KING EDWARD VI

Year 7

2023 Mathematics
 2024

Unit 4 Tasks - Part 1

DO NOT WRITE INSIDE

KING EDWARD VI

Year 7

2023

 Mathematics 2024
Unit 4 Tasks - Part 2

DO NOT WRITE INSIDE

KING EDWARD VI

Year 7

2023 Mathematics 2024

Unit 4 Tasks - Part 3

DO NOT WRITE INSIDE

Contents

1 Rounding

2 Metric Units

3 Properties of 2D Shapes
$4 \quad$ Area and Perimeter

1 Rounding

Intelligent Practice

Find the midpoints of the circled numbers on each number line.

न
\bar{N}
\bar{m}
$\bar{\sigma}$
$\boxed{6}$
下
$\boldsymbol{\infty}$
б

Intelligent Practice

Find the midpoints of the circled numbers on each number line.

Intelligent Practice

Round:1) 73 to the nearest 12) 73 to the nearest 10
Round:

1) 75 to the nearest 12) 75 to the nearest 103) 73 to the nearest 1003) 75 to the nearest 1004) 73 to the nearest 504) 75 to the nearest 50
2) 73 to the nearest 255) 75 to the nearest 256) 73 to the nearest 56) 75 to the nearest 57) 73 to the nearest 27) 75 to the nearest 28) 73 to the nearest 48) 75 to the nearest 4
3) 73 to the nearest 39) 75 to the nearest 3
4) 73 to the nearest 0.510) 75 to the nearest 0.511) 73 to the nearest 1.511) 75 to the nearest 1.512) 73 to the nearest 7.3
5) 75 to the nearest 7.5

Intelligent Practice

1) Round 17 to the nearest 6. 2) Round 17 to the nearest 8. 3) Round 17 to the nearest 5. 4) Round 17 to the nearest 2.
2) Round 59 to the nearest 7.
3) Round 58 to the nearest 7.
4) Round 60 to the nearest 7.
5) Round 61 to the nearest 7.
6) Round 53 to the nearest 5.
7) Round 53 to the nearest 11.
8) Round -7 to the nearest 3.
9) Round $\mathbf{- 1 2}$ to the nearest 5.
10) Round -3.987 to the nearest 5.
11) Round $\mathbf{- 3 . 9 8 7}$ to the nearest 8.

Fluency Practice

Question 1: Round each of the numbers below to the nearest whole number.
(a) 5.8
(b) 12.1
(c) 8.6
(d) 4.4

(e) 15.3
(f) 325.9
(g) 0.7
(h) 18.5

Question 2: Round each of the following numbers to the nearest whole number.
(a) 7.2
(b) 1.9
(c) 14.3
(d) 9.4
(e) 27.8
(f) 19.1
(g) 50.6
(h) 154.7
(i) 200.5
(j) 334.6
(k) 99.9
(l) 840.4
(m) 1981.6
(n) 245.3

Question 3: Round each of the numbers below to the nearest whole number.
(a) 8.15
(b) 3.92
(c) 2.45
(d) 10.62

(e) 17.84
(f) 52.09
(g) 1.38
(h) 38.51

Question 4: Round each of the following numbers to the nearest integer (whole number).
(a) 4.11
(b) 6.74
(c) 2.91
(d) 9.46
(e) 8.27
(f) 6.34
(g) 13.89
(h) 16.08
(i) 42.63
(j) 29.54
(k) 38.15
(l) 103.46

Question 5: Round each of the following numbers to the nearest integer (whole number).
(a) 48.394
(b) 7.651
(c) 8.909
(d) 32.488
(e) 838.099
(f) 573.5619
(g) 15.6001
(h) 144.4998

Extension

Question 1: A cupcake contains 4.6 g of protein.
Round 4.6 g to the nearest whole number.

Question 2: The thermometer shows the temperature in a town.

(a) Write down the temperature
(b) Round the temperature to the nearest degree celsius.

Question 3: Georgia has divided 2355 by a number on her calculator The calculator shows the answer.
(a) What number did Georgia divide 2355 by?
(b) Round her answer to the nearest integer

Question 4: Derek wants to round 8 hours and 45 minutes to the nearest hour. He says the answer is 8 because 8.45 rounds to 8 .
Explain why Derek is wrong.
Question 5: Jurgen has rounded a number to the nearest whole number. His answer was 600.
Write down 5 different possible numbers that he could have rounded.

Fluency Practice

Question 1: Round the following numbers to the nearest 10
(a) 32
(b) 67
(c) 71
(d) 24
(e) 59
(f) 92
(g) 16
(h) 83
(i) 17
(j) 14
(k) 78
(l) 43
(m) 84
(n) 27
(o) 25
(p) 41
(q) 75
(r) 33
(s) 95
(t) 98
(u) 19
(v) 99
(w) 62
(x) 54
(y) 15
(z) 74

Question 2: Round the following numbers to the nearest 10
(a) 121
(b) 146
(c) 164
(d) 185
(e) 292
(f) 238
(g) 312
(h) 333
(i) 845
(j) 582
(k) 233
(l) 167
(m) 596
(n) 705
(o) 502
(p) 993
(q) 998
(r) 1241
(s) 1628
(t) 1164
(u) 2673
(v) 6036
(w) 7555
(x) 8128
(y) 13821
(z) 29234

Question 3: Round the following numbers to the nearest 10
(a) 24.2
(b) 61.9
(c) 76.8
(d) 26.4
(e) 14.7
(f) 231.8
(g) 185.3
(h) 201.5
(i) 78.38
(j) 135.14
(k) 141.97
(l) 164.89
(m) 4938.3
(n) 5141.49
(o) 15.455
(p) 1009.02

Fluency Practice

Question 4: Round the following numbers to the nearest 100
(a) 390
(b) 220
(c) 160
(d) 240
(e) 518
(f) 842
(g) 756
(h) 547
(i) 371
(j) 578
(k) 613
(l) 888
(m) 374
(n) 611
(o) 673
(p) 480
(q) 150
(r) 349
(s) 951
(t) 950
(u) 850
(v) 949
(w) 748
(x) 540
(y) 450
(z) 495

Question 5: Round the following numbers to the nearest 100
(a) 1430
(b) 1280
(c) 1610
(d) 1550
(e) 4030
(f) 6080
(g) 7420
(h) 8160
(i) 3562
(j) 2415
(k) 8283
(l) 5858
(m) 9248
(n) 3358
(o) 4214
(p) 9987
(q) 13494
(r) 16148
(s) 13114
(t) 15832
(u) 26783
(v) 56862
(w) 45555
(x) 13668
(y) 489481
(z) 124346

Question 6: Round the following numbers to the nearest 100
(a) 248.2
(b) 561.9
(c) 716.8
(d) 246.4
(e) 149.7
(f) 2315.8
(g) 1835.3
(h) 2061.5
(i) 2378.38
(j) 5135.14
(k) 9141.97
(l) 4164.89
(m) 44938.3
(n) 25141.49
(o) 1995.455
(p) 51009.02

Fluency Practice

Question 7: Round the following numbers to the nearest 1000
(a) 2300
(b) 5600
(c) 2900
(d) 8200
(e) 7200
(f) 8420
(g) 2780
(h) 4500
(i) 1930
(j) 6480
(k) 7710
(l) 5500
(m) 4951
(n) 7571
(o) 7456
(p) 5499
(q) 7395
(r) 3112
(s) 3661
(t) 5532
(u) 4945
(v) 9442
(w) 9550
(x) 9499
(y) 9934
(z) 7409

Question 8: Round the following numbers to the nearest 1000
(a) 21800
(b) 18300
(c) 17600
(d) 19200
(e) 11590
(f) 16350
(g) 24500
(h) 34800
(i) 38434
(j) 84925
(k) 48358
(l) 56187
(m) 123940
(n) 293482
(o) 231184
(p) 563921

Question 10: Round the following numbers to the nearest 10000
(a) 39304
(b) 23424
(c) 44500
(d) 26492
(e) 26500
(f) 54588
(g) 62049
(h) 75000
(i) 418553
(j) 144503
(k) 185000
(l) 384458

Question 11: Round the following numbers to the nearest 100000
(a) 384000
(b) 129400
(c) 569000
(d) 812300
(e) 384984
(f) 750000
(g) 1284000
(h) 2840000

Question 12: Round the following numbers to the nearest 1000000
(a) 1492000
(b) 5600000
(c) 7308000
(d) 6670000
(e) 12800000
(f) 17450000
(g) 35700000
(h) 384728521

Extension

Question 1: 645 people attended a concert. Round this to the nearest 10.
Question 2: 861 students attend a school. Round this to the nearest 100.
Question 3: The cost of a laptop is $£ 1348$. Round this to the nearest $£ 100$.
Question 4: 24,812 people attended a football match. Round this to the nearest thousand.
Question 5: The population of a city is 85,398 . Round this to the nearest thousand.
Question 6: The number of beads in a jar is 50 to the nearest ten.
(a) What is the minimum possible number of beads in the jar?
(b) What is the maximum possible number of beads in the jar?

Question 7: The number of students at a school is 1200 to the nearest 100. What is the maximum possible number of students at the school?

Question 8: The population of a village is 900 to the nearest 100. State if the following could be true or false:
(a) 890 people live in the village.
(b) 960 people live in the village.
(c) 912 people live in the village.
(d) 845 people live in the village.
(e) 850 people live in the village.
(f) 950 people live in the village.

Question 9: The value of a car is $£ 7000$ to the nearest thousand pounds.
(a) What is the least possible value of the car?
(b) What is the greatest possible value of the car?

Question 10: The number of people at a concert is 200 to the nearest 10.
(a) What is the least possible number of people at the concert?
(b) What is the greatest possible number of people at the concert?

Fluency Practice

Round the following numbers to the nearest integer:
(f) 7.91843
(j) $12.74651245 \ldots$
(m) 30.63461572
(n) 5032.00724682...
3.4999999999999999
(t) 3.50000000000000001
Round the following numbers to the nearest integer:

(a) 4.2	(b) 4.8	(c) 4.28	(d) 4.82
(e) 2.3954	(f) 7.91843	(g) 6.40858135	(h) $9.0898767986 \ldots$
(i) $3.14159265 \ldots$	(j) $12.74651245 \ldots$	(k) $154.9140108252 \ldots$	
(I) 19.99157235	(m) 30.63461572	(n) $5032.00724682 \ldots$	
(o) 3.4	(p) 3.49	(q) 3.4999999999999999	
(r) 3.51	(s) 3.501	(t) 3.50000000000000001	

Fluency Practice

Sometimes we do not want to write all the digits of a decimal down and we can shorten it by rounding.

exercise 10

example

Round 6.83 to the nearest whole (integer)
$=7$

An integer is a whole number. 6.83 has 6 wholes + some extra, so it is between 6 and 7 wholes.
Half way between 6 and 7 would be 6.5, and 6.83 is more than this, so it is closer to 7 .

1. Which of these numbers are integers? Choose all that apply.
a) 45.8
b) 36
c) 2.83
d) 1.5
e) 2
2. Round each number to the nearest whole:
a) 3.6
b) 4.7
c) 2.3
d) 14.9
e) 6.5
f) 201.3
3. Round each number to the nearest integer:
a) 2.68
b) 4.79
c) 3.15
d) 0.86
e) 14.782
f) $\mathbf{1 5 6 . 3 4 5}$
4. Complete the table:

Number	Nearest 10	Nearest 100	Nearest 1000	Nearest Whole Number
426.24				
690.104				

5. Find all the numbers that round to 17 , to the nearest integer:

A	17.5	B	16.5	C	16.2	D	15.1	E	17.5	F	17.23
G	17.1		16.9		17.8	J	16.4	K	16.45	L	17.51

6. Arrange the cards to make a number that rounds to 21, to the nearest integer:

Fluency Practice

(1) Complete this table, rounding each number to appropriate degree of accuracy.

