by 3 and by 5
try to establish all the possible answers
[2] in the number
56, A2B
replace A and B by digits so that the number is a multiple of 15
show that there are 7 solutions
[3] replace A and B in the number
$22, A 2 B$ so that the number is a multiple of 45
show that there are 2 solutions
[4] replace A and B in the number
$2 A 7,69 B$ so that the number is divisible by 3,5 and 11
show that there are 2 solutions
[5] replace A and B in the number
$6 A, 9 B 0$ so that 44 is a factor of the number
show that there are 5 solutions

Problem Solving

Place a digit in each box so that each number matches the description given.
Numbers cannot start with a 0.
a)

is a multiple of 3
d)

is a multiple of 4
g)

is a multiple of 5
j)

is a multiple of 3 less than 200
m)

is the largest possible multiple of 15
b)

is the smallest multiple of 3 possible.
e)

is the smallest multiple of 4 possible.
h)

is a multiple of 3,4 and 5
i)

is the largest multiple of 15 possible

is the smallest multiple of 6 possible
o)

the smallest number that is not a multiple of 3,4 or 5

Fluency Practice

Question 1: List all the factors of these numbers
(a) 8
(b) 10
(c) 7
(d) 12
(e) 20
(f) 22
(g) 18
(h) 50
(i) 15
(j) 19
(k) 30
(l) 100
(m) 32
(n) 24
(o) 42
(p) 28
(q) 66
(r) 70
(s) 45
(t) 60
(u) 25

Question 2: Is 3 a factor of.... ?
(a) 14
(b) 21
(c) 27
(d) 32
(e) 57
(f) 301
(g) 100

Question 3: Is 5 a factor of.... ?
(a) 20
(b) 34
(c) 40
(d) 38
(e) 45
(f) 102
(g) 135

Question 4: List all the factors of these numbers (you may use a calculator)
(a) 84
(b) 140
(c) 200
(d) 240
(e) 145
(f) 192
(g) 244

Question 5: Is 9 a factor of.... ?
(a) 38
(b) 90
(c) 72
(d) 108
(e) 909
(f) 9001
(g) 293

Question 1: $21 \quad 25 \quad 30 \quad 45$
Which number is the odd one out? why?
Question 2: $15 \quad 24 \quad 28 \quad 33$
Which number is the odd one out? why?
Question 3: Mary has 26 sweets and is able to share them evenly between her friends. Mary has more than 1 friend.
Write down how many friends Mary might have.
Question 4: James says that all numbers have an even number of factors. Is he correct?

Fluency Practice

Problem Solving

	Odd	Even
Factor of 20		
Factor of 12		Use only the numbers; $1,2,3,4,5,6$
Fill in the gaps		

	Factor of 28	Factor of 48	Factor of 45	Use only the numbers;
Factor of 42				 $1,2,3,4,5$, $6,7,8,9$ Fill in the gaps
Factor of 54				
Factor of 40				

Intelligent Practice

Find all the factors of:

1) 8
2) 30
3) 10
4) 100
5) 7
6) 32
7) 12
8) 24
9) 20
10) 42
11) 22
12) 28
13) 18
14) 66
15) 50
16) 15
17) 19
18) 60

21) 25

Count the number of factors for each question.

- Which numbers have two factors?
- Which numbers have an odd number of factors? Why?
- Take the factors of 28 (not including 28) add them together. What do you notice?

LCM and HCF

Find the LCM of each pair of numbers.
(a) 4 and 5
(b) 3 and 8
(c) 4 and 8
(d) 4 and 6
(e) 10 and 15
(f) 15 and 25

Find the HCF of each pair of numbers.
(a) 8 and 18
(b) 16 and 36
(c) 16 and 24
(d) 12 and 19
(e) 12 and 36
(f) 20 and 45

Find the HCF and LCM of each of these pairs of numbers.
(a) 80 and 112
(b) 60 and 72
(c) 210 and 350
(d) 135 and 450

Cheese slices are sold in packs of 8 . Bread buns are sold in packs of 6 . What is the least number of each pack that needs to be bought to have the same number of cheese slices and bread rolls?

Fred runs around a racing track in 4 minutes. Debbie runs around the track in 3 minutes. If they both start together on the start line, when will they both be together on the start line again? How many laps will each of them have done?

Prestwich contains three churches. At St. Peter's church the bells ring every 15 minutes. At St. Paul's church the bells ring every 20 minutes. At St. Mary's church the bells ring every 8 minutes. If the bells ring at all three churches at 1 pm , when is the next time this will happen?

Factors and Multiples

s．opoet ε Киюехә sен				
てt fo ハ0ృフe」				
乙 ¢0 ә¢！！				
ε ¢ ә әd！				

Types of Numbers

Page 64

Types of Numbers

- Some students (fewer than 100) are trying to get into groups. -When they are 3s, two people are left over. -When they are 4 s , three people are left over. -When they are 5 s , four people are left over. -When they are 6s, five people are left over. -How many students are there in total?

Fill in the table with the numbers 1 - 9			
	Square Number	Prime	Factors of 120
Multiples of 3			
Factors of 120			
Factor of 140			

Divisibility Rules

is it Divisible by ..?

Complete the table using the numbers at the bottom.

	Multiple of 2	Multiple of 4	Multiple of 5	Multiple of 10
Odd Number				
Multiple of 3				
Multiple of 6				
Multiple of 7				
Multiple of 9				
Prime Number				

56	2	Impossible		345	270	295	18	Imp	
Impossible		2004	612	36	150	720	840	5	
228	14	35	Impossible		Impossible		6	495	140

true OR false?

A) 6435 is divisible by 6
B) 2009 is divisible by 4
C) 542 is divisible by 3
D) 3212 is divisible by 4
E) 2307 is divisible by 9
F) 4300 is divisible by 5
G) 1334 is divisible by 2
H) 1044 is divisible by 9

Consecutive Chains

consecutive chains

Use the clues to find sets of increasing consecutive numbers. All numbers used are less than 100.

Square numbers have an odd number of factors	If a number has 12 as a factor, it will also have 6 as a factor	If a number has both 2 and 3 as factors, 6 will also be a factor	All multiples of 6 are also multiples of 3
All numbers in the 5 times table are also in the 10 times table	Multiples of 6 are always divisible by 12	Multiples of 12 are always divisible by 6	If a number is divisible by 3 and divisible by 4 , it is also divisible by 12
Square numbers always have 3 factors	" $6 \times \mathrm{a}$ " is always divisible by 6 (if a is a positive integer)	"a $\times 2 \times b \times 3$ " is always divisible by 6 , if a and b are any positive integers.	" 6 xa " is always divisible by 3 when a is a positive integer
Multiples of 6 are never prime numbers	All multiples of 5 are odd numbers	All multiples of 6 are even numbers	There is 1 odd number that has 2 as a factor
13	14	15	16

Factors and Multiples Puzzle

Pair up all the numbers and clues.
Each clue should be paired with one number.
You may find it useful to list options before you start pairing up.

