KING EDWARD VI

Year 7

2023 Mathematics 2024

Unit 4 Booklet

HGS Maths

Tasks

Dr Frost Course

Name:

Contents

1 Rounding
1.1 Midpoint of Two Numbers
1.2 Rounding to the Nearest Multiple
1.3 Rounding to Decimal Places
1.4 Rounding to Significant Figures

2 Metric Units
2.1 Metric Units of Length
2.2 Metric Units of Mass
2.3 Metric Units of Capacity
2.4 Metric Units of Time

3 Properties of 2D Shapes
3.1 Names of 2D Shapes
3.2 Line Symmetry
3.3 Rotational Symmetry
3.4 Types and Properties of Triangles
3.5 Types and Properties of Quadrilaterals

4 Area and Perimeter
4.1 Perimeter on a Grid
4.2 Perimeter
4.3 Area on a Grid
4.4 Area of Rectangles
4.5 Area of Rectilinear Shapes
4.6 Area of Parallelograms
4.7 Area of Triangles
4.8 Area of Trapeziums
4.9 Area of Compound Shapes without Circles

1 Rounding

Page 3

1.1 Midpoint of Two Numbers

Find the midpoint of -5 and 6	Find the midpoint of -6 and 5

Worked Example

Round 63 to the nearest:
a) 10
b) 2
c) 3

Round 65 to the nearest:
a) 10
b) 2
c) 3

1.3 Rounding to Decimal Places

Round 8.7337 to:
a) 1 decimal place
b) 2 decimal places
c) 3 decimal places

Round 8.3773 to:
a) 1 decimal place
b) 2 decimal places
c) 3 decimal places

Round 0.0337 to:
a) 1 decimal place
b) 2 decimal places
c) 3 decimal places

Round 0.0377 to:
a) 1 decimal place
b) 2 decimal places
c) 3 decimal places

Round 8.7997 to:
a) 1 decimal place
b) 2 decimal places
c) 3 decimal places

Round 7.8998 to:
a) 1 decimal place
b) 2 decimal places
c) 3 decimal places

Worked Example

Circle the $2^{\text {nd }}$ significant figure:

7800

7008
7.008
0.0078
0.7008

Circle the $2^{\text {nd }}$ significant figure:

1) 456
2) 406
3) 400
4) 4000
5) 4500
6) 4506
7) 45.06
8) 4.506
9) 0.4506
10) 0.04506
11) 0.004506
12) 0.004006
13) 3.004006
14) 0.304006

Worked Example

1) 8

Number of significant figures $=$
2) 0.8

Number of significant figures $=$
3) 800
4) 0.800
5) 0.008

Number of significant figures $=$

	Your Turn
1) 456	Number of significant figures $=$
2) 450	Number of significant figures $=$
3) 406	Number of significant figures $=$
4) 400	Number of significant figures $=$
5) 40	Number of significant figures $=$
6) 4	Number of significant figures $=$
7) 0.4	Number of significant figures $=$
8) 0.40	Number of significant figures $=$
9) 0.04	Number of significant figures $=$
10) 0.004	Number of significant figures $=$
11) 0.00456	Number of significant figures $=$
12) 0.456	Number of significant figures $=$
13) 0.406	Number of significant figures $=$
14) 0.450	Number of significant figures $=$
15) 0.4500	Number of significant figures $=$
16) 0.45006	Number of significant figures $=$
17) 0.450067	Number of significant figures $=$
18) 450067	Number of significant figures $=$
19) 45067	Number of significant figures $=$
20) 4506.7	Number of significant figures $=$
21) 450.67	Number of significant figures $=$
22) 45.067	Number of significant figures $=$
23) 45.0067	Number of significant figures $=$
24) 4.50067	Number of significant figures $=$
25) 4.00067	Number of significant figures $=$
26) 0.00067	Number of significant figures $=$
27) 0.0067	Nunificant figures $=$
28) 6.0007	Number of significant figures $=$
29) 0.6007	0.0607

Round 271828 to:
a) 1 significant figure
b) 2 significant figures
c) 3 significant figures

Round 738906 to:
a) 1 significant figure
b) 2 significant figures
c) 3 significant figures

Worked Example

Round 2.71828 to:
a) 1 significant figure
b) 2 significant figures
c) 3 significant figures

Your Turn
Round 7.38906 to:
a) 1 significant figure
b) 2 significant figures
c) 3 significant figures

