

Year 7 2023 Mathematics 2024 Unit 2 Booklet

HGS Maths

Dr Frost Course

Name:

Class:

Contents

1 **Powers and Roots**

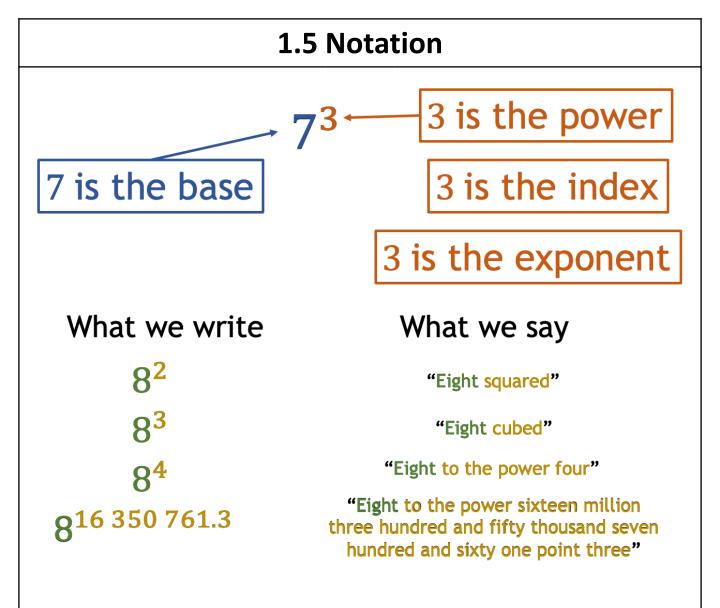
- 1.1 Squaring
- 1.2 Square Roots
- 1.3 <u>Cubing</u>
- 1.4 <u>Cube Roots</u>
- 1.5 <u>Notation</u>
- 1.6 <u>Powers</u>
- 1.7 <u>Roots</u>
- 2 Order of Operations
- 2.1 <u>Commutativity</u>
- 2.2 Moving Numbers Around
- 2.3 <u>Mixing the Four Operations</u>
- 2.4 **Exponentiation**
- 2.5 Brackets
- 3 Introduction to Algebra
- 3.1 Forming Expressions
- 3.2 Conventions and Definitions
- 3.3 <u>Collecting Like Terms without Powers</u>
- 3.4 Collecting Like Terms with Powers
- 3.5 <u>Algebraic Notation</u>
- 3.6 Multiplying Terms without Powers
- 3.7 <u>Multiplying Terms with Powers</u>
- 3.8 **Dividing Terms without Powers**
- 3.9 Dividing Terms with Powers
- 3.10 Substitution

1 Powers and Roots

1.1 Squaring

	Work	ed Exam	ple			Your	Turn				
a)		as a multij work it ou		a)		e 8 ² as a hen wo	-	ltiplication out			
b)	Use a cal 2.11 ²	culator to	work out	but b) Use a calcu 31.7 ²							

1.2 Square Roots


	Worke	d Exar	nple)				Yo	ur	Tu	rn		
a)	Work out	√ <u>25</u>			a	a) \	Nork	out	$\sqrt{6}$	4			
b)	b) Use a calculator to work out $\sqrt{4.4521}$			t k	b) Use a calculator to work out $\sqrt{1004.89}$						ıt		

1.3 Cubing

	W	ork	ed	Exa	am	ple	e					Yo	ur	Tu	rn		
a)	Write 4^3 as a multiplication and then work it out				ſ	a) Write 8 ³ as a multiplication and then work it out											
b)	Use a 2.11	e a calculator to work out 1^3			ut	b) Use a calculator to work our 31.7 ³				ıt							

1.4 Cube Roots

	Worke	d Exam	ple			Your	Turn			
a)	Work out	³ √64		a)	a) Work out $\sqrt[3]{512}$					
b)	Use a calculator to work out $\sqrt[3]{9.393931}$: b)	b) Use a calculator to work out $\sqrt[3]{31855.013}$					

1.6 Powers

Worked	l Example		Your Turn			
Write 3 ⁴ as a n then work it ou		and	Write 2 ⁵ as a multiplication and then work it out			

Fill in the Gaps

We say	We write	We work out	Answer
2 to the power of 4	24	$2 \times 2 \times 2 \times 2$	
3 to the power of 4		3 × 3 × 3 × 3	
	44		256
5 to the power of 2			
	6 ⁵		7776
		$8 \times 8 \times 8 \times 8$	
		9 × 9 × 9	
	3 ⁹		
10 to the power of 2			
2 to the power of 10			

1.7 Roots

Powers recap: fill in the table without a calculator Do as many as you can in 5 minutes!