Factor of 15	
Multiple of 7	
Factor of 49	
Multiple of 21	
Multiple of 9	
A number with an odd number of factors	
A common factor of 45 and 20	
A common multiple of 6 and 10	

Factors and Multiples Puzzle

Create a final clue so that this has a solution?

Can you make the clue so that it is unique solution?

A number with exactly 3 factors	
A number with exactly 2 factors	
Multiple of 4	
Multiple of 19	
Common Factor of 16 and 24	
Multiple of 5 Common factor of 42 and 63	
?????	

64 is a Factor of my Number

Instructions: Complete the remaining boxes by making the minimum change possible to the centre box. If there are boxes that cannot be filled in, say why.
Highest common factor of the $\mathbf{2}$ numbers

sләqunи омұ әчұ јо әןd!ұןии иошшоэ ұรәмоү

Problem Solving

$$
\begin{aligned}
& \text { Arrange the prime } \\
& \text { numbers } \\
& 3 \\
& 5 \\
& 7 \\
& 11 \\
& 13 \\
& 17 \\
& 19 \\
& 23 \\
& 29 \\
& \\
& \text { Into the } 9 \text { gaps so the } \\
& \text { totals in each row, } \\
& \text { column and diagonal is a } \\
& \text { prime number }
\end{aligned}
$$

Total is
PRIME

Total is
PRIME
Total is
PRIME
Total is
PRIME
Total is
PRIME
Total is
PRIME

$$
\begin{aligned}
& \text { Total is } \\
& \text { PRIME }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Total is } \\
& \text { PRIME }
\end{aligned}
$$

Problem Solving

make exactly 6 one or two digit prime numbers using the digits 1 to 9 exactly once how many different ways can this be done?

For example: 2, 3, 5, 41, 67, 89

Fluency Practice

Question 1: (a) List all the factors of 10
(b) List all the factors of 15
(c) Write down all the common factors of 10 and 15.

Question 2: (a) List all the factors of 12
(b) List all the factors of 18
(c) Write down all the common factors of 12 and 18.

Question 3: Write down all the common factors of each of these pairs of numbers.
(a) 6 and 8
(b) 15 and 20
(c) 9 and 15
(d) 7 and 14
(e) 30 and 40
(f) 21 and 27
(g) 18 and 30
(h) 16 and 24

Question 1: Martin says that 6 is a common factor of 42,36 and 50. Is he correct?

Fluency Practice

Question 4: (a) List all the factors of 14
(b) List all the factors of 21
(c) Find the highest common factor (HCF) of 14 and 21.

Question 5: (a) List all the factors of 24
(b) List all the factors of 36
(c) Find the highest common factor (HCF) of 24 and 36.

Question 6: Find the highest common factor (HCF) of each of these pairs of numbers.
(a) 4 and 14
(b) 6 and 9
(c) 9 and 21
(d) 8 and 12
(e) 6 and 15
(f) 10 and 17
(g) 30 and 45
(h) 40 and 60
(i) 28 and 63
(j) 24 and 36
(k) 16 and 28
(l) 18 and 45
(m) 150 and 200
(n) 12 and 54
(o) 90 and 270
(p) 39 and 65

Question 7: Find the highest common factor (HCF) of each of these sets of numbers.
(a) 12, 6 and 15
(b) 27, 33 and 12
(c) 30, 15 and 25
(d) 8,20 and 12
(e) 10, 25 and 13
(f) 12,24 and 30
(g) 9, 36 and 45
(h) 100,125 and 200

Question 3: Sam has completed his maths homework.
Can you spot any mistakes?

Find the highest common factor of 18 and 36
Factors of 18: 2, 3, 6, 9
Factors of 36: 2, 3, 4, 6, 9, 12, 18

$$
H C F=9
$$

Find the HCF of:

1) 5 and 10
2) 10 and 5
3) 20 and 5
4) 20 and 10
5) 20 and 30
6) 4 and 30
7) 5 and 30
8) 28 and 30
9) 30 and 30
10) 30 and 48
11) 36 and 48
12) 24,36 and 48
13) 240,360 and 480
14) 7 and 30
15) 14 and 30

Can you spot any patterns between questions and answers? Can you explain why they occur?

Fill in the Gaps

Find the HCF of...	Factors of First Number				Factors of Second Number						Answer
6 and 10	1	(2)	3	6	1		(2)	5		10	2
10 and 15	1	2	5	10	1		3	5		15	
6 and 15											
8 and 10	1	2	4	8							
8 and 15											
8 and 16					1	2			8	16	
14 and 16											
15 and 18					1	2	3	6	9	18	
8 and 18											
10 and 20											
8 and 28											
15 and 20											
12 and 18											
20 and 32											
16 and 24											
16 and 40											

Fluency Practice

LCM or HCF?

For each question, do you need to calculate the Lowest Common Multiple or the Highest Common Factor?
a) Kyle goes to the gym every 2 days. Tracy goes to the gym every 6 days. They met at the gym on Saturday. On which day of the week will they meet next?
b) Tammy has a 16 cm length of liquorice \& a 24 cm strip of liquorice. Using the two pieces, she wants to cut equal-length strips \& waste nothing. What is the maximum length of the equal-sized pieces?
c) Rashid is buying plates \& cups for a party. Plates come in packs of 6 \& cups come in packs of 8 . How many packs of each does he need to buy to have an equal amount of plates \& cups?
d) Ms Yates is making classroom packs for other teachers.

She has 25 board pens \& 30 protractors that she wants to split equally. How many packs can she make with no pens or protractors left behind?
e) A company stacks two types of boxes next to each other.

One type of box is 10 cm tall, the other is 8 cm tall.
What is the lowest height where both stacks are equal in height?
f) For PE, Mr Jones wants to make mixed groups with an equal amount of girls in each, \& an equal amount of boys in each.
There are 40 boys $\& 32$ girls. How many groups can he make?
g) Workbooks come in packs of 15 . Revision guides come in packs of 12 . Mr Smyth wants to have an equal number of both.
What is the minimum quantity of each pack he must buy?
h) Jess has a tea-break every 30 minutes. Liam has a tea break every 50 minutes. They were both on a break at 9:00 am. What time will they be on break at the same time next?

Fluency Practice

LCM or HCF?

For each question, do you need to calculate the Lowest Common Multiple or the Highest Common Factor?
a) Rashid is buying plates \& cups for a party. Plates come in packs of 8 \& cups come in packs of 10 . How many packs of each does he need to buy to have an equal amount of plates \& cups?
b) Kyle goes to the gym every 3 days. Tracy goes to the gym every 5 days. They met at the gym on Saturday.
On which day of the week will they meet next?
c) Tammy has a 45 cm length of liquorice \& a 36 cm strip of liquorice. Using the two pieces, she wants to cut equal-length strips \& waste nothing. What is the maximum length of the equal-sized pieces?
d) A company stacks two types of boxes next to each other.