Number	Nearest 10	Nearest 100	Nearest 1000
56	60	100	0
75			
123			
149			
152			
501			
753			
1204			
3428			
5007			
6043			
8989			

Fill in the Gaps

$40,200 \quad 40,000$

$\begin{aligned} & \underset{\sim}{\dot{\sigma}} \\ & \underset{\sim}{\sigma} \end{aligned}$

 41，000 41,010 41,800
40,500
000「て

		OLG＇OV	
000＇乙ヤ	006 ＇レV		
			8LD＇0จ
			$\angle 00^{\prime} \downarrow \nabla$
	O0¢＇0จ		96て＇0t
		Oヤて＇Oワ	$9 \varepsilon て ' 0 \downarrow$
$\begin{gathered} \text { puesnouł } \\ \text { łsəયeən əчł O1 } \end{gathered}$	$\begin{gathered} \text { pəцpunH } \\ \text { fsə⿰eəN əपł O1 } \end{gathered}$	$\begin{gathered} \text { uə」 } \ddagger \text { SəлeəN } \\ \text { ӘЧł OД } \end{gathered}$	」əqunn

Problem Solving

complete the table:
the difference is:
nearest 100 - nearest 10

number	nearest 100	nearest 10	difference
174	200	170	+30

438
563
218
35
923
263
871
why are some differences the same?
what could the numbers be?
> number nearest 100 nearest 10 difference
> - 30
> -50
> $+50$
> $+10$
> - 10
> $+20$
> 0
> 49
> 51

what type of number has a difference of -40 ?

Problem Solving

which 10 (whole)
numbers round to
700 to the nearest 100 and
670 to the nearest 10 ?
which 5 (whole)
numbers round to
400 to the nearest 100 and
450 to the nearest 10 ?
the difference between two whole numbers is 2 when rounded to the nearest 100 the difference is 100
what could the two numbers be?
the difference between two numbers is 0.2
when rounded to the nearest ten the difference is 10
what could the two numbers be?
which 5 (whole)
numbers round to
300 to the nearest 100 and
250 to the nearest 10 ?
which 5 (whole) numbers round to 800 to the nearest 100 and
850 to the nearest 10 ?

Maths Venns

Intelligent Practice

Number	1 decimal place	2 decimal places	3 decimal places
0.1234			
0.2345			
0.3456			
0.4567			
0.04567			
0.40567			
9.45067			
9.45067			
9.95967			

Fluency Practice

(2) Complete this table, rounding each number to appropriate degree of accuracy.

Number	1 decimal place	2 decimal places	3 decimal places
5.6	6.0	5.60	5.600
7.5			
1.23			
1.49			
0.152			
1.5015			
1.2753			
0.1204			
2.3428			
12.5007			
1.6043			
9.9899			

Purposeful Practice

Rounding Square Roots

Use a calculator to find the square root of the number x each time.
Round your answers to $3 \mathrm{dp}, 2 \mathrm{dp}, 1 \mathrm{dp}$ and to the nearest integer.
Round from the original answer each time and not from your previous rounding.

x	\sqrt{x} (as on calculator)	3 dp	2 dp	1 dp	nearest integer
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					

How many square roots are equal to 1 when rounded to the nearest integer?
How many round to 2 ?
How many round to 3 ?
Is there a pattern? How many do you think would round to 20 ?

Fluency Practice

Round to the nearest integer (whole number):
(a) 9.7
(b) 12.4
(c) 47.1
(d) 0.9
(e) 4.11
(f) 5.62
(g) 24.57
(h) 13.45
(i) 1.22
(j) 14.987

Round to 1 decimal place:
(a) 3.12
(b) 65.27
(c) 5.88
(d) 4.25
(e) 0.56
(f) 2.432
(g) 21.635
(h) 283.123
(i) 33.987
(j) 0.998

Round to 2 decimal places:
(a) 2.121
(b) 8.115
(c) 6.878
(d) 13.989
(e) 0.413
(f) 4.245
(g) 18.7354
(h) 0.9998
(i) 75.0123
(j) 1.7898

Round these numbers to the stated number of decimal places.
(a) 5.876 (1 d.p.)
(b) 4.237 (2 d.p.)
(c) 0.6754 (2 d.p.)
(d) 12.96 (1 d.p.)
(e) 4.302 (1 d.p.)
(f) 5.999 (2 d.p.)
(a) The width of a book is 21.7 cm correct to 1 decimal place. What is the smallest and biggest width the book could have? (b) A pencil has a length 16.25 cm , correct to 2 decimal places. What is the smallest and biggest length the pencil could have?

Fluency Practice

Question 1: Round each of the numbers below to 1 decimal place.
(a) 3.47
(b) 0.11
(c) 9.84
(d) 12.75

Question 2: Round each of the following numbers to 1 decimal place.
(a) 4.82
(b) 6.19
(c) 9.77
(d) 10.63
(e) 21.41
(f) 3.14
(g) 48.18
(h) 29.26
(i) 80.85
(j) 0.43
(k) 248.38
(l) 637.51
(k) 62.89
(l) 9.99

Question 3: Round each of the numbers below to one decimal place.
(a) 4.282
(b) 7.725
(c) 2.548
(d) 1.6631

Question 4: Round each of the numbers below to the nearest tenth (1 decimal place)
(a) 5.191
(b) 8.246
(c) 10.087
(d) 39.555
(e) 0.831
(f) 93.2941
(g) 38.3152
(h) 7.26229
(i) 0.54868696

Question 5: Round each of the numbers below to 2 decimal places.
(a) 5.123
(b) 7.869
(c) 0.435
(d) 16.0149

Question 6: Round each of the numbers below to 2 decimal places
(a) 3.487
(b) 2.613
(c) 1.984
(d) 10.046
(e) 8.155
(f) 19.367
(g) 3.141
(h) 6.0698
(i) 4.26317
(j) 93.46197

Question 7: Round each of the numbers below to 3 decimal places
(a) 0.0346
(b) 6.7568
(c) 4.2251
(d) 1.7583
(e) 40.48546
(f) 128.01891
(g) 0.5059802
(h) 384.456094

Extension

Question 1: $\quad 51.26 \%$ of the people living in a town are female.
Round this figure to one decimal place.
Question 2: Walter has worked out a calculation on a calculator Shown on the calculator is the answer.
(a) Round the answer to one decimal place
(b) Round the answer to two decimal places

Question 3: Daniel has been asked to round 1.725 to one decimal place.
His answer is 172.5
Explain Daniel's mistake.
Question 4: Nicole has rounded a number to one decimal place.
Her answer is 9.2
Write down 10 different possible numbers that she could have rounded.
Question 5: A chocolate bar contains 0.4715 g of salt.
Round this to two decimal places.
Question 6: Dominic writes down two numbers, A and B.
A and B have 2 decimal places.
Dominic rounds A to 1 decimal place and calls his answer C.
He rounds B to 1 decimal place and calls his answer D.
Dominic says the difference between A and B cannot be the same as the difference between C and D.

Show he is incorrect

Fluency Practice

learn by heart

Sometimes we do not want to write all the digits of a decimal down and we can shorten it by rounding.

A number with 1 decimal place has 1 digit after the decimal point, e.g. 3.4
If rounding, to say, 2 decimal places, the value of the digit in the 3rd decimal place tells us whether to round up or down. If the 3rd decimal place is 5 or more, we round UP, which means we increase the value of the last digit by 1.

examples

Round:
a) 4.327 to 1 decimal place
$4.3 \mid 27$
4.3
b) 17.0269 to 2 decimal places
17.02169
17.03
c) 3.7997 to 3 decimal places
3.79917
3.800
d) 1.996 to the nearest 0.1
$1.9 \mid 96$
2.0

exercise li

1. Which of these numbers have 1 decimal place? Select all that apply.
a) 43
b) 4.5
c) 2.75
d) 62.0
e) 200.30
2. Round each number to 1 decimal place:
a) 3.62
b) 1.84
c) 2.45
d) 13.19
e) 4.319
f) 26.453
g) 105.1098
h) 459.821
3. Round each number to 2 decimal places:
a) 4.085
b) 23.1279
c) 604.30567
4. Round each number to 3 decimal places:
a) 4.0858
b) 23.127
c) 604.30567
5. Find all the numbers that round to 3.5 to 1 decimal place:

${ }^{\text {A }}$	3.48	D	3.41	G	3.45	J	3.34	M	3.41
B	3.51	E	3.62	H	3.55	K	3.56	N	3.509
c	3.63	F	3.81	I	3.67	L	3.39	\bigcirc	3.409

Fluency Practice

6. Complete the table by rounding each number as shown:

	Number	to 1 d.p.	to 2 d.p.	Nearest Integer
a)	3.7281			
b)	52.5917			
c)	0.1853			
d)	9.6458			
e)	4.0028			

7. Which of these numbers is 24.976 correctly rounded to one decimal place?
a) 24.9
b) 24.10
c) 25
d) 24.98
e) 25.0
8. Which of these lengths is 32.77 m given correct to the nearest 0.1 m ?
a) 33 m
b) 32.7 m
c) 32.70 m
d) 32.8 m
e) 32.80 m
9. Show how these cards can be arranged to make a number that rounds to 27.5 to one decimal place.

10. Which of these numbers, when rounded to 2 decimal places, give 17.48 ?

Choose all that apply.
a) 17.485
b) 17.475
c) 17.4805
d) 17.4705
11. Round:
a) 132.8427 to the nearest tenth
b) 4.7396 to the nearest hundredth

challenge (rounding recurring decimals)

12. Round each of these recurring decimals as indicated:
a) $0 . \dot{6}$ (1 d.p.)
b) $0 . \dot{3} \dot{4}$ (1 d.p.)
c) $0 . \dot{5} \dot{7}$ (2 d.p.)
d) $0 . \dot{7} 0 \dot{5}$ (3 d.p.)
e) $0.7 \dot{0} \dot{5}$ (3 d.p.)
f) $0.70 \dot{5}$ (3 d.p.)
g) $0.4 \dot{8}$ (3 d.p.)
h) $0 . \dot{4} \dot{9}$ (3 d.p.)
i) $0 . \dot{9}$ (1 d.p.)

Fluency Practice

CODÉBOX
$0.3=\mathrm{K}$ $0.4=\mathrm{X}$ $0.75=\mathrm{B}$ $1=\mathrm{J}$ $1.22=\mathrm{U}$ $0.51=\mathrm{H}$ $0.74=\mathrm{C}$ $1.31=\mathrm{K}$ $0.69=\mathrm{Q}$ $1.01=\mathrm{Z}$ $1.21=\mathrm{F}$ $0.81=\mathrm{R}$ $1.3=\mathrm{Y}$ $1.1=\mathrm{P}$ $0.5=\mathrm{E}$ $1.24=\mathrm{T}$ $0.91=\mathrm{D}$ $1.2=\mathrm{M}$ $1.23=\mathrm{A}$ $0.65=\mathrm{U}$ $0.9=\mathrm{S}$ $0.8=\mathrm{I}$ $0.78=\mathrm{L}$ $0.71=\mathrm{V}$ $0.6=\mathrm{O}$ $0.79=\mathrm{N}$ $0.7=\mathrm{G}$ $0.48=?$
s. 0.58 to 1 d.p $=\ldots \ldots .$.
t. 0.792 to 2 d.p $\ldots \ldots .$.

Rounding Numbers Code Breaker!
Round each of these numbers to the number of decimal places given.
The answer will then give you a letter in the code box.
Write it in the yellow box. The letters spell a secret message - can you crack it?
v
0.3
c. 0.51 to 1 d. $p=\ldots \ldots$.
d. 1.05 to 1 d. $p=$
e. 0.94 to 1 d. $p=$
f. 1.22 to 1 d. $p=$
g. 0.784 to 1 d. $p=$
h. 0.784 to 2 d. $p=$

Fluency Practice

For each question, is the 0 underlined in red needed?