2 ¹ =	01			
Z' -	31 =	41 =	5 ¹ =	61 =
2 ² =	32 =	4 ² =	5 ² =	6 ² =
2 ³ =	33 =	4 ³ =	5 ³ =	6 ³ =
24 =	34 =	44 =	54 =	64 =
2 ⁵ =	35 =	4 ⁵ =	5 ⁵ =	6 ⁵ =
2 ⁶ =				
27 =	71 =	81 =	91 =	10 ¹ =
28 =	7 ² =	82 =	9 ² =	10 ² =
2 ⁹ =	7 ³ =	8 ³ =	9 ³ =	10 ³ =
2 ¹⁰ =	74 =	84 =	94 =	104 =

11 ² =	12 ² =	13 ² =	14 ² =	15 ² =
16 ² =	17 ² =	18 ² =	19 ² =	20 ² =

Worked Example	Your Turn		
Work out $\sqrt[4]{81}$	Work out $\sqrt[5]{32}$		

2 Order of Operations

2.1 Commutativity

So far, we have studied three groups of operations.

	Multiplication	Addition	Exponentiation
Operation	$2 \times 3 = 6$ $2 \cdot 3 = 6$	2 + 3 = 5	$2^3 = 8$
Inverse Operation	$6 \div 3 = 2$ $\frac{6}{3} = 2$	5 – 3 = 2	$\sqrt[3]{8} = 2$

		Commu	itativity	
Whic	h of the operation	ons are comn	nutative?	
				Commutative?
ition	Multiplication	$2 \cdot 3 = 6$	$2 \cdot 3 = 3 \cdot 2$	Yes
Multiplication	Division	$\frac{6}{3} = 2$	$\frac{6}{3} \neq \frac{3}{6}$	No
tion	Addition	2 + 3 = 5	2 + 3 = 3 + 2	Yes
Addition	Subtraction	5 - 3 = 2	5 – 3 ≠ 3 – 5	No
ntiation	Exponents	$2^2 = 8$	$2^3 \neq 3^2$	No
Exponentiati	Roots	$\sqrt[3]{8} = 2$	$\sqrt[3]{8} \neq \sqrt[8]{3}$	No

Notice how most operations are not commutative.

That means the order you write and work out matters.

It is only multiplication and addition where you can change the order of the inputs and not affect the output.

Fill in the Gaps

	Calculation	Order Reverse	Commutative?
e.g.	$5 \times 4 = 20$	$4 \times 5 = 20$	Yes
а	$12 \times 3 = 36$	3 × 12 =	
b	$9 \cdot 7 =$		
С	$24 \div 6 = 4$	$6 \div 24 = 0.25$	
d	$\frac{3}{2} =$	$\frac{2}{3} =$	
е	15 + 19 =		
f	20 - 15 = 5	15 - 20 = -5	
g	6.5 + 1.2 =		
h	14 - 8 =		
i	$5^2 =$	$2^5 =$	
j	² √121	¹²¹ √2	
k	0.03 - 0.2 =		
I	$\sqrt[3]{8} =$		
m		34 =	
n		$123 \cdot 19 =$	

2.2 Moving Numbers Around

What happens when we have more than two numbers in a calculation?

Which of these sums are the same?