One type of box is 15 cm tall, the other is 8 cm tall.
What is the lowest height where both stacks are equal in height?
e) Ms Yates is making classroom packs for other teachers.

She has 60 board pens \& 48 protractors that she wants to split equally. How many packs can she make with no pens or protractors left behind? How many pens are in each pack?
f) For PE Mr Jones wants to split boys \& girls equally into as many different groups as possible. There are 56 boys \& 70 girls.
How many groups can be made? How many boys \& girls are in each group?
h) Workbooks come in packs of 25 . Revision guides come in packs of 30 . Mr Smyth wants to have an equal number of both. How many packs of workbooks does he need to buy? How many packs of revision guides does he need to buy?
g) Jess has a tea-break every 50 minutes. Liam has a tea break every 45 minutes. They were both on a break at 9:30 am. What time will they be on break at the same time next?

Factor, Multiple, Both or Neither

For the Relationship, choose either: is a factor of, is a multiple of, is neither a factor nor a multiple of, or is both a factor and a multiple of

$\mathbf{1}^{\text {st }}$ number	Relationship	2 $^{\text {nd }}$ number
3		9
9		3
9		27
9		49
9		6
6		9
9		9
1		9
9		2
9		9.5
9		9
4.5		9
0		
9		9

Extension

1. Complete these statements with the most simple examples you can think of
2. Then complete the statements with the most interesting examples you can think of
\qquad is a factor of
\qquad is a multiple of
\qquad is both a factor and a multiple of
\qquad is neither a factor nor a multiple of \qquad

Factors，Multiples and Primes

	ญ				E		ล	
	\bigcirc				$\underset{\text { I }}{ }$			
	ลิ		E		\bigcirc			
	๔							

Lowest Common Multiple

1. a) Write down the first five multiples of 6 .
b) Write down the first five multiples of 9 .
c) What is the lowest common multiple (LCM) of 6 and 9.
d) State one other common multiple of 6 and 9 .
2. a) Select all the common multiples of 10 and 15 :
60
45
50
75
90
1500
b) What is the lowest common multiple of 10 and 15 ?
3. Find the lowest common multiple of:
a) 6 and 8
b) 3 and 4
c) 9 and 12
d) 5 and 8
e) 7 and 14
f) 6 and 15
g) 10 and 25
h) 12 and 8
i) 20 and 25
4. Deborah says:
"To find the LCM of two numbers, you can just multiply them together."
a) Give an example of a pair of numbers for which this works.
b) Give an example of a pair of numbers for which this does not work.
5. Complete each statement with a number from the box:
a) 12 is the LCM of 6 and \qquad
b) 18 is the LCM of 6 and \qquad
c) 30 is the LCM of 6 and \qquad

d) 42 is the LCM of 6 and \qquad
6. Find the lowest common multiple of:
a) 2, 3 and 5
b) 3, 6 and 8
c) 3, 6 and 7
d) 4,9 and 10

Multiples

1. Write the first 6 multiples of each number a. 5 b. 9 C. 7 d. 12	e. 20 f. II g. 50 h. 35
2. Decide whether the following statements are true or a. 20 is a multiple of both 5 and 10 c. The multiples of 20 include 40 and 80 e. I6 is a multiple of only two other numbers	b. The next multiple of 5 after 20 is 30 d. 7 is a multiple of 14 f. 30 is a multiple of $2,5,6$ and 30
3. Write down three common multiples of each set of num a. 8 and 10 b. 4 and 6 c. 3 and 5	d. 6 and 12 e. 10 and 25 f. 12 and 15
4. Find the lowest common multiple for each set of numbersa. 4 and 10 b. 6 and 9 c. 12 and 20 g. 2,3 and 5 h. 3,4 and 5 i. 10,15 and 20	d. 15 and 25 e. 30 and 60 f. 12 and 16
5 . Burgers come in packs of 6 . Buns come in packs of 16 . nadine wants to buy equal amounts of hot dogs and buns. How many packs of each should she buy?	6. A bus leaves Durham bus station every 12 minutes. A train leaves Durham train station every 18 minutes At IOam a bus and a train leave the stations at the same time. Between IOam and Ipm, how many times do they leave together?

Factors and Primes

1. Write down all the factors of:
a) 8
b) 12
c) 14
d) 29
e) 15
f) 16
g) 17
h) 18
2. Which of the following are prime numbers?
13
$\begin{array}{ll}6 & 19\end{array}$
$9 \quad 11$
$4 \quad 21$
3
17
3. Joseph is thinking of a number.

It is less than 10 and has exactly 3 factors.
Find the two possible numbers Joseph could be thinking of.
4. What is the smallest prime number?
5. What is the smallest composite number?
6. Emily says that the bigger a number is, the more factors it will have. Give an example to show that Emily is wrong.
7. Which of the following have exactly 3 factors?
25
20
13
3
49
9
8. Write down all the factors of:
a) 24
b) 40
c) 46
d) 28
9. a) Which number, less than 20 , has the most factors?
b) List the factors of this number.
10. a) Which number, less than 40 , has the most factors?
b) List the factors of this number.
12. Write down all the prime numbers between 10 and 30 .
13. Jack says that all prime numbers are odd.

Give an example to show that Jack is wrong.
14. Is each statement true or false?
a) 8 is a factor of 12
b) 26 is a factor of 13
c) 31 is a prime number
d) $\mathbf{1 5}$ is a composite number
e) 2 is a factor of 3960
f) 10 has four factors
g) All positive integers have 1 as a factor
h) All prime numbers have exactly 1 factor

Goldbach's Conjecture

"Every even number greater than two can be written as the sum of two prime numbers."
$4=2+2 \quad 6=3+3 \quad 8=3+5 \quad$... Can you keep going?

1. a) Write down all the factors of 18 .
b) Write down all the factors of 24 .
c) Write down all the common factors of 18 and 24 .
d) What is the highest common factor (HCF) of 18 and 24 ?
2. The table shows all the factors of some numbers.

Find the highest common factor of:
a) 70 and 72
b) 72 and 75
c) 72 and 84
d) 72 and 88
e) 75 and 88

Number	Factors
70	$1,2,5,7,10,14,35,70$
72	$1,2,3,4,6,8,9,12,18,24,36,72$
75	$1,3,5,15,25,75$
84	$1,2,4,21,42,84$
88	$1,2,4,8,11,22,44,88$

3. Find the highest common factor of:
a) 8 and 12
b) 15 and 21
c) 6 and 11
d) 24 and 32
e) 12 and 20
f) 14 and 28
g) 30 and 45
h) 12 and 24
i) 17 and 19
4. Two numbers are chosen from the five times table.