Page 53
(1) For each number given, tick the significant digits and cross the non-significant digits:

	1,000	100	10	1	-	$\frac{1}{10}$	$\frac{1}{100}$	${ }_{\text {Tima }}$	$\frac{1}{m m a}$	$\frac{1}{\text { numa }}$	$\frac{1}{\text { nomeo }}$
a)	9	2	3	4							
Vor \times											
b)	9	2	3	0							
Jor \times											
c)	9	2	0	0							
Sor \times											
d)	9	2	0	4							
Sor \times											
e)	9	0	3	4							
Sor \times											
f)	9	0	0	0							
Sor \times											
g)		9	0	0							
$\operatorname{sor} \times$											
h)			9	0							
Sor \times											
i)				9							
Sor \times											
j)				0	\bullet	9					
Sor \times											
k)				0	-	9	0				
Sor \times											
j)				0	\bullet	0	9				
Sor \times											

	1,000	100	10	1	-	$\frac{1}{10}$	$\frac{1}{10}$	$\frac{1}{100}$	$\frac{1}{4 n m o}$	$\frac{1}{\text { mamm }}$	$\underline{\square}$
k)				0	-	0	0	9			
Vor \times											
I)				0	\bullet	0	0	9	2	3	4
Vor \times											
m)				0	-	9	2	3	4		
Vor \times											
n)				0	-	9	2	0	4		
Sor \times											
o)				0	-	9	0	3	4		
Vor \times											
p)				0	\bullet	9	2	0	0		
Vor \times											
q)				0	\bullet	9	2	3	0		
Vor \times											
r)				0	\bullet	9	2	3	0	0	
Vor \times											
s)				0	\bullet	9	2	3	0	0	0
Sor \times											
t)			1	0	\bullet	9	2	3	0	0	0
Vor \times											
u)			1	0	\bullet	9	2	3			
Vor \times											

(2) State how many significant figures each of the following numbers have:

Q							$=$					®	\bigcirc	\bigcirc	-		
∞											∞	∞			∞	∞	8
-	∞										\bigcirc	\bigcirc	∞	∞	∞	\bigcirc	¢
-	-	∞	∞								∞	∞	-	∞	-	-	¢
\bigcirc	-	-	-	\bigcirc	\bigcirc	-	-	\bigcirc	\bigcirc	-	∞	\bigcirc	∞	-	-	0	
\bullet	-	\bullet	-		-		-	-	-	-							
\bigcirc	-	-	\bigcirc	∞	0	\bigcirc	∞	-	\bigcirc	∞							
		\bigcirc	0	0	-	∞	\bigcirc	∞	∞								
				0	-	\bigcirc	∞	∞									
				∞	∞	∞											

통

Fluency Practice

Number	Rounded to 1 significant figure	Rounded to 2 significant figures	Rounded to 3 significant figures
1254			
59287			
699721			
0.3451			
0.005231			
0.050554			
0.050999			

Extension

A number is rounded to 1 sf to 1000 . How many possible integers could the original number have been?

Fill in the Gaps

	$\begin{aligned} & 8 \\ & 8 \\ & \stackrel{8}{7} \end{aligned}$							
	\bigcirc							
		$\left[\begin{array}{c} \circ \\ \hline \circ \\ \circ \\ \circ \\ \circ \\ \\ \hline \end{array}\right.$						
	$\begin{aligned} & 8 \\ & 0 \\ & -1 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\stackrel{\circ}{-}$				8 8 -1	8 8 8 8
	N	\checkmark	m	m	m	N		
	$\begin{aligned} & 0 \\ & \infty \\ & \infty \\ & \text { Y } \end{aligned}$	$\begin{aligned} & \text { O} \\ & \infty \\ & \text { Y } \\ & \text { Y } \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { ¢ } \\ & \text { Y } \end{aligned}$	$\begin{aligned} & \text { 응 } \\ & \text { o } \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 아 } \\ & \text { o } \\ & \text { o } \end{aligned}$	$\begin{aligned} & \text { 이 } \\ & \text { in } \\ & \text { of } \end{aligned}$	$*$ ∞ 0 n n	

Original Number	Round to significant figure \qquad	Place value of that significant figure	Original Number on Number line	Round up or down?	Answer
614					
2614					
3649					3600
3999					4000
				Up	28000
				Down	28000
					1700

[^0]
Fluency Practice

(3) For each number given, round to the number of significant figures given:
(a)
76 (1 s.f.)
(g) $32,654 \quad$ (1 s.f.)
(m) $\quad 2,374 \quad$ (2 s.f.)
\approx \qquad
\approx \qquad \approx \qquad
(b)
320
(1 s.f.)
(h) 19,500 (1 s.f.)
(n) $\quad 34,821 \quad$ (2 s.f.)
\approx \qquad
\approx \qquad
825
(2 s.f.)
(o) $\quad 7,654 \quad$ (3 s.f.)
(c)
475 (1 s.f.)
(i)
\approx \qquad \approx \qquad \approx \qquad
(d)
5,500 (1 s.f.)
(j)
261
(2 s.f.)
(p) $\quad 5,448 \quad$ (3 s.f.)
\approx \qquad \approx \qquad \approx \qquad
(e) $8,272 \quad$ (1 s.f.)
(k)
5,841
(2 s.f.)
(q) $\quad 125,640 \quad$ (3 s.f.)
\approx \qquad
(f)
5,499 (1 s.f.)
\approx \qquad
\approx \qquad
(I)
8,054
(2 s.f.)
\approx \qquad \approx \qquad
(4) For each number given, round to the number of significant figures given:
(a)
2.9 (1 s.f.)
(d) $\quad 73.6 \quad$ (1 s.f.)
(m) $\quad 41.095 \quad$ (1 s.f.)
\approx \qquad
\approx \qquad
\qquad
\approx
(b)
1.4 (1 s.f.)
(e) $29.3 \quad$ (1 s.f.)
(n) $\quad 578.2194$ (1 s.f.)
\approx \qquad
\approx \qquad
\approx \qquad
(o) $\quad 1254.33$ (3 s.f.)
(c)
18.1 (1 s.f.)
(f) $\quad 2.3609 \quad$ (1 s.f.)
\approx \qquad \approx \qquad
(5) For each number given, round to the number of significant figures given:
(a)
4.31 (2 s.f.)
(c) $\quad 2.3609 \quad$ (3 s.f.)
(m) $\quad 1254.33 \quad$ (5 s.f.)
\qquad
\approx
(b) $\quad 42.84 \quad$ (3 s.f.)
\approx \qquad
\approx \qquad
\approx
\qquad
(n) $\quad 41.095 \quad$ (6 s.f.)
(d) $\quad 7.3482 \quad$ (4 s.f.)
\approx \qquad
\qquad
\approx

Fluency Practice

6 For each number given, round to the number of significant figures given:
(a) $0.054 \quad$ (1 s.f.)
(f) $\quad 0.3189 \quad$ (2 s.f.)
(k) $\quad 0.90341$ (3 s.f.)
\approx \qquad
(b) $\quad 0.161 \quad$ (1 s.f.)
\approx \qquad
(c) $0.048 \quad$ (1 s.f.)
\approx \qquad
(d) $0.8835 \quad$ (1 s.f.)
\approx \qquad
(e) 0.00064 (1 s.f.)
\approx \qquad
(j)
0.0157
(2 s.f.)
\approx \qquad
(7) For each number given, round to the number of significant figures given:
(a)
97 (1 s.f.)
\approx \qquad
(f) 699,721 (3 s.f.)
(k) $0.096 \quad$ (1 s.f.)
\approx \qquad
(b)
99
(1 s.f.)
\approx \qquad
(g)
9.7299 (1 s.f.)
\approx \qquad
(c) $\quad 9,964 \quad$ (1 s.f.)
\approx \qquad
(h) $\quad 9.9566$ (1 s.f.)
\approx \qquad
(d) $\quad 9,964 \quad$ (2 s.f.)
\approx \qquad \approx \qquad
(e) 699,721 (2 s.f.)
(j)
9.7299 (4 s.f.)
(o) $0.50999 \quad(4$ s.f.)
\approx \qquad \approx \qquad

Fluency Practice

Round to the nearest 10
(a) 156
(b) 671
(c) 5614
(d) 3277
(e) 7499
(f) 56123
(g) 131789
(h) 86
(i) 33.5
(j) 3.2

Round to the nearest 100
(a) 156
(b) 671
(c) 5614
(d) 3277
(e) 7499
(f) 56123
(g) 131789
(h) 86
(i) 233.5
(j) 43.2

Round to the nearest 1000
(a) 5614
(b) 3277
(c) 7499
(d) 56123
(e) 131789
(f) 866

Round to 1 significant figure
(a) 156
(b) 7614
(c) 3277
(d) 56123
(e) 131789
(f) 86.2
(g) 33.5
(h) 3.29
(i) 0.145
(j) 0.06378

Round to 2 significant figures
(a) 156
(b) 7614
(c) 3277
(d) 56123
(e) 131789
(f) 86.2
(g) 33.5
(h) 3.29
(i) 0.145
(j) 0.06378

Fluency Practice

Question 1: Round each of the following numbers to 1 significant figure
(a) 36
(b) 22
(c) 83
(d) 68
(e) 97
(f) 120
(g) 519
(h) 260
(i) 741
(j) 888
(k) 408
(l) 650
(m) 148
(n) 972
(o) 3900
(p) 5400
(q) 4125
(r) 2732
(s) 6349
(t) 8099
(u) 6499

Question 2: Round each of the following numbers to 1 significant figure
(a) 12000
(b) 46000
(c) 74500
(d) 83771
(e) 95120
(f) 330000
(g) 863000
(h) 248220
(i) 489331
(j) 13800000

Question 3: Round each of the following numbers to 1 significant figure
(a) 2.9
(b) 3.2
(c) 5.7
(d) 46.81
(e) 57.25
(f) 80.96
(g) 94.9
(h) 115.1
(i) 8.482
(j) 13.65
(k) 66.321
(l) $5501.4 \quad$ (m) 48.02
(n) 99.99

Question 4: Round each of the following numbers to 1 significant figure
(a) 0.54
(b) 0.86
(c) 0.161
(d) 0.048
(e) 0.0943
(f) 0.0071
(g) 0.0038
(h) 0.06482
(i) 0.8835
(j) 0.00064
(k) 0.00098
(l) 0.00002789

Question 5: Round each of the following numbers to 2 significant figures
(a) 844
(b) 665
(c) 129
(d) 2840
(e) 9250
(f) 1359
(g) 298
(h) 504
(i) 999
(j) 3841
(k) 48500
(l) 13.7
(m) 58.3
(n) 49.6
(o) 1.41
(p) 42.64
(q) 0.3189
(r) 22490
(s) 186110
(t) 0.04912
(u) 4.98
(v) 997826
(w) 2.99517
(x) 0.06014

Question 6: Round each of the following numbers to 3 significant figures
(a) 9433
(b) 1891
(c) 2496
(d) 3.226
(e) 37756
(f) 57147
(g) 7.0078
(h) 51.564
(i) 0.90341
(j) 2.7892
(k) 0.08906
(l) 0.007812 (m) 9909.1
(n) 0.6006

Extension

Question 1: In an election 43.8\% of people voted for a candidate.
Round this figure to one significant figure
Question 2: 32641 people watch a rugby match between Italy and Argentina. Round this number to 2 significant figures.

Question 3: Round the following numbers to 1 significant figure
(a) eight million, six hundred thousand
(b) the product of 19 and 351

Question 4: Tom has been asked to round the number on the calculator to 2 significant figures.
Tom says the answer is 516.16
Can you explain Tom's mistake?

Question 5: The population of Frome to 2 significant figures is 26,000 .
(a) Write down the lowest number of people that could live in Frome?

Frome

Question 6: Round 7.494×10^{7} to 2 significant figures.
Give your answer as an ordinary number.