9 + 8 + 25

25 + 8 + 9

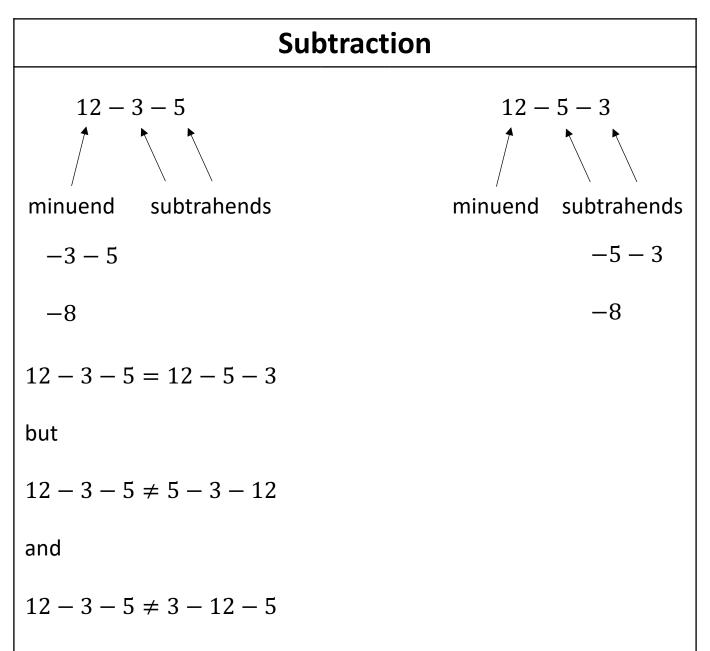
9 + 25 + 8

8 + 25 + 9

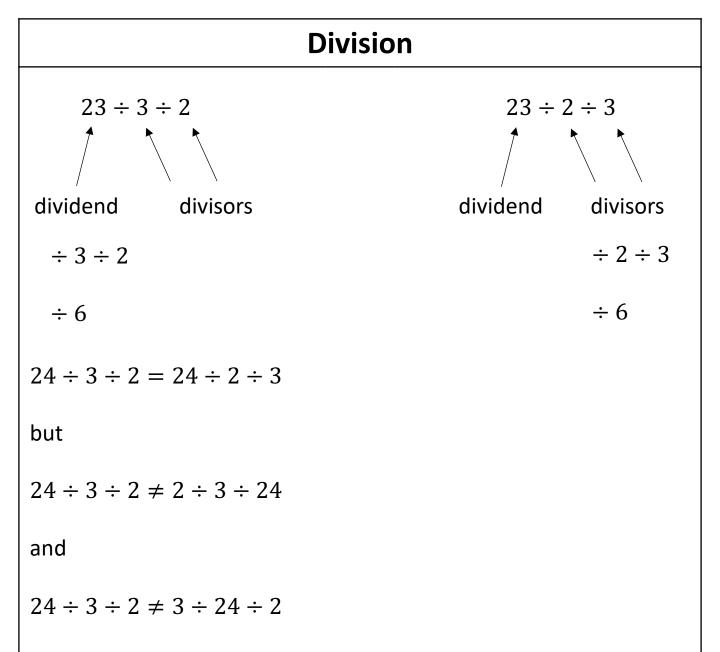
What other sums would be the same?

Which of these differences are the same?

30 - 4 - 10


30 - 10 - 4

10 - 30 - 4


4 - 10 - 30

Why are the top two the same, but the bottom two different?

Key Word	ds
<u>summand</u> + <u>summand</u> = sum <u>multiplier</u> × <u>multiplier</u> = product	same word, you can change the order: <u>commutative</u>
minuend – subtrahend = difference dividend – divisor = quotient	different words, you cannot change the order: not commutative

We can subtract in any order. What we can't do is switch a subtrahend with a minuend.

We can divide in any order. What we can't do is switch a divisor with a dividend.

Moving Numbers Around

When you have a mix of addition and subtraction, remember:

Addition	
+	Summands can move anywhere
	Subtrahends can move as long as they are always behind a subtraction sign

When you have a mix of multiplication and division, remember:

Multiplication	
×	Multipliers can move anywhere
÷	Divisors can move as long as they are always behind a division sign

	Worked Example									Your Turn									
cal	Write down as many calculations as you can that are equivalent to these.						e	Write down as many calculations as you can that are equivalent to these.							е				
c)	a) $43 + 189 + 72$ b) $11 \times 17 \times 19$ c) $360 \div 9 \div 8$ d) $34 - 5 - 15.2$								a) $12 \times 23 \times 71$ b) $180 \div 10 \div 2$ c) $95 - 17 - 51$ d) $1.2 + 3.6 + 0.4$										

	Worked Example										Yo	ur	Tu	rn				
Write down as many calculations as you can that are equivalent to these.								Write down as many calculations as you can that are equivalent to these.							9			
a) b)				9 – < 16			121 · 6	+ 2	18	a) $2 + 13 - 5 + 11 - 6$ b) $40 \div 10 \times 3 \div 6 \times 8$								

Notation

Using better notation for \times and \div can help us to see this more clearly.

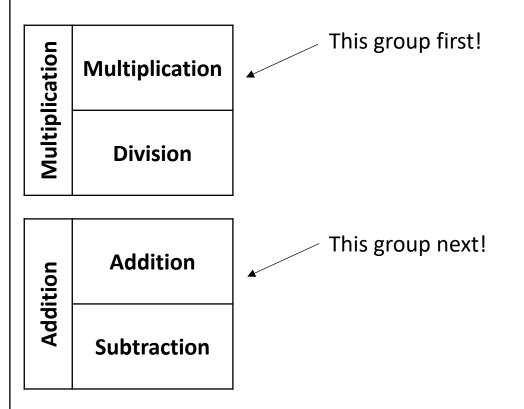
Let's take some questions from the last page.