Round 0.00271828 to:
a) 1 significant figure
b) 2 significant figures
c) 3 significant figures

Round 0.00738906 to:
a) 1 significant figure
b) 2 significant figures
c) 3 significant figures

Round 0.00279999 to:
a) 1 significant figure
b) 2 significant figures
c) 3 significant figures

Round 0.00739999 to:
a) 1 significant figure
b) 2 significant figures
c) 3 significant figures

2 Metric Units

Conversions

Unit of measurement	Useful conversions	Examples - what would usually be measured in these units?
Distance		
Millimetres (mm)		
Centimetres (cm)		
Metres (m)		
Kilometres (km)		
Weight		
Grams (g)		
Tonnes (T)		
Millilitres (ml)		
Capacity		

2.1 Metric Units of Length

The commonly used metric units of length include:

- kilometre (km)
- metre (m)
- centimetre (cm)
- millimetre (mm)

Convert 3.54 kilometres into:
a) metres
b) centimetres
c) millimetres

Convert 5.3 kilometres into:
a) metres
b) centimetres
c) millimetres

Convert 3.54 metres into:
a) kilometres
b) centimetres
c) millimetres

Convert 5.3 metres into:
a) kilometres
b) centimetres
c) millimetres

Convert 3.54 centimetres into:
a) kilometres
b) metres
c) millimetres

Convert 5.3 centimetres into:
a) kilometres
b) metres
c) millimetres

Convert 3.54 millimetres into:
a) kilometres
b) metres
c) centimetres

Convert 5.3 millimetres into:
a) kilometres
b) metres
c) centimetres

2.2 Metric Units of Mass

The commonly used metric units of mass include:

- tonne (T)
- kilogram (kg)
- gram (g)

Convert 3.54 tonnes into:
a) kilograms
b) grams

Convert 5.3 tonnes into:
a) kilograms
b) grams

Convert 3.54 kilograms into:
a) grams
b) tonnes

Convert 5.3 kilograms into:
a) grams
b) tonnes

Convert 3.54 grams into:
a) kilograms
b) tonnes

Convert 5.3 grams into:
a) kilograms
b) tonnes

2.3 Metric Units of Capacity

The commonly used metric units of capacity include:

- litre (I)
- centilitre (cl)
- millilitre (ml)

Convert 3.54 litres into:
a) millilitres
b) centilitres

Convert 5.3 litres into:
a) millilitres
b) centilitres

Convert 3.54 millilitres into:
a) litres
b) centilitres

Convert 5.3 millilitres into:
a) litres
b) centilitres

Convert 3.54 centilitres into:
a) millilitres
b) litres

Convert 5.3 centilitres into:
a) millilitres
b) litres

2.4 Metric Units of Time

The commonly used metric units of time include:

- second (s)
- minute (min)
- hour (hr)
a) Sam play cards for 7 hours and 42 minutes. Write this duration in minutes.
b) Luke play cards for 521 minutes Write this duration in hours and minutes.
a) Lacey play cards for 8 hours and 37 minutes. Write this duration in minutes.
b) Ellie play cards for 414 minutes. Write this duration in hours and minutes.

Worked Example

Your Turn

a) Latika eats for 6 minutes and 28 seconds. Write this duration in seconds.
b) Mike eats for 374 seconds.. Write this duration in seconds.
a) Simon leaves home at 359 pm. Simon arrives at 513 pm. How long was the journey?
b) James leaves home at 632 pm . The journey takes 113 minutes. Work out at what time does James arrive.
a) Simon leaves home at 338 pm. Simon arrives at 620 pm. How long was the journey?
b) James leaves home at 802 pm . The journey takes 88 minutes. Work out at what time does James arrive.

3 Properties of 2D Shapes

3.1 Names of 2D Shapes

Triangle
3 sides

Octagon
8 sides

Quadrilateral 4 sides

Nonagon 9 sides

Pentagon
5 sides

Decagon 10 sides

Hexagon
6 sides

Hendecagon
11 sides

Heptagon 7 sides

Dodecagon 12 sides

Fluency Practice

learn by heart

If a shape is reflected through a line of symmetry, the result is the same shape.
If you fold a shape through a line of symmetry, the two halves fit perfectly over each other.

This shape has 3 lines of symmetry.