Fluency Practice

		§		€			H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0	\pm	
		（）－		$\underset{\sim}{\text { ® }}$		©		©	
		\pm		5		§		ㄷ	
		©						©	

Fluency Practice

learn by heart

The first significant figure of a number is the first non-zero digit

2nd
figure

examples

Round 348 to 1 significant figure (1.s.f)
(1st significant figure is in the hundreds column, so round to the nearest hundred) $=300$

Round 4,075 to 2 significant figures (2.s.f)
(2nd significant figure is in the hundreds column, so round to the nearest hundred) $=4,100$

exercise $1 j$

1. Round each of these numbers to 1 significant figure:
a) 53
b) 56
c) 709
d) 358
e) 2,409
f) 15,008
2. Round each of these numbers to 2 significant figures:
a) 956
b) 2,085
c) 15,809
d) 12,314
e) 194,037
f) 280,300
3. The number 6,008 has \qquad significant figures.
4. The number 84,001 has \qquad significant figures.
5. Round each of these numbers as indicated:
a) 536 (2 s.f.)
d) 8,900 (1 s.f.)
g) 99 (1 s.f.)
b) 804 (2 s.f.)
e) 84 (2 s.f.)
h) 999 (2 s.f.)
c) 12,400 (2 s.f.)
f) 12 (1 s.f.)
i) 9,999 (3 s.f.)
6. Find all the numbers that round to 100 , to 1 significant figure:

A	105	D	102	G	99	J	95	M	90	P	110
B	92	E	100	H	130	K	107	N	91	Q	96
C	98	F	90	I	170	L	89	O	55	R	140

Fluency Practice

learn by heart

The zeros at the start of a decimal are not significant
The zeros at the end of a decimal ARE significant

examples

Round 0.0489 to 1 significant figure (1.s.f)
(1st significant figure is in the hundredths column, so round to the nearest tenth)

$$
=0.05
$$

exercise lk

1. Which of these numbers has 3 significant figures?
a) 2.486
b) 2.406
c) 3.490
d) 0.0300
2. Round each of these to 1 significant figure:
a) 0.765
b) 0.408
c) 0.038
d) 0.0193
e) 2.845
f) 0.099
3. Round each of these to 2 significant figures:
a) 3.867
b) 0.608
c) 0.247
d) 12.859
e) 0.309
f) 0.0049
4. The number 0.307 has \qquad significant figures.
5. The number 4.8050 has \qquad significant figures.
6. The number 900.009 has \qquad significant figures.
7. Round each of these as indicated:
a) 0.289 (2 s.f.)
b) 42.806 (3 s.f.)
c) 0.0987 (2 s.f.)
d) 8.207 (3 s.f.)
e) 0.069 (2 s.f.)
f) 4.98 (1 s.f.)
g) 0.3007 (3 s.f.)
h) 0.0914 (2 s.f.)
i) 8.999 (2 s.f.)
8. What is the value of $0 . \dot{4} 0 \dot{8}$ to 4 significant figures?

Fluency Practice

exercise ll

1. Circle the first significant figure in each of these numbers.
a) 0.429
b) 9002
c) 45
d) 0.00011
e) 0.704
f) 32,415
2. How many significant figures do each of these numbers have?
a) 506
b) 0.03
c) 0.4500
d) 23.605
3. Which of these has 2 significant figures? Circle all that apply.
a) 0.08
b) 108
c) 0.080
d) 1.08
4. Round each of these numbers to one significant figure:
a) 6.928
b) 0.00438
c) 82.9
d) 417.809
e) 0.089
f) 0.92
5. Which of these numbers is 72.46 rounded to one significant figure?
a) 72
b) 72.5
c) 70
d) 7
6. Which of these numbers have the digit $\mathbf{3}$ as the second significant figure? Choose all that apply.
a) 4.312
b) 3.2
c) 403.1
d) 0.329
e) 0.0731
7. Round each of these numbers to the number of significant figures shown:
a) 45 (1 s.f.)
b) 0.956 (2 s.f.)
c) 3005 (3 s.f.)
d) 551.8 (2 s.f.)
e) 0.0507 (2 s.f.)
f) 503 (1 s.f.)
g) 900 ($2 . \mathrm{s.f}$)
h) 0.56 (1 s.f.)
i) 9607 (2 s.f.)
j) 8.099 (3 s.f.)
k) 609 (2 s.f.)
I) 800 ($3 \mathrm{s.f}$)
8. Could the most significant figure in a number be a zero?
9. Could the second most significant figure in a number be a zero?
10. True or false: 42.389 rounded to 3 s.f. >42.389 rounded to 3 d.p.?

Fluency Practice

11. Which section of the diagram should each of the following numbers be in?

Some of the numbers go outside of the circles.

extension: there are two empty sections, can you think of a number that would go in
 each of these two sections?

Round It! $\lambda_{\text {zatitue }}^{\text {and }}$

Place the numbers in the boxes so that all arrows indicate a correct rounding

Problem Solving

round it!

Place the numbers in the boxes so that all the arrows indicate a correct rounding.

round it (2)!

Place the numbers in the boxes so that all the arrows indicate a correct rounding.

Fluency Practice

A. Sort these numbers into the
correct column on the right.

| 1 Significant |
| :---: | :---: |
| Figure |

0.109

2 Significant Figures
 3 Significant
 Figures

B. Multiple Choice

Choose the correct answer for each of these questions:

1. Round 0.345 to 2 significant figures
a) 0.3
b) 0.4
c) 0.34
d) 0.35
2. Round 3409 to 3 significant figures
a) 341
b) 3400
c) 3410
d) 3409
3. Round 4.005 to 2 significant figures
a) 4.0
b) 4.005
c) 4.01
d) 4.015
4. Round 30.659 to 3 significant figures
a) $\quad 30.6$
b) $\quad 30.7$
c) 31
d) $\quad 30.66$
5. Round 0.0999 to 3 significant figures
a) 0.0999
b) 0.09
c) 0.1000
d) 0.100
6. 4099.2 to 3 significant figures
a) 4010
b) 4100
c) 410
d) 4000
C. Round each of these to the number of significant figures shown:
a) 5676 (1 s.f.)
b) 2039 (2 s.f.)
c) $\quad 54.989$ (3 s.f.)
d) 500798 (3 s.f.)
e) $0.00088(1$ s.f. $)$
f) $\quad 420.903(4$ s.f.)
g) $\quad-0.899(2$ s.f. $)$
h) $\quad 109.99$ (3 s.f.)

Fluency Practice

There are 8 true statements hidden in this grid. Can you find them?
54.43 to 1
s.f. is 54.4
2.004 to 1
s.f. is 2.0
4.106 to 2
s.f. is 4.1
19.9 to 2 s.f.

Fluency Practice

581 to 1 s.f. is 580	$\begin{aligned} & 3694 \text { to } 3 \\ & \text { s.f. is } 369 \end{aligned}$	$\begin{aligned} & 3.0381 \text { to } 3 \\ & \text { s.f. is } 3.04 \end{aligned}$	6.0041 to 2 s.f. is 6.004	$\begin{aligned} & 0.135 \text { to } 2 \\ & \text { s.f is } 0.14 \end{aligned}$
$\begin{gathered} 5986 \text { to } 2 \\ \text { s.f. is } 6000 \end{gathered}$	$\begin{aligned} & 0.0998 \text { to } 2 \\ & \text { s.f. is } 0.010 \end{aligned}$	$\begin{aligned} & 0.875 \text { to } 2 \\ & \text { s.f. is } 0.87 \end{aligned}$	$\begin{aligned} & 63.85 \text { to } 1 \\ & \text { s.f. is } 63.9 \end{aligned}$	$\begin{aligned} & 299.9 \text { to } 2 \\ & \text { s.f. is } 300 \end{aligned}$
$\begin{aligned} & 3.012 \text { to } 1 \\ & \text { s.f. is } 3.0 \end{aligned}$	$\begin{aligned} & 0.0998 \text { to } 2 \\ & \text { s.f. is } 0.100 \end{aligned}$	$\begin{gathered} 51.02 \text { to } 3 \\ \text { s.f. is } 51 \end{gathered}$	$\begin{gathered} 0.92 \text { to } 2 \text { s.f. } \\ \text { is } 0.92 \end{gathered}$	$\begin{aligned} & 501.14 \text { to } 3 \\ & \text { s.f. is } 501.1 \end{aligned}$
$\begin{gathered} 7038 \text { to } 2 \\ \text { s.f. is } 7040 \end{gathered}$	$\begin{gathered} 0.0998 \text { to } 2 \\ \text { s.f. is } 0.10 \end{gathered}$	$\begin{gathered} 7.256 \text { to } 2 \\ \text { s.f. is } 7.3 \end{gathered}$	$\begin{gathered} 0.135 \text { to } 2 \\ \text { s.f is } 0.1 \end{gathered}$	$\begin{aligned} & 0.0597 \text { to } 2 \\ & \text { s.f. is } 0.060 \end{aligned}$

Fluency Practice

Fluency Practice

Fluency Practice

Activity

Round to nearest 100

Round to 2 significant figures

Problem Solving

Extension

$1,1,2,3,4,5,5,5,5,5,5,5,6,6,6,6,7,7,7,7,8,8,9,9,9$

4.6
(1dp)

75
(Whole)

700
(hundred)

370
(nearest 10)

2.2
(1dp)

30
(nearest 10)

8
(nearest whole)

Problem Solving

Using only the digits at the side once in

$\square \square$

Using only the digits at the side once in the entire diagram, complete the Venn diagram

| n | n | n | σ | θ | σ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| n | n | n | θ | θ | θ |

Extension

Andrea chooses two numbers from the list.

When she rounds the two numbers to
1 decimal place they are equal.
When she rounds the two numbers to
2 significant figures, they are not equal.
Find Andrea's numbers.
Find a number that works for each question.
b. When rounded to one decimal place and one significant figure, the answer is the same.
When rounded to two significant figures and the nearest hundred, the answer is the same.
When rounded to the nearest five and the nearest odd number, the answer is the same.
When rounded to three significant figures and two decimal places, the answer is the same.
aj

Problem Solving

Maths Venns

Maths Venns

2 Metric Units

Fluency Practice

Match each word to both description using the definitions in the table, and
highlight any that aren't in common use.

Kilogram

Milligram

Decigram

Kilometre

Decagram

Decametre
Centimetre
Centilitre
Kilolitre

Decilitre

Decalitre

Millimetre

Decimetre

Fill in the Gaps

Complete the missing lengths in this table:

$\mathbf{m m}$	$\mathbf{c m}$	\mathbf{m}	$\mathbf{k m}$
50			
2000	350	26	
		600	
			0.75
			2.5

Match these lengths into equivalent pairs. Record your answers in the table at the bottom.

Fluency Practice

Question 1: Convert the following lengths into centimetres (cm)
(a) 4 m
(b) 9 m
(c) 12 m
(d) 59 m
(e) 750 m
(f) 105 m
(g) 2.5 m
(h) 8.2 m
(i) 1.53 m
(j) 0.6 m
(k) 0.38 m
(l) 0.03 m

Question 2: Convert the following lengths into metres (m)
(a) 300 cm
(b) 700 cm
(c) 900 cm
(d) 1400 cm
(e) 250 cm
(f) 740 cm
(g) 1000 cm
(h) 348 cm
(i) 80 cm
(j) 70 cm
(k) 53 cm
(l) 2 cm

Question 3: Convert the following lengths into centimetres (cm)
(a) 60 mm
(b) 30 mm
(c) 65 mm
(d) 87 mm
(e) 280 mm
(f) 812 mm
(g) 2030 mm
(h) 9000 mm
(i) 7 mm
(j) 4 mm
(k) 1.3 mm
(l) 0.6 mm

Question 4: Convert the following lengths into millimetres (mm)
(a) 2 cm
(b) 6 cm
(c) 4.5 cm
(d) 9.2 cm
(e) 13 cm
(f) 78 cm
(g) 124 cm
(h) 520 cm
(i) 0.5 cm
(j) 0.2 cm
(k) 0.8 cm
(l) 0.16 cm

Question 5: Convert the following lengths into metres (m)
(a) 4 km
(b) 9 km
(c) 13 km
(d) 28 km
(e) 125 km
(f) 300 km
(g) 7000 km
(h) 7200 km
(i) 0.5 km
(j) 0.8 km
(k) 1.2 km
(l) 2.6 km
(m) 0.07 km
(n) 0.02 km
(o) 0.006 km
(p) 1.008 km

Question 6: Convert the following lengths into kilometres (km)
(a) 6000 m
(b) 2000 m
(c) 5500 m
(d) 6400 m
(e) 800 m
(f) 600 m
(g) 450 m
(h) 125 m
(i) 70 m
(j) 90 m
(k) 35 m
(l) 4 m
(m) 90000 m
(n) 40000 m
(o) 340000 m
(p) 90530 m

Question 7: Convert the following lengths
(a) 2 m into mm
(b) 8 m into mm
(c) 6500 mm into m
(d) 9000 mm into m
(e) 48000 cm into km
(f) 9250000 cm into km
(g) 780 mm into m
(h) 4 km into cm
(i) 1 km into mm
(j) 25000000 mm into $\mathrm{km}(\mathrm{k}) \quad 0.5 \mathrm{~km}$ into cm
(l) 0.023 km into mm

Fluency Practice

learn by heart

When converting to a larger unit, divide
When converting to a smaller unit, multiply

examples

Convert 70 cm into metres.

$$
\begin{aligned}
70 & \div 100 \\
& =0.7 \mathrm{~m}
\end{aligned}
$$

Convert 7 m into kilometres.