$$11 \div 4 \times 16 \times 3 \div 6$$
 $= \frac{11 \cdot 16 \cdot 3}{4 \cdot 6}$ $= \frac{16 \cdot 3 \cdot 11}{6 \cdot 4}$ $= \frac{16 \cdot 3 \cdot 11}{6 \cdot 4}$ $= \frac{16 \cdot 3 \cdot 11}{6 \cdot 4}$ $= 10 \times 3 \div 6 \times 8$ $= \frac{40 \cdot 3 \cdot 8}{10 \cdot 6}$ $= \frac{40 \cdot 3 \cdot 8}{10 \cdot 6}$ $= \frac{40 \cdot 3 \cdot 8}{6 \cdot 10}$ $= \frac{3 \cdot 8 \cdot 40}{6 \cdot 10}$ $= 0$ now we can change the order of thingsSee how it's clearer that dividing by 6 and 4 is the same as dividing by 24. $= \frac{40 \cdot 3 \cdot 8}{10 \cdot 6}$ $= \frac{40 \cdot 3 \cdot 8}{10 \cdot 6}$ $= \frac{40 \cdot 3 \cdot 8}{10 \cdot 6}$ $= \frac{3 \cdot 8 \cdot 40}{6 \cdot 10}$ $= \frac{3 \cdot 8 \cdot 40}{6 \cdot 10}$ $= 0$ now we can change the order of thingsSee how it's clearer that dividing by 6 and 10 is the same as dividing by 60.

2.3 Mixing the Four Operations

In the last exercise, every question was either from the multiplication group or the addition group.

	Multiplication	Addition
Operation	×	+
Inverse Operation	÷	_


So, what happens if we have a mix of the multiplication and addition groups in the same calculation?

Mixing the Four Operations

If there is a mix of multiplication and addition, work out the multiplication first.

When we say "multiplication" we mean the multiplication group: all multiplication and division.

When we say "addition" we mean the addition group: all addition and subtraction.

When we solve calculations, we must look for the multiplication group first.

Think of + and - as <u>separators</u> between the multiplication groups.

	Worked Example							Your Turn										
Find the value of these calculations.									Find the value of these calculations.									
a) b)		÷ 8 - ÷ 2 >							a) $25 \div 5 - 4 \times 10 + 3 \times 20$ b) $50 \div 10 \times 3 + 3 \div 9 \times 6$)	

Worked Ex	ample	Your Turn Find the value of this calculation.								
Find the value of th calculation.	nis									
$16 \div 4 \times 5 - 2 \times 50 \div$	$4 + 3 \times 5 \times 2$	$25 \div 5 \times 2 - 4 \times 10 \div 2 + 3 \times 2 \times 4$								

2.4 Exponentiation

At the start of this unit, we looked at a third group of operations, which we called exponentiation.

It included exponents and their inverses, roots, which we learnt about in detail in the last unit.

	Exponentiation
Operation	
Inverse Operation	

Where does exponentiation fit into the order of calculating?

Exponentiation

We have seen that multiplication should be worked out before addition.

Remember how a power comes from repeated multiplication:

 $3^4 = 3 \cdot 3 \cdot 3 \cdot 3$

This means powers should be worked out before other multiplication.

In fact, all exponentiation should be worked out before other multiplication.

Exponents
Roots
Multiplication
Division
Addition
Subtraction

Worked Example	Your Turn								
Find the value of these calculations.	Find the value of these calculations.								
a) $2^3 + 5$ b) $15 - \sqrt{81}$ c) $10 \cdot 4^2$	a) $5^2 - 11$ b) $5 + \sqrt[3]{64}$ c) $2 \cdot \sqrt{49}$ d) $2 \cdot 6^2$								

Worked Example	Your Turn						
Find the value of these calculations.	Find the value of these calculations.						
a) $3 \times 2^3 + 5 \times 3$	a) $\frac{32}{4^2} + 9^2 \cdot 2$						
b) $\frac{66}{2} - \frac{\sqrt{36}}{2} + 2^4$	b) $\frac{\sqrt{144}}{2} + 8^2 - 2 \cdot 5^2$						