Harry says: "The highest common factor of the numbers must be 5."
Give an example to show that Harry is wrong.
5. Complete each statement with a number from the box:
a) 4 is the HCF of 12 and \qquad
b) 6 is the HCF of 12 and \qquad
c) 2 is the HCF of 12 and \qquad
d) 1 is the HCF of 12 and \qquad

21	30
27	16
14	25

Factors

HCF and LCM

1. Find the HCF of:
a) 24 and 30
b) 27 and 15
c) 32 and 21
2. Find the LCM of:
a) 12 and 8
b) 10 and 14
c) 12 and 15
3. a) Find the HCF of 45 and 60
b) Find the LCM of 45 and 60
c) Multiply your answers to parts \mathbf{a} and \mathbf{b} together.
d) Multiply 45 and 60 .
4. a) Find the HCF of 24 and 16
b) Find the LCM of 24 and 16
c) Multiply your answers to parts \mathbf{a} and \mathbf{b} together.
d) Multiply 24 and 16.
5. Buses following route A depart from the station every 15 minutes. Buses following route B depart from the station every 9 minutes.

At 9:00am, two buses depart from the station at the same time, following the routes A and B.

What will be the next time at which two buses following the two routes depart from the station together?
6. Simon checks his car's tyres every 6 weeks. Simon checks his car's oil level every 8 weeks.

If Simon is due to check both his tyres and oil level today, how long will it be until he next needs to check both of these on the same day?
7. It is Megan's turn to do the washing up at her house every three days.

It is Monday and it is Megan's turn to do the washing up.
After how many days will it again be Monday and Megan's turn?

HCF and LCM

8. Stuart has two lengths of ribbon, which are 150 cm and 120 cm long.

He wants to cut both ribbons into smaller strips which are all the same length.
What is the largest strip length that Stuart could cut the ribbons into?
9. Gabrielle is covering a rectangular patch of wall with square tiles. The rectangle measures 40 cm by 90 cm .

Work out the largest possible length of square tile that Gabrielle could use without having to cut any tiles.

Assume that no gaps are necessary between tiles.

10. John bought a number of apples in packs of 6 .

Paul bought a number of apples in packs of 8 .
John and Paul realised that they had bought exactly the same number of apples. What is the smallest possible number of apples that each man could have bought?
11. A class of children can be arranged into either 4 equal groups, or into 7 equal groups, with no children left over.

What is the smallest possible number of children in the class?
12. Jason is playing a drumming pattern.

He hits a bass drum every 4 beats and a cymbal every 12 beats.
On the first beat of the pattern, Jason hits the bass drum and the cymbal together. After how many more beats will Jason play hit the bass drum and the cymbal together?
13. On a disco lighting rig, a yellow light flashes every 6 seconds and a green light flashes every 9 seconds. The lights initially flash at the same time.

How many times in a minute will the yellow and green lights flash together?
14. Jane has 24 lollies, 60 chews and 96 chocolates. She wants to arrange the sweets into identical packets, without having any sweets left over.
a) What is the maximum number of identical packets Jane can make?
b) How many of each type of sweet should Jane put in each packet.

2 Sets and Venn Diagrams

Fluency Practice

A1 List \{vowels \}	A2 List \{the first six consonants\}	A3 List \{vowels in the word 'NUMBER'\}	A4 List \{consonants in the word 'MATHS'\}
B1 List \{vowels in the word 'ALGEBRA'\}	B2 List \{consonants in the word 'SETS'\}	B3 List \{letters in the word 'ISOSCELES'\}	B4 List \{vowels in 'SQUARE ROOT'\}
C1 List \{days of the week \}	C2 List \{seasons in the year\}	C3 List \{colours in the rainbow\}	C4 List \{countries in the United Kingdom \}
D1 List \{first three months of the year\}	D2 List \{months of the year with four letters	D3 List (months of the year beginning with 'A'\}	D4 List \{days of the week which contain an 'E'\}
E1 Describe the following set: \{spring, summer\}	E2 Describe the following set: \{square, rhombus\}	E3 Describe the following set: \{north, east, south, west\}	E4 Describe the following set: \{orange, yellow, indigo, violet\}

Fluency Practice

Set Notation

Describe these sets in words.
(a) $\{4,8,12,16,20,24,28\}$
(b) $\{1,4,9,16,25\}$
(c) \{Europe, Asia, Africa,...\}
(d) $\{1,2,3,4,6,12\}$

List the elements of the sets:
(a) Multiples of 7 less than 30
(b) Months of the year
(c) Factors of 25

Fluency Practice

A1 List \{the first six multiples of 3 \}	A2 List \{prime numbers less than 10$\}$	A3 List \{all the factors of 12$\}$	A4 List \{even numbers between 3 and 11$\}$
B1 Describe the set: $\{1,2,3,4,5\}$	B2 Describe the set: $\{1,3,5,7,9\}$	B3 Describe the set: $\{1,2,3,6,9,18\}$	B4 Describe the set: $\{11,13,17,19\}$
C1 $\mathrm{A}=\{$ positive integers less than 5$\}$ List set A	C2 $B=\{$ negative integers more than 6$\}$ List set B	C3 C $=\{$ integers between 4 and 9$\}$ List set C	$\begin{aligned} & \text { C4 } \\ & \mathrm{D}=\{\text { integers between }-3 \text { and } 4\} \end{aligned}$ List set D
D1 $\mathrm{M}=\{$ the first five multiples of 6$\}$ List set M	D2 $\mathrm{F}=\{\text { all the factors of } 20\}$ List set F	D3 $\mathrm{P}=\{$ the first six prime numbers $\}$ List set P	D4 $\mathrm{S}=\{\text { square numbers less than } 20\}$ List set S
E1 $\begin{aligned} & \mathrm{A}=\{\text { factors of } 20\} \\ & \mathrm{B}=\{1,2,5,10,20\} \end{aligned}$ Are the sets A and B the same?	E2 $\begin{aligned} & C=\{\text { first five multiples of } 7\} \\ & D=\{7,14,21,27,35\} \end{aligned}$ Are the sets C and D the same?	E3 $\mathrm{E}=\{$ prime numbers less than 20$\}$ $\mathrm{F}=\{$ the first nine prime numbers $\}$ Are the sets E and F the same?	E4 $\mathrm{G}=$ \{numbers on a dice $\}$ $\mathrm{H}=\{$ positive integers less than 7$\}$ Are the sets G and H the same?