$$
\begin{aligned}
& 7 \div 1000 \\
&=0.007 \mathrm{~km}
\end{aligned}
$$

Convert 84 cm into mm . 84×10 $=840 \mathrm{~mm}$

exercise 7 g

1. Complete these statements:
a) $3000 \mathrm{~cm}=$ \qquad m
b) \qquad $\mathrm{mm}=36 \mathrm{~cm}$
c)
\qquad $\mathrm{cm}=0.72 \mathrm{~m}$
d) $108 \mathrm{~m}=$ \qquad km
e) $1.25 \mathrm{~cm}=$
\qquad mm
f) $0.7 \mathrm{~km}=$ \qquad m
g) $80 \mathrm{~mm}=$
\qquad cm
h) $2 \mathrm{~km}=$
\qquad m
i) \qquad $\mathrm{cm}=0.91 \mathrm{~m}$
j) \qquad $\mathrm{km}=680 \mathrm{~m}$
2. Fill in the table to show equivalent lengths:

mm	cm	m	km
A		600	
B			80
C			1000

3. Which of the following is equal to 200 cm ?
a) 2000 mm
b) 0.2 km
c) 20 m
d) 0.02 km
4. Which of the following is the largest?
a) 500 cm
b) 7 m
c) 0.08 km
d) 9000 mm

Fluency Practice

matching activity

5. Find 12 pairs of matching lengths. Record your results in the table.

A	B	C	D	E	F	G	H	I	J	K	L

6. True or false?
a) $30 \mathrm{~m}=300 \mathrm{~cm}$
b) $5.4 \mathrm{~m}=54 \mathrm{~cm}$
c) $2.8 \mathrm{~cm}=280 \mathrm{~mm}$
7. Fill in the blank spaces.
a) $2 \mathrm{~cm}+3 \mathrm{~mm}=$ \qquad cm
d) $6.1 \mathrm{~cm}+9 \mathrm{~mm}=$ \qquad cm
b) $5 \mathrm{~cm}+1 \mathrm{~mm}=$ \qquad cm
e) $8 \mathrm{~cm}+10 \mathrm{~mm}=$ \qquad cm
c) $12 \mathrm{~cm}+8 \mathrm{~mm}=$ \qquad cm
f) $1.1 \mathrm{~cm}+9 \mathrm{~mm}=$ \qquad mm
8. Complete these conversions:
a) $0.24 \mathrm{~km}=$ \qquad cm
d) $52,000 \mathrm{~cm}=$ \qquad km
b) $3,400 \mathrm{~mm}=$ \qquad m
e) $0.01 \mathrm{~m}=$ \qquad mm
c) $1.9 \mathrm{~m}=$ \qquad mm
f) $290 \mathrm{~mm}=$ \qquad m
9. Which of the following is equal to 4.05 m ?
a) 450 cm
b) 4050 mm
c) 0.0405 km
d) 40.5 cm
10. Which of the following is the smallest?
a) 0.002 m
b) 0.7 cm
c) 0.000003 km
d) 4 mm

Fluency Practice

A1 Convert 26 mm into cm	A2 Convert 740 cm into mm	A3 Convert 970 m into km	A4 Convert 32 m into cm
B1 Convert 380 cm into m	B2 Convert 420 m into mm	B3 Convert 34 km into m	B4 Convert 63 mm into m
C1 Convert 21 km into cm	C2 Convert 58 cm into km	C3 Convert 3.6 km into mm	C4 Convert 495 cm into km
D1 Convert 373 mm into cm	D2 Convert 429 mm into km	D3 Convert 8500 mm into m	D4 Convert 19 km into mm
E1 Convert 528 km into cm	E2 Convert 32.7 km into m	E3 Convert 7 cm into km	E4 Convert 9400 mm into km

Fluency Practice

Question 8: Convert the following into grams
(a) 2 kg
(b) 7 kg
(c) 19 kg
(d) 20 kg
(e) 1.5 kg
(f) 2.4 kg
(g) 4.7 kg
(h) 0.5 kg
(i) 0.8 kg
(j) 0.16 kg
(k) 0.03 kg
(1) 0.008 kg

Question 9: Convert the following into kilograms
(a) 7000 g
(b) 3000 g
(c) 12000 g
(d) 40000 g
(e) 3945 g
(f) 600 g
(g) 850 g
(h) 735 g
(i) 60 g
(j) 75 g
(k) 2 g
(l) 78.1 g

Question 10: Convert the following into kilograms
(a) 5 tonnes
(b) 8 tonnes
(c) 15 tonnes
(d) 0.6 tonnes
(e) 1.6 tonnes
(f) 9.25 tonnes
(g) 0.3 tonnes
(h) 0.06 tonnes

Fluency Practice

learn by heart

1 kilogram $(\mathrm{kg})=1000$ grams

$$
1 \text { tonne }(t)=1000 \mathrm{~kg}
$$

exercise

1. Fill in the gaps:
a) $2500 \mathrm{~g}=$ \qquad kg
b) \qquad $\mathrm{g}=0.9 \mathrm{~kg}$
c) \qquad d) $9450 \mathrm{~g}=$ \qquad kg
e) \qquad $\mathrm{g}=0.02 \mathrm{~kg}$
f) $0.043 \mathrm{~kg}=$ \qquad
g) 3.5 tonnes $=$ \qquad kg
h) \qquad $\mathrm{kg}=3060 \mathrm{~g}$
i) $450 \mathrm{~kg}=$ \qquad tonnes
j) $10,000 \mathrm{~g}=$ \qquad tonnes
2. Which of these could be the weight of an apple?
a) 7.8 g
b) 78 g
c) 780 g
d) 7.8 kg
3. Which of these are impossible?
a) A real car that weighs 500 g .
b) A full grown man that weighs 90 kg .
c) A laptop computer weights 150 kg .
d) A suitcase full of clothes weighs 30 kg .
e) A recipe to make cake for 10 people uses 1 kg of flour.
4. Which of these could be the weight of an elephant?
a) 6 km
b) $6 \mathrm{~kg}^{2}$
c) 6 tonnes
d) 60 kg
e) 60 g
f) $6 \mathrm{~km}^{2}$
5. Fill in the blanks with $>,<$ or $=$
a) 360 g \qquad 3 kg
b) 490 kg \qquad 4 tonnes
c) 0.06 kg \qquad 600 g
d) 1050 g \qquad 10.5 kg

Fluency Practice

Question 11: Convert the following into millilitres
(a) 2 litres
(b) 6 litres
(c) 24 litres
(d) 1.8 litres
(e) 0.6 litres
(f) 0.125 litres
(g) 0.07 litres
(h) 2.05 litres

Question 12: Convert the following into litres
(a) 8000 ml
(b) 3000 ml
(c) 76000 ml
(d) 750 ml
(e) 540 ml
(f) 121 ml
(g) 88 ml
(h) 1035 ml

1) Convert 576 litres to cl .
2) Convert 553 cl to ml .
3) Convert 270 litres to cl .
4) Convert 654 litres to cl.
5) Convert 90.1 cl to ml .
6) Convert 4700 cl to litres.
7) Convert 170 ml to cl .
8) Convert 1100 ml to cl .
9) Convert 7300 cl to litres.
10) Convert 5700 cl to litres.

Fluency Practice

learn by heart

Capacity: the amount that something can hold, measured in ml or litres.

1 litre $(l)=$
1000 millilitres (ml)

1 litre $(l)=$
100 centilitres (cl)

exercise

1. Fill in the gaps:
a) $3500 \mathrm{ml}=$ \qquad b) \qquad $m l=4 l$
c) \qquad $m l=3.6 l$
d) $400 \mathrm{ml}=$ \qquad l
e) \qquad $m l=0.2 l$
f) $8.4 l=$ \qquad cl
g) $20.71=$ \qquad $m l$
h) \qquad $l=42 c l$
i) $0.95 l=$ \qquad $m l$
j) $52,000 \mathrm{ml}=$ \qquad l
2. Fill in the blank: $0.2 l+45 \mathrm{ml}=$ \qquad l
3. Which of these might be the capacity of a can of cola?
a) 3 ml
b) 30 ml
c) 300 ml
d) 3 litres
e) 30 litres
4. Which is bigger, 1 cl or 1 ml ?
5. Which of the following is $\frac{1}{100}$ of a litre?
a) 1 ml
b) 1 cl
c) 100 ml
d) 10 cl
6. Fill in the blanks with >, < or =
a) 4 cl \qquad 10 ml
b) $6 l$ \qquad 750 ml
c) 250 cl \qquad $0.4 l$
d) 3.81 \qquad 380 cl
7. Which of these could be the capacity of a swimming pool?
a) $3 l$
b) 300 ml
c) $300,000 l$
d) $3,000,000 \mathrm{l}$

Fluency Practice

examples

Convert 150 minutes to hours 1 hour $=60$ minutes, $150 \div 60=2.5$

How many minutes is $\frac{1}{10}$ of an hour?

1 hour $=60$ minutes, $60 \div 10=6$ minutes

Convert 3.2 hours to minutes

1 hour $=60$ minutes, $3.2 \times 60=192$ minutes

exercise 7n

1. Convert each of these to minutes:
a) 5 hours
b) $\frac{1}{2}$ an hour
c) $\frac{1}{10}$ of an hour
d) 2.5 hours
e) 4 hours \& 15 minutes
f) $1 \frac{1}{4}$ hours
g) $\frac{3}{4}$ of an hour
h) 3.25 hours
i) $3 \frac{1}{5}$ hours
j) 0.3 hours
k) $1 \frac{3}{5}$ hours
I) 2.9 hours
2. Convert each of the following times to hours and minutes.
a) 110 mins
b) 70 mins
c) 345 mins
d) 420 mins
3. Match each time interval below with a time in minutes from the boxes on the right.

A	B	C	D	E	F	G	H	I	J	K	L

4. Put these times in order, starting with the shortest:
a) 1.2 hours
b) 65 minutes
c) $1 \frac{1}{3}$ hours
d) 1.3 hours

Fluency Practice

examples

The time is $17: 45$.
What time will it be in 20 minutes?
15 minutes will make 18:00, so it will be 18:05

Work out the number of minutes between 13.48 and 14.25

$$
60-48=12
$$

$12+25=37$ minutes

exercise 70

1. Each of the following times are given in 24 -hour clock format.

Convert each to 12 -hour clock format. The first one is done for you.
a) $1428 \quad 2: 28 \mathrm{pm}$
b) 1315
c) 0745
d) 1830
e) 1128
f) 2140
g) 0410
h) 0050
i) 1233
2. Each of the following times are given in 12 -hour clock format.

Convert each to 24 -hour clock format. The first one is done for you.
a) $3: 27 \mathrm{pm} \quad 1527$
b) $8: 23 \mathrm{am}$
c) $8: 56 \mathrm{pm}$
d) $10: 20 \mathrm{pm}$
e) 3:00 am
f) $6: 30 \mathrm{pm}$
g) $12: 08 \mathrm{am}$
h) $12: 38 \mathrm{pm}$
i) $\mathbf{1 1 : 1 7} \mathrm{pm}$
3. Which of these times are in the afternoon? Circle all that apply.
a) 9:04 am
b) 15.01
c) 13.30
d) 4 pm
4. Work out how many minutes there are between:
a) $14.05 \& 15.00$
b) $11.10 \& 12.00$
c) $10.02 \& 11.05$
d) $18.12 \& 19.00$
e) $10.06 \& 10.45$
f) $12.35 \& 13.12$
5. The time is 13.05 . What time will it be in 55 minutes?
6. The time is $\mathbf{1 4 . 2 5}$. How many minutes is it until 3 pm ?
7. The time is quarter past three in the afternoon. What time will it be in 20 minutes?
8. The time is 15.15 . How many minutes is it until 5 pm ?

Fluency Practice

9. Each flow diagram shows a starting time, an interval and an end time. Work out the missing parts:

10. A film starts at $7: 30 \mathrm{pm}$ and lasts 110 minutes. At what time does the film finish?
11. It takes Sam $1 \frac{1}{4}$ hours to travel to work. Sam set off for work at $8: 50 \mathrm{am}$.

At what time did Sam arrive at work?
12. At an activity day, there are three sessions, each lasting 45 minutes.
a) Work out the total duration of the three sessions.
b) The first session starts at 10:30 am and there are no gaps between the sessions. Work out the time at which the last session ends.
13. A theatre show consists of two acts with a 20 minute interval.