2.5 Brackets

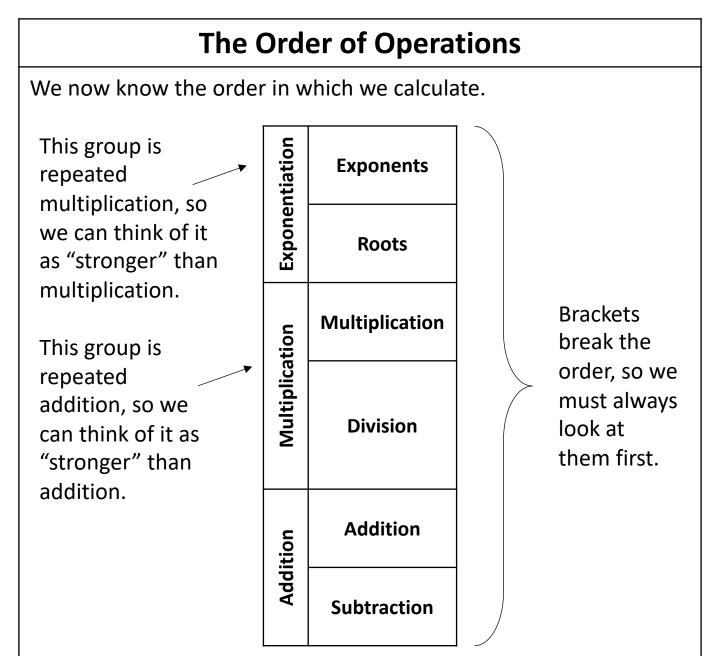
Breaking the Order

Work out the value of

 $10 + 2 \times 3$

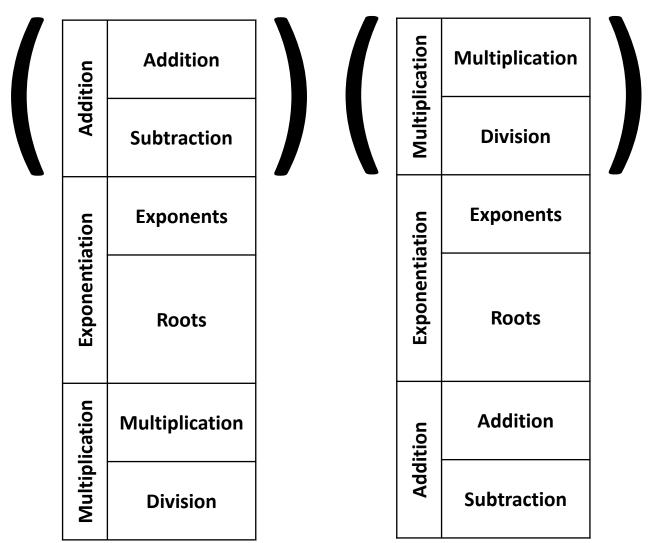
Of course, the answer is 16, because we multiply before adding.

But what if we *want* to add first? How can we show that we want to add *before* multiplying?

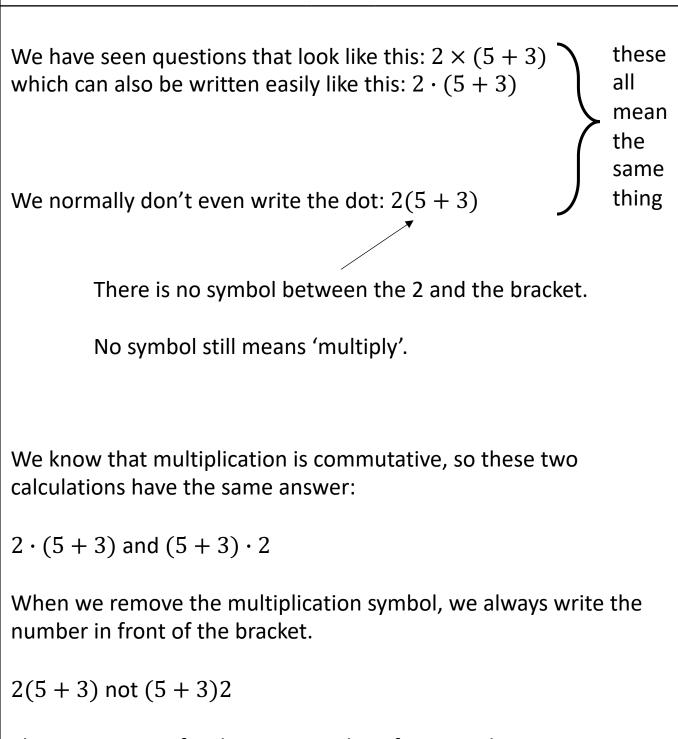

We have a clever way of showing that we want to break the normal order.

 $(10 + 2) \times 3$

By putting brackets () around the addition, we mean "break the order, do this first!"