Fluency Practice
I- For each Venn diagram, describe the sets: ξ, P and Q
$a \cdot \xi=2$

Fluency Practice

Constructing Three Set Venns

Illustrate with a Venn diagram.

$$
\begin{gathered}
\xi=\{1 \text { to } 10 \text { inclusive }\} \\
A=\{1 \text { to } 5 \text { inclusive }\} \\
B=\{\text { even numbers }\} \\
C=\{3 \text { to } 7 \text { inclusive }\}
\end{gathered}
$$

Illustrate with a Venn diagram.

$$
\begin{aligned}
\xi & =\{1 \text { to } 12 \text { inclusive }\} \\
A & =\{\text { prime numbers }\} \\
B & =\{\text { multiples of } 6\} \\
C & =\{\text { multiples of } 3\}
\end{aligned}
$$

Illustrate with a Venn diagram.

$$
\begin{gathered}
\xi=\{a \text { to } j \text { inclusive }\} \\
A=\{h, i, j\} \\
B=\{a, c, e, g, i\} \\
C=\{e, f, g, h, i\}
\end{gathered}
$$

Illustrate with a Venn diagram.

$$
\begin{gathered}
\xi=\{10 \text { to } 20 \text { inclusive }\} \\
A=\{\text { multiples of } 2\} \\
B=\{\text { multiples of } 3\} \\
C=\{\text { multiples of } 5\}
\end{gathered}
$$

Illustrate with a Venn diagram.

$$
\begin{gathered}
\xi=\{1 \text { to } 15 \text { inclusive }\} \\
A=\{x: 3 \leq x \leq 9\} \\
B=\{\text { odd numbers }\} \\
C=\{7,8,9,10,11\}
\end{gathered}
$$

Prime Numbers

- On your 100 grid, highlight all the prime numbers.				
2. Are the following statements true or false? Explain your answer. a. 2 the only even prime number b. A number can be both square and prime b. I is a prime number d. The sum of two prime numbers is always e				
3. Copy each diagram, then place the numbers I to 20 into each Venn diagram. a. b.		c.		$\sum^{\text {Squo }}$
4. Find two prime numbers which have a... a. \qquad d. ...difference of I2 b. ...sum of 84 e. ...sum that is a square number				
5. Use divisibility rules to decide if the following numbers are prime				

Maths Venns

Page 129

Maths Venns

Maths Venns

OL पечł әлоW

Even Number

Maths Venns

Page 132

Maths Venns

Page 133

3 Negative Numbers

Fluency Practice

Question 1: Work out the answers to each of the following
(a) 2-3
(b) 3-5
(c) 4-9
(d) $1-5$
(e) 5-7
(f) 6-7
(g) $8-11$
(h) $2-10$
(i) $-2+4$
(j) $-3+9$
(k) $-7+10$
(l) $-6+1$
(m) $-5+8$
(n) $-9+7$
(o) $-20+11$
(p) $-12+18$
(q) $-3-2$
(r) $-4-1$
(s) $-6-3$
(t) -1-5
(u) $-7-3$
(v) $-8-5$
(w) $-9-12$
(x) $-15-13$

Question 2: Work out the answers to each of the following
(a) $3+5-4$
(b) 2+1-6
(c) 5-8-1
(d) $7-10+1$
(e) $8+3-15$
(f) 5-6-4
(g) 1-7-4
(h) $-3+6+1$
(i) $-8+2+3$
(j) $-10+4-6$
(k) $-9-3-1$
(l) $-2-7+4$
(m) $-20+11-6$
(n) $-5+14-8$
(o) $-13-4+6$
(p) $-30-80+40$

Fluency Practice

Question 3: Work out the answers to each of the following
(a) $4+-1$
(b) $6+-2$
(c) $8+-7$
(d) $3+-5$
(e) $1+-7$
(f) $3+-10$
(g) $-2+-1$
(h) $-1+-6$
(i) $-5+-5$
(j) $-4+-5$
(k) $-10+-11$
(l) $-8+-4$

Question 4: Work out the answers to each of the following
(a) $6-+1$
(b) $3-+2$
(c) $8-+4$
(d) $2-+5$
(e) $1-+9$
(f) $-2-+5$
(g) $-10-+3$
(h) $-1-+1$
(i) $5-+11$
(j) $-2-+6$
(k) $-20-+13$
(l) $15-+25$

Question 5: Work out each of the following
(a) 1--2
(b) 3--1
(c) $3--5$
(d) 6--4
(e) 9--2
(f) $-1--4$
(g) $-2--1$
(h) $-8--3$
(i) $-5--9$
(j) -6--7
(k) $-15--8$
(l) $-12--30$

Question 6: Work out each of the following
(a) 11-15
(b) $-9+5$
(c) $-4-8$
(d) $-4+-3$
(e) $-9-+4$
(f) 10--3
(g) $7-20$
(h) $-2--5$
(i) $12+-7$
(j) $-4--1$
(k) $-9+-8$
(l) $8-13$
(m) 6--11
(n) $-7-+7$
(o) $-6-5$
(p) $-20+-3$
(q) $-9--15$
(r) $-8+25$
(s) 31-50
(t) -30--16
(u) $-41-14$
(v) $-5-+23$
(w) $-16+-15$
(x) $40--40$
(y) $-18--27$
(z) $-52+90$

Calculate:

1) $5+3=$
2) $3+5=$
3) $(-3)+5=$
4) $5+(-3)=$
5) $(-5)+(-3)=$
6) $(-5)+3=$
7) $(-5)-3=$
8) $(-3)-5=$
9) $3-5=$
10) $1.2-5=$

Maths Venns

Maths Venns

Page 142

Fluency Practice

Question 1: Answer each of the following multiplications
(a) 2×-3
(b) -4×3
(c) -5×5
(d) -7×-2
(e) -6×-3
(f) 8×-4
(g) -9×3
(h) -5×-8
(i) -9×7
(j) 10×-8
(k) 7×-4
(l) 6×8
(m) -11×3
(n) 4×-15
(o) -12×-12
(p) -5×7
(q) 9×-8
(r) -7×-8
(s) 12×-6
(t) 4×-13
(u) -11×10
(v) -20×-6
(w) 14×7
(x) -18×-13
(y) 25×-7
(z) -16×21

Question 2: Answer each of the following multiplications
(a) $2 \times 3 \times-2$
(b) $-3 \times 2 \times 5$
(c) $-5 \times-6 \times 2$
(d) $10 \times-3 \times-4$
(e) $-9 \times 2 \times-2$
(f) $-4 \times-3 \times-5$
(g) $-8 \times-8 \times-2$
(h) $5 \times-4 \times-7$

Maths Venns

Fluency Practice

Question 5: Answer each of the following divisions
(a) $-10 \div 2$
(b) $-12 \div 3$
(c) $-24 \div 4$
(d) $-42 \div 6$
(e) $9 \div-3$
(f) $21 \div-7$
(g) $-44 \div 11$
(h) $-72 \div 9$
(i) $-10 \div-5$
(j) $-28 \div-4$
(k) $-30 \div-3$
(l) $-48 \div-8$
(m) $-6 \div 6$
(n) $24 \div-3$
(o) $-12 \div-12$
(p) $-132 \div 11$
(q) $72 \div-8$
(r) $-108 \div-9$
(s) $36 \div-9$
(t) $100 \div-4$
(u) $-95 \div 5$
(v) $-49 \div-7$
(w) $144 \div 12$
(x) $-215 \div-5$
(y) $90 \div-15$
(z) $-342 \div 9$