The first act is 1 hour 10 minutes long and the second act is 55 minutes long.
The show starts at 7:30pm.
Work out the finishing time of the show.
14. It takes 40 minutes for Claudia to travel from home to work.

Claudia is due to start work at 10:30 am. Work out the lastest time that she could leave home in order to arrive at work on time.
15. Rebecca arrived at the gym at $3: 50 \mathrm{pm}$.

She stayed at the gym for 1 hour and 20 minutes, then walked home.
It took Rebecca $\frac{3}{4}$ hour to walk home. At what time did Rebecca get home?
16. Rob started gardening at 11:45 am and finished at 2:00 pm.

During this time, Rob took a 20 minute break.
How long was Rob gardening for?
17. Patients can book an appointment to see a doctor for ten minutes.

In the morning, the doctor sees patients between 8:50 am and 11:30 am.
The doctor also takes a 20 minute break during this time.
Work out how many patients the doctor can see in the morning.

Fluency Practice

Write down the times shown. Give them in both 12-hour (am/pm) and 24-hour clock format.

(a) An overnight train sets off at 10 pm and arrives at 5.30 am . How long, in hours and minutes, is the journey?
(b) A TV programme starts at 5.35 pm and finishes at 7.12 pm . How long, in minutes, is the programme?
(c) A factory worker starts his shift at
8.12 am and finishes it at 4.43 pm . How long, in hours and minutes, is his shift?
(a) Younis starts watching a film at 5.45 pm. The film lasts 2 hours 27 minutes. What time does the film finish?
(b) A plane takes off at 3.40 am . The length of the flight is 10 hours 45 minutes. What time does the plane land? (c) A concert lasts 3 hours 27 minutes. The concert finishes at 9.58 pm . What time did the concert start?
(a) What time is 1500 seconds after 16:10?
(b) What time is 2100 seconds before 15:45?

Fluency Practice

In each box, cross off pairs of time intervals that are equal to each other. Circle the time interval that is left over.
Times shown are in hours (h) and minutes (m).

A			B			C		
$\frac{1}{2} h$	6 m	$\frac{1}{4} h$	10m	15 m	$\frac{1}{5} h$	$\frac{1}{20} h$	8m	9 m
45m	30m	$\frac{3}{4} h$	60 m	$\frac{1}{6} h$	12 m	4 m	5 m	$\frac{1}{15} \mathrm{~h}$
15m	$\frac{1}{10} h$	50m	$\frac{1}{3} h$	20 m	1h	$\frac{1}{12} h$	$\frac{3}{20} \mathrm{~h}$	3 m
D			E			F		
$\frac{3}{5} h$	42m	35 m	0.25h	6 m	30 m	0.3h	20 m	0.4h
$\frac{5}{6} h$	36 m	$\frac{2}{3} \mathrm{~h}$	24 m	40 m	0.1h	42 m	24 m	18 m
40 m	$\frac{7}{12} \mathrm{~h}$	50m	0.5h	0.4h	15m	0.6h	36 m	0.7h
G			H			1		
$1 \frac{1}{2} h$	$1 \frac{1}{3} \mathrm{~h}$	$\frac{9}{10} \mathrm{~h}$	$1 \frac{2}{3} \mathrm{~h}$	63m	$1 \frac{1}{15} \mathrm{~h}$	$1 \frac{9}{10} \mathrm{~h}$	$2 \frac{1}{4} \mathrm{~h}$	108m
150m	$1 \frac{1}{5} h$	90m	$1 \frac{1}{10} \mathrm{~h}$	105m	100m	$1 \frac{4}{5} h$	135m	$1 \frac{7}{10} \mathrm{~h}$
80m	54m	72m	64 m	$1 \frac{1}{20}$	$1 \frac{3}{4} \mathrm{~h}$	130m	$2 \frac{1}{6} \mathrm{~h}$	102m
J			K			L		
0.3 h	18 m	0.6 h	1.4h	114m	1.8h	1.3̇h	1.1h	2.5h
40 m	36 m	33 m	108m	84 m	75m	100m	80m	1.6 h
0.6h	0.3h	20m	1.9h	1.6h	1.25h	150m	120m	66m

Fluency Practice

Convert the following:
(a) 800 cm into m
(b) 500 cm into m
(c) 1500 cm into m
(d) 520 cm into m
(e) 6 m into cm
(f) 13 m into cm
(g) 6.7 m into cm
(h) 5.82 m into cm

Convert the following:
(a) 4000 m into km
(b) 7000 m into km
(c) 7600 m into km
(d) 8625 m into km
(e) 3 km into m
(f) 3.2 km into m
(g) 4.56 km into m
(h) 1.87 km into m

Convert the following:
(a) 5 cm into mm
(b) 80 cm into mm
(c) 3.5 cm into mm
(d) 8.9 cm into mm
(e) 20 mm into cm
(f) 45 mm into cm
(g) 31 mm into cm
(h) 17 mm into cm

Convert the following:
(a) 6 kg into g
(b) 6.7 kg into g
(c) 6.82 kg into g
(d) 0.75 kg into g
(e) 2000 g into kg
(f) 2800 g into kg
(g) 1750 g into kg
(h) 600 g into kg

Convert the following
(a) 2000 ml into L
(b) 4500 ml into L
(c) 6 L into ml
(d) 7.8 L into ml

In a 100 m race, when the winner crossed the finish line, the runner in last place had covered 91.72 m . What was the gap in cm between the first and last runners?

Extension

Question 1: Jack is 1.36 metres tall.
His friend Ian is 5 centimetres taller than Jack.
What height is Ian? Give your answer in metres.

Question 2: Mary runs 600 m every day.
Work out how far Mary runs in one week.
Give your answer in kilometres.
Question 3: Karl is baking a loaf of bread and needs 0.8 kg of flour He has 72 grams of flour.
How much more flour does Karl need?
Give your answer in grams.
Question 4: James and Jack buy a 3 litre carton of orange juice.
Each boy drinks 650 ml of orange juice.
How much orange juice is left?
Give your answer in litres.
Question 5: Rebecca has two dogs, Lucky and Pepe.

Lucky weighs 5.4 kilograms.
Pepe is 800 grams lighter than Lucky.
Work out how much Pepe weighs.
State your units.

Question 6: A 2p coin has a mass of 7 grams. Find the total mass of $£ 80$ worth of 2 p coins. Give your answer in kilograms.

Maths Venns

3 Properties of 2D Shapes

Fluency Practice

Question 1: Draw the following shapes
(a) A square
(b) A rectangle
(c) A circle
(d) A triangle
(e) A semi-circle
(f) A pentagon
(g) An octagon
(h) A hexagon
(i) A decagon
(j) A heptagon

Question 2: Name each of the shapes below
(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Question 3: Name each of the polygons below
(a)

(b)

(c)

Extension

Question 1: Draw 4 different hexagons.

Question 2: Below is a picture of a street.
Write down any 2D shapes you see and what they are in the picture.

Question 3: Can you spot any mistakes below?

(a) Name shape A
(b) Name shape B
(c) Name shape C
(d) Name shape D

Square
(1)

Circle
(1)

Pentagon
(1)

Diamond
(1)

Fluency Practice

Line Symmetry

Add the number of squares specified so that the lines shown are all lines of symmetry

Fluency Practice

Add the missing line of symmetry to each of these shapes.

Draw all the lines of symmetry on each of these shapes.
(a)
(b)

(c)

(d)

Draw all the lines of symmetry on each of these regular polygons.
(a)

(b)

(c)

(d)

Add one square to each of these shapes so that they have the lines of symmetry shown.
(a)

(b)

Fluency Practice

Shape Symmetry

Draw the lines of symmetry for each shape.
How many lines of symmetry does each shape have? Watch out! Some shapes have NO lines of symmetry!

B)

C)

D)

E)

H)

N)

0)

P)

Q)

R)

Challenge

Question 1

How many letters of the word
MATHEMATICS do not have any lines of symmetry?

Question 3

The diagram shows a pattern made from matchsticks stuck to a piece of card. What is the smallest number of matchsticks that need to be added so that the resulting pattern has a line of symmetry?

Question 5

What is the smallest number of additional squares which must be shaded so that this figure has at least one line of symmetry and rotational symmetry of order 2?

Question 2

The diagram shows a poster which Beatrix has (this way up!) on her wall. When Beatrix
was standing on her head, looking in a mirror on the opposite wall at the poster on the wall behind her, how many letters could still be read in the normal way?

Question 4

The diagram shows a weaver's design for a rihlélo, a winnowing tray from Mozambique. How many lines of symmetry does the design have?

Question 6

Each of the nine small squares in this grid can be coloured completely black or completely white.
What is the largest number of squares that can be coloured black so that the design created has rotational symmetry of order 2, but no lines of symmetry?

Question 7

The figure shows an equilateral triangle divided into small equilateral triangles, all equal. What is the lowest number of small triangles which must now be shaded to produce a figure which has a line of symmetry?

Question 8

A square is divided into eight congruent triangles, as shown. Two of these triangles are selected at random and shaded black. What is the probability that the resulting figure has at least one line of symmetry?

Fluency Practice

learn by heart

A shape has rotational symmetry if it looks exactly the same after rotating by less than a full turn.

A shape's order of rotational symmetry is the number of times it looks the same in a full turn.

exercise $3 f$

This shape has rotational symmetry of order 2.

1. State the order of rotational symmetry of each shape, or write 'none' if the shape has no rotational symmetry.

Square	Rectangle	Trapezium	Parallelogram	Kite
Isosceles Triangle	Equilateral Triangle	Ellipse	Regular Pentagon	Regular Hexagon

2. State the order of rotational symmetry of a regular octagon.
3. Sketch a hexagon with a rotational symmetry of order 2 .
4. State the order of rotational symmetry of each drawing, or write 'none' if the drawing has no rotational symmetry.

5.

D
E
G H 1 M N S U W X
a) Which of the letters have rotational symmetry?
b) Which of the letters have rotational symmetry and at least 1 line of symmetry?

Fluency Practice

Rotational Symmetry

Add the number of squares specified to get the required order of rotational symmetry.

Fluency Practice

Write down the order of rotational symmetry of each of these shapes.
(a)

(b)

(c)

(d)

Write down the order of rotational symmetry of these regular polygons.
(a)

(b)

(d)

Which of these shapes does not have the same number of lines of symmetry as its order of rotational symmetry?

Add one square to each shape so that is has rotational symmetry of order shown.
(a) Order $2 \quad$ (b) Order 4

Fluency Practice

Rotational Symmetry

For each shape, write down its order of rotational symmetry.
A

B

C

E

F

L

N

S

J
J

Fluency Practice

Flags of the World Symmetry

Fluency Practice

Question 1: Write down what type of triangle each picture shows.
(a)

(b)

(c)

(d)

(e)

(f)

Question 2: What type of triangle shown below?

Question 3: Draw a right angle triangle
Question 4: Draw an isosceles triangle
Question 5: Draw a scalene triangle
Question 6: Draw an equilateral triangle

Extension

Question 1: Daniel has drawn a triangle with sides of length $5 \mathrm{~cm}, 5 \mathrm{~cm}$ and 8 cm . What type of triangle has he drawn?

Question 2: Charlotte has drawn a triangle with angles of $60^{\circ}, 60^{\circ}$ and 60°. What type of triangle has she drawn?

Question 3: Is each statement below True or False?
(a) Scalene triangles have 3 lines of symmetry
(b) Isosceles triangles have 1 line of symmetry
(c) A right angle triangle can have a line symmetry

Question 4: Lily has 3 different wooden sticks.
Explain why she cannot make a triangle using the sticks.

Question 5: Liam says he has drawn a triangle with one acute angle, one right angle and one obtuse angle.

Explain why Liam must be wrong.

Extension

Fluency Practice

Question 1: Draw the following quadrilaterals
(a) A kite
(b) A rectangle
(c) A square
(d) A parallelogram
(e) A trapezium
(f) A rhombus
(g) An arrowhead/A delta

Question 2: Name each of the shapes below
(a)

(b)

(c)

(d)
(e)
(f)

Question 3: Draw all lines of symmetry on the quadrilaterals you have drawn in Question 1.