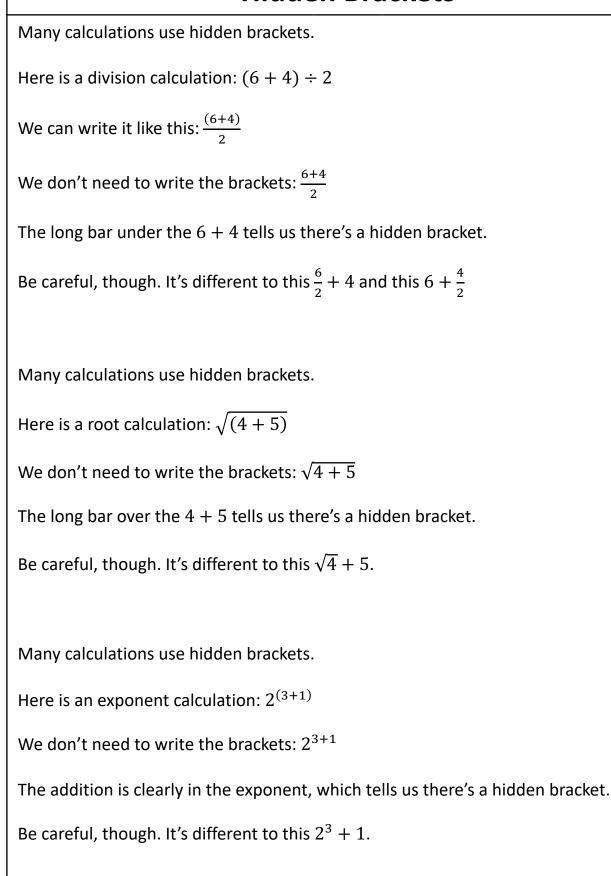

Work out the new value.

Worked Example	Your Turn
Find the value of these calculations.	Find the value of these calculations.
a) $3 \cdot 9 + 5$ b) $3 \cdot (9 + 5)$ c) $15 - 9 \div 3$ d) $(15 - 9) \div 3$	a) $12 \div 4 + 2$ b) $12 \div (4 + 2)$ c) $5 + 7 \cdot 2$ d) $(5 + 7) \cdot 2$



The Order of Operations

Brackets break the order.


Multiplying a Bracket

The main reason for this is to avoid confusion with exponents: $(5+3)^2$

Worked Example	Your Turn					
Find the value of these calculations.	Find the value of these calculations.					
a) 3(9 + 5) b) (15 - 9)3	a) 12(4 + 2) b) (5 + 7)2					

Hidden Brackets

Necessary or Unnecessary

Are the brackets necessary? If you remove them and the answer stays the same, then they are not necessary.

- a) 2 + (3 + 5)
- b) $(5 \times 2) \times 3$
- c) $5 \times (2+3)$
- d) $\frac{(2+3)}{5}$
- e) $2^{(5+3)}$
- f) $\sqrt{(5+3+1)}$
- g) $\sqrt{3(5-2)}$
- h) 5 (3 2)

Worked Example	Your Turn						
Find the value of these calculations.	Find the value of these calculations.						
a) $\sqrt{25} \times \frac{4+14}{2}$	a) $\sqrt{4} \times \frac{9+15}{3}$						
b) $\sqrt{25 \times 4} + \frac{14}{2}$	b) $\sqrt{4 \times 9} + \frac{15}{3}$						

Worked Example	Your Turn						
Find the value of these calculations.	Find the value of these calculations.						
a) 3(9 + 5) b) (15 - 9)3	a) 12(4 + 2) b) (5 + 7)2						

Worked	Example	Your Turn					
		Insert brackets to make the following calculations true:					
$8 + 4 \times 5 -$	2 = 20	a) $7 + 3 \times 5 - 1 = 49$					
$8 + 4 \times 5 -$	2 = 58	b) $7 + 3 \times 5 - 1 = 40$					
$8 + 4 \times 5 -$	2 = 26	c) $7 + 3 \times 5 - 1 = 19$					
$8 + 4 \times 5 -$	2 = 36	d) $7 + 3 \times 5 - 1 = 21$					
	ert brackets to owing calcula $8 + 4 \times 5 8 + 4 \times 5 8 + 4 \times 5 -$	Worked Example ert brackets to make the owing calculations true: $8 + 4 \times 5 - 2 = 20$ $8 + 4 \times 5 - 2 = 58$ $8 + 4 \times 5 - 2 = 26$ $8 + 4 \times 5 - 2 = 36$ $8 + 4 \times 5 - 2 = 36$ $1 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - $					

3 Introduction to Algebra

3.1 Forming Expressions

Worked Example	Your Turn
Write an algebraic expression for each of the following:	Write an algebraic expression for each of the following:
3 more than <i>a</i>	3 less than <i>a</i>
5 less than <i>a</i>	<i>a</i> more than 5
<i>b</i> multiplied by <i>a</i>	<i>b</i> divided by <i>a</i>
<i>b</i> multiplied by <i>a</i> then squared	<i>b</i> divided by <i>a</i> then squared

Worked Example	Your Turn					
Adam is x years old. Lucy is 15 years older than Adam. Write down an expression, in terms of x, for Lucy's age.	Albert is z years old. Laura is 3 times as old as Albert. Write down an expression, in terms of z, for Laura's age.					