A right-angled trapzium has 0 lines of symmetry.

exercise 3 d

1. Draw in all of the lines of symmetry for each shape, and state how many there are:

				\square
Square	Isosceles Trapezium	Rhombus	Kite	Rectangle
Parallelogram	Equaliteral Triangle	Regular Pentagon	Regular Hexagon	Regular Octagon

2. A triangle has exactly one line of symmetry.

What is the name for this type of triangle?
3. Which one of the following shapes does not have 4 lines of symmetry?

	Q	\mathbf{R}	S

4. Sort these letters into the correct groups, based on their lines of symmetry:
A
C E F
H

No lines of symmetry

1 line of symmetry
2 lines of symmetry

3.4 Types and Properties of Triangles

Types and Properties of Triangles

Name	Examples	Properties
Equilateral		
Isosceles		
Scalene		
Right-Angled		

3.5 Types and Properties of Quadrilaterals

Name	Examples	Properties	Diagonals
Square			
Rectangle			
Parallelogram			
Trapezium			
Rhombus			
Kite	Sy		

4 Area and Perimeter

Worked Example

Calculate the perimeter of the shape below:

Calculate the perimeter of the shape below:

4.2 Perimeter

Calculate the perimeter of the rectangle:

6 cm

Calculate the perimeter of the square:

Calculate the perimeter of the rectangle:

12 cm

Calculate the perimeter of the square:

Worked Example

Your Turn

Find an expression for the perimeter of the following shape:

15

Find an expression for the perimeter of the following shape:

Worked Example

Your Turn

Calculate the length of x if the perimeter of the rectangle is 44 cm :

15 cm

Calculate the length of x if the perimeter of the rectangle is 88 cm :
$x \mathrm{~cm}$

15 cm

4.3 Area on a Grid

Calculate the area of the shape below:

Calculate the area of the shape below:

4.4 Area of Rectangles

$$
\begin{gathered}
\text { Area }=\text { base } \times \text { height } \\
\qquad A=b \times h
\end{gathered}
$$

Calculate the area of the rectangle:

6 cm

Calculate the area of the square:

Calculate the area of the rectangle:

12 cm

Calculate the area of the square:

Worked Example

Calculate x if the area of the rectangle is $12 \mathrm{~cm}^{2}$:

6 cm

$x \mathrm{~cm}$

Calculate x if the area of the rectangle is $48 \mathrm{~cm}^{2}$:
$x \mathrm{~cm}$

4.5 Area of Rectilinear Shapes

A rectilinear shape is one whose edges all meet at right angles.

Worked Example

Calculate the area of the shape below:

Calculate the area of the shape below:

6 cm

Worked Example

Your Turn
The area of the shape below is $36 \mathrm{~cm}^{2}$. Find x.

$x \mathrm{~cm}$

4.6 Area of Parallelograms

Area of a parallelogram $=$ base \times perpendicular height $\mathrm{A}=\mathrm{bxh}$

The two lengths used in the formula need to be perpendicular.

Worked Example

Calculate the area of the parallelogram:

Calculate the area of the parallelogram:

Worked Example

Calculate x if the area of the parallelogram is $54 \mathrm{~cm}^{2}$:

Calculate x if the area of the parallelogram is $66 \mathrm{~cm}^{2}$:

4.7 Area of Triangles

$$
\begin{gathered}
\text { Area of a triangle }=\frac{\text { base } \times \text { perpendicular height }}{2} \\
\qquad A=\frac{b \times h}{2}
\end{gathered}
$$

Calculate the area of the triangle:

Calculate the area of the triangle:

Calculate x if the area of the triangle is $27 \mathrm{~cm}^{2}$:

Calculate x if the area of the triangle is $33 \mathrm{~cm}^{2}$:

6 cm

4.8 Area of Trapeziums

Area of a trapezium $=\frac{\text { sum of parallel sides }}{2} \times$ perpendicular height

$$
\mathrm{A}=\frac{\mathrm{a}+\mathrm{b}}{2} \times h
$$

a

Your Turn

Calculate the area of the trapezium:

Worked Example

Your Turn

Calculate x if the area of the trapezium is $57 \mathrm{~cm}^{2}$:

Worked Example

Your Turn

Calculate x if the area of the trapezium is $57 \mathrm{~cm}^{2}$:

Your Turn

Calculate the area of the compound shape:

Worked Example

Your Turn

Calculate the area of the compound shape:

Calculate the area of the compound shape:

Worked Example

Calculate the area of the shaded shape:

Your Turn

Calculate the area of the shaded shape:

10 cm