Question 4: Write down the order of rotational symmetry that each quadrilateral below has:
(a) A square
(b) A rectangle
(c) A kite
(d) A parallelogram
(e) A trapezium
(f) A rhombus

Question 5: Which quadrilaterals have only one pair of equal length sides?
Question 6: Which quadrilaterals have two pairs of equal length sides?
Question 7: Which quadrilaterals have four equal length sides?
Question 8: Which quadrilaterals have two pairs of parallel sides?
Question 9: Which quadrilaterals have one pair of parallel sides?
Question 10: Which quadrilaterals have diagonals of equal length?

Extension

Question 1: Explain why Martin is incorrect.

A trapezium has no lines of symmetry

Question 2: Can you spot any mistakes?

Below is a rectangle.

Tick the correct boxes for the four statements.

A rectangle has four right angles
A rectangle has one pair of parallel lines
A rectangle has four lines of symmetry
A rectangle has rotational symmetry of order 2

Extension

What Quadrilateral am I?

The following quadrilaterals have not been drawn to scale, but each one has some markings that tell you something about it. If you used the information to construct the quadrilateral, but didn't include any additional features that have not been shown, what is the best name for the quadrilateral?
Here are the choices:
quadrilateral, kite, trapezium, parallelogram, rhombus, rectangle, square
Write the best name for the quadrilateral on each diagram.
1.

4.

7.

10.

13.

16.

19.

2.

5.

8.

11.

14.

17.

20.

3.

6.

9.

12.

15.

18.

21.

Fluency Practice

learn by heart

Quadrilateral: 4 sided shape
Parallelogram : Opposite sides
are parallel

Rectangle : parallelogram with 4 right angles

Square: 4 right angles \& all sides equal

Rectangles \& Squares are special parallelograms

exercise 8b

1. Which of the shapes below are parallelograms? Circle 2 answers.
a)

b)

c)

d)

2. Which of the shapes below are rectangles? Circle 2 answers.
a)

b)

c)

d)

3. Which of these shapes are squares?

b)

c)

d)

4. Draw arrows on the parallel sides of these parallelograms:

5. Which of these shapes are squares? Circle 2 answers.
a)

b)

c)

d)

Fluency Practice

6. On the grid draw in extra lines to make 3 parallelograms:

7. True or False?
a) A square has four equal sides.
b) The sides of a square are perpendicular to each other.
c) A square is a type of parallelogram.
d) A rectangle always has four equal sides.
e) The opposite sides of a rectangle are parallel.
f) A parallelogram can have four equal sides.
g) You can cut a parallelogram in half to make two triangles.
8. How many parallelograms are in the picture?

9. Complete the lines draw to show each shape:
a) Square
b) Rectangle
c) Parallelogram

Fluency Practice

learn by heart

One pair of parallel sides.

Kite

Two pairs of adjacent sides equal.

Right-angled Trapezium

Isosceles Trapezium

exercise 8c

1. State whether each of these shapes is a rhombus, kite or trapezium:
a)

b)

c)

d)

e)

g)

h)

i)

2. Which of these is a trapezium?
a)

b)

c)

d)

3. Sketch a parallelogram and a trapezium.

Explain the difference between these two shapes.

Fluency Practice

Problem Solving

Page 183

Always, Sometimes, Never

1. A square is a rectangle.	2. The diagonals of a rhombus are perpendicular.	3. A rectangle is a square.
4. A rhombus is a square.	5. A trapezoid has opposite sides parallel.	6. A square is a rnombus.
7. A parallelogram is a rectangle.	8. A trapezoid has legs congruent.	9. A square has opposite angles congruent.
10. A parallelogram has congruent diagonals.	11. A rectangle has perpendicular diagonals.	12. A rhombus is a rectangle.
13. A parallelogram is a quadrilateral.	14. A parallelogram has diagonals that bisect each other.	15. A rectangle is a rhombus.
16. A rhombus has		
congruent diagonals.	17. A parallelogram has diagonals that bisect angles.	18. The diagonals of a rhombus are congruent.

Instructions: Complete the remaining boxes with quadrilaterals by making the minimum change possible to the centre box. If
there are boxes that cannot be filled in, say why.

Maths Venns

Maths Venns

Maths Venns

Problem Solving

- Cut out the nine shape cards and arrange them into a 3×3 grid using the clues below:

1. The equilateral shapes are all in different columns.
2. Each shape in the middle row has two sets of parallel lines.
3. The shapes in the top two corners each have exactly one line of symmetry.
4. One of the rows contains a total of 10 sides.
5. The square is in a corner below the parallelogram.
6. The shape in the centre has all angles the same, but its diagonals do not intersect at right angles.
7. The shape with two pairs of equal adjacent sides is not in the same column as the square.
8. The shape with the most sides is in the bottom right hand corner.

Extension

Kıəәшшкs цヤ！M uoбeoəpop e (七乙	ع дәрьо＇Киәшшкя ןеuo！̣едод К｜ио Ч！！М иобехәч е (ع乙	киəәшшкs ๖0 səu！！Омұ Кןиo ч！！М иобеәәәр е	pue Киәшuкs ๖๐ әи！！әuо К｜йо 	әן位 хәןృม ᄂ puesjeuo6e！p цłЂuәן ןenbə OMł 	乙 дәрıо ‘イиәшшкs ןeuo！tejod 人ןuo Ч！！М иобехәч е (61
（K｜uo） киәшшкя ןo әu！！әuо प！！М иобеұэо ие	（시uo） Киәшшкя Ło səu！！Inoł પ！！	unizeded e S！łеપł Ә！！！e	sə｜6ue ұүб！！ омұ pue（К｜ио） Киәшшкs ！๐ әu！！әuо प！！М иобехәәч е	sə｜бue łЧб！！әл！（К｜ұәехә） પ！！М иобеұைo ue	sə｜бue łцб！！ x！s प！！M pue 乙 дәрıо પ！！̣м иобеұэо ие
 	łulod e 6upunouns ұนәn」6uos ano」	 ssed łou seop цग！чм КцәшшКя ๖0 әu！！әuо łsn！ प！！М｜еләң！｜！upenb e	sәןбuе！ ఛ૫ర！！ anof to dn әреи иобехәч е	Киәәшикs〕0 әu！！әuo pue ＇əəןesed səp！s омł पд！М иобеұиәd e	səp！̣ ןenbə jo su！ed омұ pue sןeuo6e！p ıe｜no！puədıəd
sə｜бue хәןəə омł pue КдәшшК ！o səu！！OMł ч！！М иобехәу е	sə｜ธิue ұцб！！әл！ ц！！м pue КдәшшКк ч！！М иобехәу е	ә｜Бие！！ səəəગsos！ue әреш wn！zədeł e	ఛцర！！səəәวsos！ омұ 〕0 dn әреш 	әן臽 әsnłqo әио प！！м әןБие！！ səəəวsos！ue	səəəગsos！ s！јечł әןбue ұчб！е е ецим әб反uе！ e әdeys ә૫ł цวృәуs

4 Area and Perimeter

Fluency Practice

Question 1: The following shapes are drawn on centimetre-squared paper. Find the perimeter of each shape.
(a)
(b)
(c)

(d)

(e)

(f)

Question 2: The following shapes are drawn on centimetre-squared paper. Find the perimeter of each shape.

(a)
(d)

(b)

(e)

(c)

(f)

Extension

Question 1: On centimetre-square paper, draw a rectangle with a perimeter of 14 cm
Question 2: On centimetre-square paper, draw three different rectangles with an perimeter of 18 cm

Question 3: A square has a perimeter of 24 cm .
(a) Draw this square on centimetre-square paper.
(b) Find the area of the square.

Question 4: A rectangle has an area of $12 \mathrm{~cm}^{2}$.
(a) Draw three possible rectangles on centimetre-square paper.
(b) Find the perimeter of three rectangles.

Question 5: A square has an area of $49 \mathrm{~cm}^{2}$
(a) Draw this square on centimetre-square paper.
(b) Find the perimeter of the square.

Question 6: Draw a shape that has one line of symmetry and a perimeter of 10 cm
Question 7: Jasmine says the perimeter of this shape is 12 cm . Explain her mistake.

Question 8: An "equable" shape is a shape where the area and perimeter of the shape have the same numerical value.

The shape shown has an area of $26 \mathrm{~cm}^{2}$ and a perimeter of 26 cm .

Draw four more equable shapes.

Question 9: Martin has drawn the shape below.
He says it is possible to draw a shape with the same area but a larger perimeter.
Show Martin is correct.

Intelligent Practice

In each question, a section of the shape gets nibbled away. Find the perimeter of each shape.

Intelligent Practice

For each question, nibble off one square
each time but keep the same perimeter

Intelligent Practice

For each question, draw a shape using the

following instructions on the grids below

1) Draw a shape	2) Draw a shape	3) Draw a shape
where the value of	where the value of	where the value of
the perimeter is more	the perimeter is less	the perimeter is
than the number of	than the number of	equal to the number
squares used.	squares used.	of squares used.

4) Draw a shape where the value of the perimeter is three times larger the number of squares used.

2) Draw a shape
where the value of the perimeter is less than the number of

5) Draw a shape where the value of the perimeter is twice as large the number of squares used.

6) The largest perimeter you can make on a 5 by 5 grid has a length of 34 . Draw a shape with a perimeter of 34 units.

Intelligent Practice

For each grey grid, find the maximum perimeter shape that will fit inside it

9) Without drawing them, can you use what you know from your answers to questions 5-8 to predict the maximum perimeters for grey grids that are:
a) 3×18
b) 3×21
c) 3×30

Fluency Practice

Question 1: Work out the perimeter of each shape below
(a)

(b)

(c)

(f)

(d)

(e)

Question 2: Find the perimeter of each of these rectangles.
(a)
6 cm

(b)

(c)
36 mm

(d)
1.8 m

(e)

(f)

Question 3: Work out the perimeter of each of these squares
(a)
15 cm
(b)

(c)

Fluency Practice

Question 4: Work out the perimeter of each of these equilateral triangles
(a)

(b)

(c)

(d)

Question 5: Calculate the perimeter of each of these isosceles triangles
(a)

14 cm
(b)

10 cm
(c)

Question 6: Work out the perimeter of each of these regular shapes
(a)

(b)

(c)

Question 7: Find the perimeter of each of these shapes
(a)

10 cm
(b)

(c)

$12 m$
(d)

(e)

Extension

c)

Page 210

Extension

Fluency Practice

Page 213

Fluency Practice

Question 8: The perimeter of each shape is given. Find the length of the missing side

Perimeter $=26 \mathrm{~cm}$
(a)

S

Φ

Fluency Practice

Find the perimeter of each of these 2D shapes.
(a) Rectangle
(b) Triangle

(c) Trapezium
(d) Parallelogram

(e) Rhombus
(f) Triangle

Find the perimeter of each of these 2 D shapes.
(a)

(c)

The perimeter of the shape is 31 cm . Find the missing length x.

Extension

Extension

Question 1: The square is drawn accurately Find the perimeter of the square.

Question 2: A rectangle has a perimeter of 18 cm .
Write down a possible pair of values for its length and width

Question 3: The triangle and square have the same perimeter. Find x

Question 4: Shown is a rectangle.
$8 m$
Work out the perimeter of the rectangle.

Question 5: The length of a rectangular field is 60 m greater than the width of the field.
The field has a length of 310 m .
Find the perimeter of the field.

Question 6: Felicity wants to place a wooden fence around her vegetable garden.
Each metre of fencing costs $£ 5.80$

Question 7: Below is a coffee table.
The length of the table is 40 cm more that the width of the table.
The perimeter of the table is 3.8 m

Find the size of the length and width of the table

Question 8: Shown is an equilateral triangle with side length of 8 cm .
Six of the triangles are put together to make a larger shape.
Find the perimeter of the larger shape.

Question 9: A square has an area of $36 \mathrm{~cm}^{2}$
Find the perimeter of the square.

Question 10: Andy says that all rectangles with an area of $24 \mathrm{~cm}^{2}$ have the same perimeter Show that Andy is wrong.

Extension

Question 11: A rectangle is divided into two shapes, A and B
(a) Which of these statements is true?