	١	No	orke	ed	Exa	am	ple	е					Yo	ur	Tu	rn			
a) Ahmed is z years old. Libby is 3 times as old as Ahmed. John is 19 years older than Libby. Write down an expression, in terms of z, for John's age.								a)	tw Ac th ex	vice dam an l cpre e n	as i I. Ja Latil ssic	mar ck h ka. V on, i	ny ca nas 1 Writ n te	ards 10 I te d rms	s as ess owi s of	ka h caro n an <i>y</i> , f ck	ds		
b)	 b) Alfred has x stickers. Lottie has 11 less stickers than Alfred. John has 5 times as many stickers as Lottie. Write down an expression, in terms of x, for the number of stickers John has. 						b)	is Al as ex	Lot	yea Joh tie. ssic	rs yo n is Wr on, i	oun 3 ti ite (ger ime dow	tha s as /n a	n old				

3.2 Conventions and Definitions

The conventions include:

- We tend to use single lowercase letters for variables, either using the English alphabet or using the Greek alphabet.
- An algebraic x is written using two back-to-back c's. Do NOT write it as a × symbol.
- Do NOT include the multiplication sign, for example $3 \times p = 3p$
- Write division as fractions, for example $3 \div p = \frac{3}{n}$
- Write numbers first in products, for example $p \times 3 = 3p$
- Write letters in products in alphabetical order, for example $4 \times q \times r \times p = 4pqr$
- 1*x* is written simply as *x*

The definitions include:

- Variable is a letter used to represent an unknown number.
- **Coefficient** is the number in front of a variable.
- **Constant** is a number that cannot change its value.
- **Term** is either a constant, a variable or a constant multiplied by a variable.
- **Expression** is terms and operators (+ and –) grouped together.

Worked Example	Your Turn
Write down the following for the expression:	Write down the following for the expression:
2x - 4y - 9	-2a + 4b + 9
Variables:	Variables:
Coefficient of <i>x</i> :	Coefficient of <i>a</i> :
Coefficient of <i>y</i> :	Coefficient of <i>b</i> :
Constant:	Constant:
Terms:	Terms:

Worked Example	Your Turn
Write down the following for the expression:	Write down the following for the expression:
$2x^2 - 4xy - 9$	$-2ab + 4b^2 + 9$
Variables:	Variables:
Coefficient of x^2 :	Coefficient of <i>ab</i> :
Coefficient of xy:	Coefficient of b^2 :
Constant:	Constant:
Terms:	Terms:

3.3 Collecting Like Terms without Powers

Frayer Model – Like Terms			
<u>Definition</u>	Characteristics		
<u>Examples</u>	<u>Non-Examples</u>		
Liampies	<u>Non-Examples</u>		

Fluency Practice

3 <i>p</i>	p	Like	Unlike
x ²	$3x^2$	Like	Unlike
x ²	2 <i>x</i>	Like	Unlike
$-3\sqrt{x}$	$27\sqrt{x}$	Like	Unlike
7 <i>a</i>	7 <i>b</i>	Like	Unlike

3 <i>a</i>	3a	Like	Unlike
a	2a	Like	Unlike
2 <i>a</i>	2 <i>A</i>	Like	Unlike
-3a	2a	Like	Unlike
4 <i>a</i>	4 <i>b</i>	Like	Unlike
3 <i>a</i>	3 <i>a</i> ²	Like	Unlike
$2a^{2}$	$7a^2$	Like	Unlike
$-3a^{2}$	$7a^2$	Like	Unlike
$2a^{2}$	$2a^{-2}$	Like	Unlike
2 ^{<i>a</i>}	a ²	Like	Unlike
x	\sqrt{x}	Like	Unlike
1	2	Like	Unlike

Frayer Mode	l – Expression
Definition	Characteristics
Examples	Non-Examples

Worked Example	Your Turn										
Simplify: a) $5y - 3y - y$	Simplify: a) $3x + x + 3x$										
b) $4q - 3q - 3q - 4q - 3q$	b) $4z + 5z - 5z - 3z - 2z$										

	Worked Example Simplify: $6p + 9p + 4q + 7p$ b) $-7x + 5y - y - 6x$ a a b $-7x + 5y - y - 6x$ a a b a a a b a b a c a					Your Turn													
a)	a) $6p + 9p + 4q + 7p$									Simplify: a) $3q + q + 6p + 4p$ b) $-p - 7p + 7p + 6q$									