Question 6: Answer each of the following divisions
(a) -9×-5
(b) $-32 \div 8$
(c) $66 \div-6$
(d) 2×-12
(e) $-24 \div-3$
(f) -12×7
(g) $-54 \div 6$
(h) -16×-2
(i) 8×-6
(j) -7×-6
(k) $40 \div-8$
(l) $56 \div-7$
(m) $-81 \div-9$
(n) -14×-5
(o) 10×-11
(p) $-65 \div 5$
(q) -90×-3
(r) $-170 \div-10$
(s) $1 \div-1$
(t) -1.5×-3
(u) $-17 \div 2$
(v) 2.2×-10
(w) $-93 \div-10$
(x) -6.2×-3
(y) -9×10.5
(z) $52 \div-5$

Intelligent Practice

Calculate:

1) $2 \times 10=$
2) $10 \times 2=$
3) $(-10) \times 2=$
4) $10 \times(-2)=$
5) $(-10) \times(-2)=$
6) $(-10) \div(-2)=$
7) $10 \div(-2)=$
8) $(-10) \div 2=$
9) $2 \div(-10)=$
10) $2 \div 10=$
11) $10 \times 2 \times 2=$
12) $10 \times 2 \times(-2)=$
13) $10 \times(-2) \times(-2)=$
14) $(-10) \times(-2) \times(-2)=$
15) $(-10) \div(-2) \times(-2)=$
16) $10 \div(-2) \times(-2)=$

Maths Venns

Page 150

Fluency Practice

1) The temperature in Nottingham on Wednesday is $-6^{\circ} \mathrm{C}$. On Thursday, the temperature decreases by $1^{\circ} \mathrm{C}$. Find the temperature in Nottingham on Thursday.
2) The temperature in Salford on Friday is $-1^{\circ} \mathrm{C}$. On Saturday, the temperature decreases by $2^{\circ} \mathrm{C}$. Find the temperature in Salford on Saturday.
3) The temperature in Sheffield on Wednesday is $-1{ }^{\circ} \mathrm{C}$. On Thursday, the temperature decreases by $15^{\circ} \mathrm{C}$. Find the temperature in Sheffield on Thursday.
4) The temperature in Portsmouth on Tuesday is $-3^{\circ} \mathrm{C}$. On Wednesday, the temperature decreases by $12{ }^{\circ} \mathrm{C}$. Find the temperature in Portsmouth on Wednesday.
5) The temperature in Bath on Tuesday is $-4{ }^{\circ} \mathrm{C}$. On Wednesday, the temperature increases by $1{ }^{\circ} \mathrm{C}$. Find the temperature in Bath on Wednesday.

Fluency Practice

1) The temperature in Norwich is $-10^{\circ} \mathrm{C}$. The temperature in Leicester is $2^{\circ} \mathrm{C}$. What is the difference between the temperature in Norwich and the temperature in Leicester?
2) The temperature in Brighton and Hove is $15^{\circ} \mathrm{C}$. The temperature in Birmingham is $18^{\circ} \mathrm{C}$. What is the difference between the temperature in Brighton and Hove and the temperature in Birmingham?
3) The temperature in Peterborough is $13^{\circ} \mathrm{C}$. The temperature in Manchester is $2^{\circ} \mathrm{C}$. What is the difference between the temperature in Peterborough and the temperature in Manchester?
4) The temperature in Sunderland is $0^{\circ} \mathrm{C}$.

The temperature in Southampton is $8^{\circ} \mathrm{C}$.
What is the difference between the temperature in Sunderland and the temperature in Southampton?
5) The temperature in Lichfield is $3^{\circ} \mathrm{C}$.

The temperature in Wolverhampton is $-4^{\circ} \mathrm{C}$.
What is the difference between the temperature in Lichfield and the temperature in Wolverhampton?

Fluency Practice

Question 1: The thermometer below shows the temperature at 6am in a town.
(a) What temperature is shown?

The temperature increases by $5^{\circ} \mathrm{C}$ by 10 am .
(b) What is the temperature at 10am.

Question 2: The map shows the temperatures in six cities.
(a) Which city is the warmest?
(b) Which city is the coldest?
(c) What is the difference in temperature between London and Cork?

The temperature in Berlin is $4^{\circ} \mathrm{C}$ colder than Belfast
(d) What is the temperature in Berlin?

Question 3: Shown is a list of locations and their elevations
(a) List the locations that are below sea level, 0 metres.
(b) Which location has the lowest elevation?
(c) Which location has the highest elevation?
(d) Work out the difference in Baku's and Tokyo's elevations

Location	Elevation
Coachella	-22 metres
Bern	542 metres
Jericho	-258 metres
Baku	-28 metres
Lake Eyre	-16 metres
Tokyo	17 metres

Question 4: At 3am the temperature is $-8^{\circ} \mathrm{C}$.
By 1 pm the temperature went up by $13^{\circ} \mathrm{C}$.
From 1 pm to 10 pm the temperature went down by $6^{\circ} \mathrm{C}$
Work out the temperature at 10 pm .

Question 5: The table below shows some information about the minimum and maximum temperature for a day in January.

The minimum temperature in Lisburn is $1^{\circ} \mathrm{C}$ colder than its maximum temperature.
(a) What was Lisburn's minimum temperature?
(b) Which city had the lowest minimum temperature?

City	Minimum ${ }^{\circ} \mathrm{C}$	Maximum ${ }^{\circ} \mathrm{C}$
Glasgow	$-6^{\circ} \mathrm{C}$	$9^{\circ} \mathrm{C}$
Bristol	$4^{\circ} \mathrm{C}$	$14^{\circ} \mathrm{C}$
Norwich	$-7^{\circ} \mathrm{C}$	$7^{\circ} \mathrm{C}$
Hull	$-1^{\circ} \mathrm{C}$	$10^{\circ} \mathrm{C}$
Derby	$5^{\circ} \mathrm{C}$	$11^{\circ} \mathrm{C}$
Lisburn		$-2^{\circ} \mathrm{C}$

(c) Which city had the greatest maximum temperature?
(d) Which city had the greatest difference between their minimum and maximum temperatures?

Question 6: Dominic's bank account balance is $£ 23$.
He withdraws $£ 50$ from his bank account.
What is his new bank account balance?

Question 7: Daisy's bank account balance is $-£ 100$. Daisy deposits $£ 35$ into the bank account. What is her new bank account balance?

Question 8: The table shows the melting points of some elements
(a) Which element has the lowest melting point?
(b) Work out the difference in melting points of bromine and mercury
(c) Work out the difference in melting points of nitrogen and silicon

The temperature is $-10^{\circ} \mathrm{C}$

Element	Melting Point
Bromine	$-7^{\circ} \mathrm{C}$
Caesium	$29^{\circ} \mathrm{C}$
Mercury	$-39^{\circ} \mathrm{C}$
Nitrogen	$-210^{\circ} \mathrm{C}$
Phosphorus	$44^{\circ} \mathrm{C}$
Silicon	$1414^{\circ} \mathrm{C}$

(d) Which of the elements are solid?