3.4 Collecting Like Terms with Powers

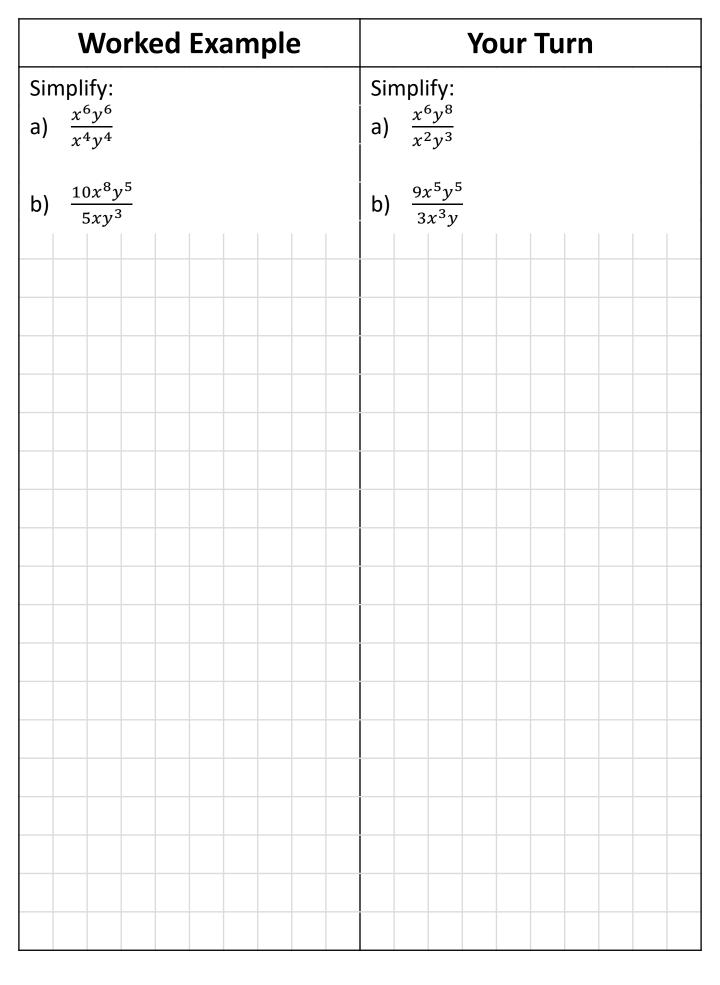
Wo	rked Exa	mple	Your Turn								
Simplify: a) y^4 + b) $5p^4$ -	$y^2 + 3y^4 - 2x^4 - x^4$	$-4q^4 + 4x^4$	Simplify: a) $3z^4 + 3z^4 + 3z^3 + p^4$ b) $p^2 - 4z^3 - 5z^2 + 3z^3$								

3.5 Algebraic Notation

Worked Example	Your Turn
Explain what the following mean:	Explain what the following mean:
7 <i>x</i>	7a
xy	ab
xy^2	ab ²
(xy) ²	(<i>ab</i>) ²

3.6 Multiplying Terms without Powers

	V	No	rke	ed	Exa	am	ple	e					Yo	ur	Tu	rn			
Simplify: a) $5p \times q$ b) $2p \times 8y$ c) $8z \times 7z$								Simplify: a) $p \times 5x$ b) $4x \times 4y$ c) $3z \times 2z$											


3.7 Multiplying Terms with Powers

Worked Example	Your Turn									
Simplify: a) $8x^4y^7 \times x^2y^4$ b) $7x^8y^3 \times 4x^8y^6$	Simplify: a) $x^8y \times 8x^5y^2$ b) $8x^2y^4 \times 6x^2y^6$									

3.8 Dividing Terms without Powers

Worked Example	Your Turn								
Simplify: a) $\frac{3x}{x}$	Simplify: a) $\frac{7y}{y}$								
b) $\frac{3xy}{y}$	b) $\frac{7xy}{x}$								

3.9 Dividing Terms with Powers

3.10 Substitution

Worked Example	Your Turn								
a) Calculate $\frac{14}{y} + y^2$ when y = 7	a) Calculate $y^2 + 3y$ when $y = 2$								
b) Work out $\frac{4z+1}{4}$ when $z = 6$	b) Work out $\frac{2z-1}{4}$ when $z = 1$								

	Wo	rkec	I Exa	am	ple	e		Your Turn									
a) Evaluate $p^2 + 4q$ when $p = 6$ and $q = 7$									a) Evaluate $x^2 - 2y$ when $x = 10$ and $y = 1$								
b)) Work out $(2p + q)^2$ when $p = 8$ and $q = 10$							b) Work out $(4x + 3y)^2$ when $x = 1$ and $y = 3$							n		

Worked Example						Your Turn						
a) Evaluate $a^2 + \frac{-12}{b}$ when $a = -3$ and $b = -6$					a) Evaluate $\frac{-36}{x} + y^2$ when x = -8 and $y = -9$							
b)	Work out $p^2 - 2q$ when $p = -2$ and $q = -6$					b) Work out $p^2 - 4q$ when $p = -8$ and $q = -2$						