Question 9: Ballymena Rovers started a football season on -14 points
Each win is worth 3 points.
Each draw is worth 1 point
Each loss is worth 0 points.
Over the season, Ballymena Rovers won 15 matches, drew 3 matches and lost 2.
How many points did they finish with at the end of the season?
Question 10: Tristan is taking part in a maths competition.
Each correct answer is worth 5 points and each incorrect answer is worth -3 If Tristan chooses not to answer a question, it is worth 0 points. There are 10 questions in total.
(a) What would Tristan's final score be if he answered 5 correctly, 4 incorrectly and left 1 blank?
(b) Can Tristan finish with -10 points? Explain your answer.

Fluency Practice

Fluency Practice

Work out:
(a) $1-3$
(b) $4-9$
(c) $-5+6$
(d) $-6+8$
(e) $-2-3$
(f) $2.5-6$

Work out:
(a) $10+-3$
(b) $7-+6$
(c) $-4+-2$
(d) $-6-+3$
(e) $3++7$
(f) $-4.6+-4$

Work out:
(a) $6--4$
(b) $+8--1$
(c) $-1--5$
(d) $-3--9$
(e) $3.5--2$
(f) $\quad 0.5--4.5$

Work out:
(a) 2×-4
(b) -7×3
(c) $-5 \times+6$
(d) $+2 \times-9$
(e) -6×-3
(f) 7×-7
(g) $\quad-4 \times-5$
(h) $+2 \times-0.5$
(i) -3×-3
(j) $(-3)^{2}$

Work out:
(a) $8 \div-2$
(b) $-9 \div 3$
(c) $-25 \div+5$
(d) $+12 \div-4$
(e) $-30 \div-3$
(f) $+10 \div+2$
(g) $\quad-7 \div-1$
(h) $-20 \div-2.5$

Number Line Journeys

x	∞ 11 ∞	$\begin{aligned} & \mathbb{1} \\ & \text { ॥ } \\ & \circ \end{aligned}$	$\begin{gathered} c \\ \text { II } \\ \Gamma \end{gathered}$	$\begin{aligned} & \text { ح } \\ & \text { II } \\ & \sim \end{aligned}$	$\begin{aligned} & \text { ¢ } \\ & \text { II } \\ & \sim \end{aligned}$	3 II \pm	11 10 $\stackrel{0}{\square}$		
ص	$\begin{aligned} & \vec{\prime} \\ & \stackrel{1}{n} \end{aligned}$	$\begin{aligned} & 0 \\ & 11 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { ㄴ } \\ & \text { II } \\ & \forall \end{aligned}$	$\begin{aligned} & 0 \\ & 11 \\ & 1 \end{aligned}$	-1 0	N II N	$\begin{aligned} & \sum_{11} \\ & \infty \end{aligned}$		
	$\begin{aligned} & \text { Y } \\ & \hline 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \infty \\ & \text { ॥ } \\ & \forall \end{aligned}$	$\begin{aligned} & \overline{11} \\ & \text { M } \end{aligned}$	$$	$\frac{\square}{\text { II }}$	O	II	$\begin{aligned} & \underset{+}{\sim} \\ & + \end{aligned}$	$\begin{aligned} & \text { ? } \\ & + \end{aligned}$
	Y $\stackrel{11}{ }$ $\stackrel{\text { N }}{ }$	$\stackrel{\vdash}{\text { - }}$	11 1	?	¢	0 11	0 11 1	$\dot{\sim}$	$+$

Negative Numbers Code Breaker!
Calculate the answer to these sums.
The answer will then give you a letter
Write it in the yellow box. The letters
The answer will then give you a letter in the code box.
Write it in the yellow box. The letters spell a secret message - can you crack it?
k
k. $-2+2$ gives
I. $-5-5$ gives
m. $15+-2$ gives
n. 5-6 gives
o. $-7+5$ gives
p. $-10+5$ gives
q. $-5+-6$ gives
r. $5--10$ gives
-5.
j. $-1+-1$ gives
k. $-2+2$ gives.
n
o. $-7+5$ gives
p. $-10+5$ gives
a. $5-10$ gives
b. $-5+20$ gives
c. $-5--20$ gives
d. $-6+9$ gives
e. $-4+-2$ gives
f. $-10+20$ gives
h. -4--12 gives
5--5 gives
g. 3-- 3 gives

Addition and Subtraction Puzzles

1. Warm up
a) $2+-3=\square$
b) $-3+-1=\square$
c) $-4+3=\square$
d) $-1--4=\square$
e) $-1-4=\square$
f) $3--7=$ \square
g) $-4+-2=$ \square h) $1+-1=$ \square i) $-6-3=$ \square
2. Number pyramids Each pair of side-by-side numbers add to give the number above.
a)

b)

c)

3. Two-way puzzles Write numbers in the boxes to make the calculations work both across and down.
a)

-5	+	2	$=$
+		+	
-3	+	-1	$=$
$=$		$=$	

b)

5	-	-3	$=$
+		-	
-6	+	-2	$=$
$=$		$=$	

c)

-4	+	-3	$=$
-		+	
-4	-	-3	$=$
$=$		$=$	

4. Missing signs Write an addition (+) or subtraction (-) symbol in the boxes to make the calculations correct.
a) $3 \square-5=-2$
b) -3 \square $3=-6$
c) 4 \square $-4=0$
d) $-4 \square 1=-3$
e) $-1 \square-8=7$
f) $-2 \square-2=-4$
g) 2
 $-3=5$
h) $-7 \square 6=-1$
i) $0 \square-5=-5$
5. Magic Squares Complete the grid so that every row, column and the two diagonals add up to the same magic number.
a)

Magic number:
b)

-2		-4
	-1	
2		

Magic number:
c)

-5		
2		-6
-3		

Magic number:

Addition and Subtraction Puzzles

6. Missing numbers
a) $2+\square=-3$
b) $3-\square=7$
c) $-3+\square=4$
d) $-1-\square=0$
e) $-4+\square=-5$
f) $0+\square=-4$
g) $6-\square=9$
h) $-1-\square=1$
i) $4-\square=-2$
7. Chains
a)

b)

c)

8. Two-way puzzles Write numbers in the boxes to make the calculations work both across and down.
a)

| -2 | + | + | $=-7$ |
| :--- | :--- | :--- | :--- | :--- |
| + | | + | |
| | + | -3 | $=$ |
| $=$ | $=$ | | |
| -1 | | | |

b)

-2	-		$=$
+		+	
	-		$=$
=		=	

c)

9. Arrange the numbers

Always, Sometimes, Never True?

Adding a negative number is the same as subtracting

A calculation involving adding always gives you a positive answer

Two negatives make a positive

Two positives make a positive

Subtraction always leaves you with a negative number

A positive and a negative is a negative

Subtracting a negative number is the same as adding

A negative and a positive is a negative

Adding and Subtracting with Negative Numbers

Adding and Subtracting with Negative Numbers

Adding and Subtracting with Negative Numbers

Negative Numbers Magic Squares

negative			numbers magic squares								Complete each of these magic squares so that each row, column and diagonal adds up to the same total.						
-4		0	-1		-3			-1	-3			-6					-7
3	-1			0	2	2	0			-2	0	-7	-5	-3			-2
-2		2	3		1	1	-4		1		-1			-4	-1		-3
0	5	-2	-4					-4			2	-7			0	-7	
				-1			-1	1	5	1					-5		
4				-3	2	2			0			-3	-8	-1	-4		
think! can you work out the missing numbers?																	
$a+6+3=7$			$2+b+4=1$			$3+6+c=4$			$1+d+5=2$			$\mathrm{e}+9+1=0$			$f+4+-3=2$		
$8+g+2=5$			$-3+5+2=h$			$i+3=-1$			$j+2+6=-4$			$2+\mathrm{k}=-1$			$4+-1=L$		
$m+-3=-5$			$\mathrm{n}+-1=4$			$0+2+-3=1$			$3-p=-2$			$7-q=9$			$2-r=4$		

Magic Squares

Magic Squares

complete the magic squares so they have the same row, column and diagonal totals

explore the relationship for the sum of the four corner numbers with a 1 in the centre

Number Pyramids

Puzzle Square

隹

Puzzle Square

Puzzle Square

Multiplication and Division Puzzles

1. Warm up
a) $4 \times-7=\square$
b) $-3 \times-1=\square$
c) $-20 \div 4=\square$
d) $15 \div-5=\square$
e) $-9 \times-9=\square$
f) $42 \div-6=\square$
g) $-12 \times 4=\square$
h) $-4 \times 0=$
\square
i) $-8 \div-4=\square$
2. Multiplication Arithmagons $\mathbf{1}$ The numbers in the circles multiply to make the numbers in the squares between them.
a)

b)

c)

3. Two-way puzzles Write numbers in the boxes to make the calculations work both across and down.
a)

-6	\times	4	$=($
\times		\times	
-5	\times	-8	$=($
$=$		$=$	
\square			

b)

-7	\times	-9	$=$
\times		\div	
6	\div	-3	$=$
$=$		$=$	

c)

12	\div	-4	$=$
\times		\times	
-8	\div	-1	$=$
$=$		$=$	

d)

-4	\times		$=16$
\times		\div	
	\times	-2	$=$
$=$		$=$	
12			

e)

-6	\div	2	$=$
\times		\times	
	\div		$=$
$=$		$=$	
-48		-8	

f)

	\div	-3	$=$
\div		\times	
	\div		$=$
$=$		$=$	

4. Function machine chains
a)

b)

c)

d)

Multiplication and Division Puzzles

5. Missing numbers
a) $4 \times \square=-36$
b) $-6 \div \square=6$
c) $-5 \times \square=-20$
d) $-8 \div$
$\square=-2$
e) $-7 \times \square=63$
f) $4 \div \square=-0.4$
g) $-9 \times \square=81$
h) $-1 \div \square=-1$
i) $-6 \times \square=-12$
6. Arrange the numbers 1
a)
 $=-4 \times$

b) $4 \times \square=40 \div \square$
$-4 \times \square=12 \times \square$
$-3 \times \square$ $=60 \div$

$12 \times \square=-3 \times \square$
$-5 \times \square=80 \div \square$
$-6-12-3-94$
$-8-5$
$-4-2$
5
7. Multiplication Arithmagons 2 The numbers in the circles multiply to make the numbers in the squares between them.
a)

b)

c)

8. Arrange the numbers 2

Product Tables

Multiplication Gridz

Multiplication GRIDZ

A | \times | 1 | -2 | 3 | -4 |
| :---: | :---: | :---: | :---: | :---: |
| 2 | | | 6 | -8 |
| -3 | -3 | | | 12 |
| -5 | | | | |

в | \times | 4 | | | -5 | -6 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| -2 | | 6 | | 10 | |
| 7 | 28 | -21 | 14 | | |
| | | | | 25 | 30 |
| | 16 | | 8 | | |

$\boldsymbol{| c | l | l | l | l | l | l | l |}$| \times | -8 | -1 | | |
| :---: | :---: | :---: | :---: | :---: |
| -12 | 7 | -4 | | |
| 6 | | | | 54 |
| | -72 | | -24 | |
| | 32 | | | |
| | | | | |
| -9 | 72 | | | |
| | | 49 | | |
| | 40 | | -15 | -45 |

Reverse Multiplication Grids

\times		
	24	-18
	8	-6

Use: -6, -4, -2, 3

\times		
	-27	12
	-45	20

Use: -9, 3, 4, 5

\times		
	48	-56
	-72	84

Use: -12, -7, 6, 8

\times			
	15	-24	-27
	30	-48	-54
	-40	64	72

Use: $-9,-8,-8,3,5,6$

	36	-15	6	27	-12	-21
	-96	40	-16	-72	32	56
	96	-40	16	72	-32	-56
	-72	30	-12	-54	24	42
	84	-35	14	63	-28	-49

Use: -12, -7, -4, -2, 3, 9

Directed Numbers Puzzle

Use these clues to work out the numbers in the grid.

Clues

1. The number in the centre equals -5-3
2. The number that goes in the top right box is 5 less than -5
3. The number in the bottom left is -3×-3
4. The number in the top left is the number in the centre add -3×-1
5. The number in the middle of the bottom row is 6 less than the number above it.

6. There is a number 6 in one of the middle row boxes.
7. There is a number equal to -4×-5 next to the box containing -5
8. When you add up the right hand column you get -27
9. The number below -5 is $-6-10$

Directed Target

using the three

given numbers
try to make the
target of - 10

use any of the

 operations:
Θ, \oplus, \pm

Smaller Radiating Directed Numbers

©

Smaller Radiating Directed Numbers

ल

Smaller Radiating Directed Numbers

\bigoplus

steps allowed:
$\begin{array}{lll}0 & \mathbf{N} & m \\ 1 & 1 & 1 \\ & \times & 1\end{array}$

Radiating Directed Numbers

what are the missing

Radiating Directed Numbers

Radiating Directed Numbers

steps allowed:
$\begin{array}{cc}+8 & -6 \\ \times-3 & \div-2\end{array}$

Radiating Directed Numbers

0
0
0
0
0
$\bar{\sigma}$
0
0

$\begin{array}{cc}+4 & -8 \\ \times-5 & \div-2\end{array}$
what are the missing

Totalling Up

TOTALLing Up

Dae opens a new pizza shop.
In March he sells $£ 1500$ of pizza... but he has costs!
He spent $£ 400$ on Ingredients, $£ 200$ on Electricity, $£ 100$ on Pizza Boxes and $£ 600$ on Shop Rent.

How much money does Dae keep after these costs?
How many different ways can we write this calculation?
Because it is a new business, the owner of the shop decides take away the rent for March. How much money does Dae keep now?

Can we write this calculation as a subtraction?
What happens when we subtract a negative from a total?