- The area of A is greater than the area of B
- The area of A is less than the area of B
- The area of A is the same as the area of B
(b) Which of these statements is true?
- The perimeter of A is greater than the perimeter of B
- The perimeter of A is less than the perimeter of B
- The perimeter of A is the same as the perimeter of B

10 cm

Question 12: An isosceles triangle has a perimeter of 73 cm
An equilateral triangle has a perimeter of 51 cm
The triangles are put together to make a kite.

Work out the perimeter of the kite.

Question 13: Three congruent rectangles, are placed together to make the shape below.

Find the perimeter of the shape.

Question 14: ABCD is a trapezium
$A D$ is twice the length of $A B$
$B C$ is 3 cm longer than $A D$
$D C$ is 19 cm longer than $A B$
The perimeter of the trapezium is 49 cm

Find the length of $A B$

Fluency Practice

perimeter

Diagrams not to scale.
All lengths are measured in cm .
learn by heart
Perimeter: The distance around the edge of a shape

example

Calculate the perimeter:
$=4+4+4+4+4$
$=20$

questions

1. Calculate the perimeter:
a)

b)

c)

d)

e)

f)

18
h)

k)

I)

29

Fluency Practice

perimeter

2. Use a ruler to measure the perimeter of these shapes.

Give your answer in cm.
a)

b)

c)

d)

3. Draw a shape with a perimeter of 20 cm .
4. Draw a different shape with a perimeter of 20 cm .

Fluency Practice

perimeter

Diagrams not to scale

example

Calculate the perimeter of this shape:
$=8 \mathrm{~cm}+5.5 \mathrm{~cm}+6.2 \mathrm{~cm}+4 \mathrm{~cm}$
$=23.7 \mathrm{~cm}$

questions

5. These shapes are not drawn accurately. Calculate their perimeter.

Give your answer in cm.

b)

3 cm
d)

h)

e)

f)

g)

i)

Fluency Practice

perimeter

questions

6. These diagrams are drawn on cm squared paper.

Work out their perimeters.

7. On the cm squared paper below, draw two different shapes each with a perimeter of 10 cm

Extension

©
notes: the diagrams are not drawn accurately and the angles between lines are right angles
what are the overall perimeters of each shape?

(2)
ल

Extension

Extension

Extension

More-Same-Less

Problem Solving

Place the digits 1-9, once each, into
the boxes.
Round the lengths to the nearest 10 .
What is the largest perimeter you can
make?
What is the smallest perimeter you
can make?
Extra thinking...
Are we able to create impossible
polygons?
How do we know that they are
impossible?

Fluency Practice

Question 1: The following shapes are drawn on centimetre-squared paper. Find the area of each shape.
(a)

(b)

(c)

(d)

(e)

(f)

Question 2: The following shapes are drawn on centimetre-squared paper. Find the area of each shape.
(a)

(b)

(c)

Question 3: The following shapes are drawn on centimetre-squared paper. Estimate their areas.
(a)

(b)

(c)

Extension

Question 1: On centimetre-square paper, draw a rectangle with an area of $10 \mathrm{~cm}^{2}$
Question 2: On centimetre-square paper, draw three different rectangles with an area of $12 \mathrm{~cm}^{2}$

Question 3: A square has an area of $25 \mathrm{~cm}^{2}$.
(a) Draw this square on centimetre-square paper.
(b) Find the perimeter of the square.

Question 4: A rectangle has an area of $30 \mathrm{~cm}^{2}$.
(a) Draw two possible rectangles on centimetre-square paper.
(b) Find the perimeter of both rectangles.

Question 5: A square has a perimeter of 12 cm
(a) Draw this square on centimetre-square paper.
(b) Find the area of the square.

Question 6: Draw a shape that has one line of symmetry and an area of $8 \mathrm{~cm}^{2}$
Question 7: Draw a shape that has two lines of symmetry and an area of $10 \mathrm{~cm}^{2}$
Question 8: Jasmine says the area of this shape is 10 cm . Explain her mistake.

Extension

Here are two methods for finding the area of a polygon.

- Copy these shapes on to squared paper.

Choose one of the methods or your own to find the areas of these shapes.

Fluency Practice

Can you work out the area of these squares? Break them into rectangles and triangles to help.
Once you know the area, can you work out the exact edge length of each square?

Can you draw a square with an area of $10 \mathrm{~cm}^{2}$? What about area $2 \mathrm{~cm}^{2} ? 3 \mathrm{~cm}^{2}$?
Which areas can form a square and which areas cannot? Try out your ideas here:

Fluency Practice

How many squares do each of these shapes cover?

These shapes are huge. What would be a quick way of counting the squares inside them?

These shapes are drawn on plain paper. They are not drawn accurately. Look at the side lengths—how many 1 cm by 1 cm squares would fit inside each shape?

Fluency Practice

Record your groups here:

*

Fluency Practice

Split these shapes into smaller ones to help you calculate their areas exactly.

Area $=$ \qquad
4.

Area $=$ \qquad
7.

Area $=$squares
2.

Area $=$squares
5.

Area $=$ \qquad squares
8.

Area $=$ \qquad .squares
3.

Area $=$
.squares
6.

Area $=$
.squares
9. Draw the last answer:

Area $=$
.squares

Fluency Practice

Question 1: Calculate the area of each of these rectangles
(a)
(b)

(c)

(d)

(e)
(f)
(g)

(h)

(i)

(j)

(k)

(1)

Question 2: Work out the area of each of these squares
(a)

(b)

(c)

(d)

Question 3: Work out the area of each of these rectangles
(a)

(b)

(c)

(d)

(e)

(f)
(g)
(h)

Question 4: Work out the area of each of these rectangles. State your units for each answer.
(a)

(b)
(c)
(d)

(e)

(f)

(g)

Fluency Practice

Question 5: The area of each of these rectangles have been given. Find the length of the missing sides.
(a)
(b)

(c)

(d)
(e)

(f)

(g)

(h)

(i)

(j)
(k)

(1)

Extension

Question 1: A farmer has a field that is 300 m long and 70 m wide. Calculate the area of the field.

Question 2: A piece of paper has a length of 18 cm and a width of 6 cm .
Find the area of paper.

Question 3: A rectangle has an area of $30 \mathrm{~cm}^{2}$
Write down the length and width of three rectangles with an area of $30 \mathrm{~cm}^{2}$

Question 4: These two rectangles have the same area.
Find the length of the second rectangle.

Question 5: A rectangle has an area of $80 \mathrm{~cm}^{2}$ and a perimeter of 48 cm . Find the length and width of the rectangle.

Question 6: A rectangle has an area of $100 \mathrm{~cm}^{2}$ and a perimeter of 104 cm . Find the length and width of the rectangle.

Question 7: Mr Jenkins has a grass lawn that is 24 m wide and 30 m long. Mr Jenkins cuts the grass at a rate of $9 \mathrm{~m}^{2}$ per minute. How long will it take Mr Jenkins to cut all the grass?

Question 8: A football pitch is 110 m long and has a perimeter of 360 m . Find the area of the football pitch.

Question 9: A rectangular room is 14 m long and 8 m wide. Jessica is going to carpet the room with carpet that costs $£ 17.50$ per square metre.
Work out the cost of carpeting the room.

Extension

Question 10: Mr Harris is tiling his bathroom floor.
The bathroom floor is a rectangle measuring 4 m by 2 m . Each tile is 20 cm by 20 cm .

How many tiles does he need?

Question 11: Henry is tiling his kitchen wall.
The kitchen wall is a rectangle measuring 7 m by 2 m . Each tile is 50 cm by 50 cm .

How many tiles does he need?

Question 12: Mrs Rodgers is tiling her bathroom wall.
The bathroom wall is 360 cm long and 240 cm high.
Each tile is 20 cm by 20 cm

The tiles are sold in boxes of 6 .
Each box costs $£ 8$.
How much will it cost Mrs Rodgers to tile her bathroom wall?

Fluency Practice

Find the area of the shapes on these cm^{2} grids.
(a)
(b)

(c)
(d)

Find the area of each of these shapes.

Given the area, find the missing length.
$\begin{array}{ll}\text { (a) Area }=60 \mathrm{~cm}^{2} & \text { (b) Area }=27.5 \mathrm{~mm}^{2}\end{array}$

A rectangle has an area of $42 \mathrm{~cm}^{2}$. Find as many possible pairs of lengths and widths as you can.

Fluency Practice

Question 1: Work out the area of each of these shapes.
(a)

(b)

(c)

Question 2: Work out the area of each of these shapes.
(a)

(b)

(c)

(d)

(e)

(f)

Fluency Practice

Question 1: Work out the area of each of these shapes.
(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Question 2: Work out the shaded area.
(a)

(b)

(c)

Extension

Sami worked out the area of the orange shape as $10 \times 4+8 \times 7=96 \mathrm{~cm}^{2}$ Razina worked out the area as $12 \times 7+3 \times 4=96 \mathrm{~cm}^{2}$ Lukas worked out the area as $10 \times 10-2 \times 2=96 \mathrm{~cm}^{2}$

are you convinced by Sami, Razina or Lukas's reasoning? explain your answer

Fluency Practice

Fluency Practice

Question 1: The following parallelograms are drawn on centimetre-squared paper. Find the area of each.
(a)

(b)

(c)

Question 2: Work out the area of each of the parallelograms below. Include suitable units.
(a)

(b)

(c)

(d)

(e)

(f)

(i)

Question 3: A parallelogram has a base of 8 cm and a perpendicular height of 6 cm . Calculate the area of the parallelogram.

Fluency Practice
Question 4: The areas of each of the parallelograms has been given.

E

Area $=29.14 \mathrm{~cm}^{2}$
(f)

6.2 cm Calculate the length of the missing sides.
(b)

©

(a)

(d) $\underset{x}{\text { Area }=170 \mathrm{~m}^{2}}$

(d) $\underbrace{\text { Area }=170 \mathrm{~m}^{2}}_{x}$

Fluency Practice

Find the area of each of these parallelograms on these cm^{2} grids.
(a)

(b)

(c)

Calculate the area of each of these parallelograms.
(a)
(b)

Find the missing measurements in each of these parallelograms, given their area.
(a) Area $=42 \mathrm{~cm}^{2}$
(b) Area $=67.5 \mathrm{~cm}^{2}$

Fluency Practice

Alpha Exercise

Find the area of each of the following parallelograms:
(1)

(4)

(5)

(3)

(6)

Beta Exercise

Find the area of each of the following parallelograms:
(1)

(2)

(3)

(4)

Fluency Practice

Gamma Exercise

Find the area of each of the following parallelograms:
(1)

(3)

(2)

(4)

Delta Exercise

Here are four parallelograms. Fill in the missing values in each diagram.
(1)

(3)

(2)

(4)

Area= \qquad mm ${ }^{2}$

Exam Questions

Exam-style question 1

Six identical parallelograms are tiled as shown to form one large parallelogram with a base of 8 metres, as shown in the diagram.

This large parallelogram has a total area of $32 \mathrm{~m}^{2}$.

Work out the height, h, of one tile, in metres.

Exam-style question 2

Keith draws a parallelogram whose base is twice its perpendicular height.
The area of the parallelogram is $72 \mathrm{~cm}^{2}$ and the two sides which are not parallel to the base are 8 cm long.

Find the base and height of the parallelogram.

Exam-style question 3

Here is a grid made up of equilateral triangles. Each small triangle has an area of $5 \mathrm{~cm}^{2}$.

What is the area of the shaded parallelogram?

Fluency Practice

learn by heart

Area of Squares, Rectangles \& Parallelograms: base \times perpendicular height

examples

Calculate
the area
$=8 \times 6$
$=48 \mathrm{~cm}^{2}$

7 cm
\(\left.$$
\begin{array}{|l|l|}\hline \begin{array}{l}\text { Calculate } \\
\text { the area }\end{array}
$$ \& \square

=0.2 \times 0.4 \& \square\end{array}\right]\)| 0.2 m |
| :--- |
| $=0.08 \mathrm{~m}^{2}$ |

exercise $8 f$

1. Work out the area of each shape. Pay careful attention to the units.
a)

b)

c)

d)

e)

f)
6 mm

g)

h)

i)

2. Given the area, work out the side length of each of these squares:
a)

b)

c)

Fluency Practice

3. In these shapes, all lengths given are in centimetres.

Calculate the area, giving your answer as a decimal:
a)

b)

c)

4. Explain why we can't work out the area of this shape:

5. This rectangle and parallelogram have the same area.

Can you work out the length marked?

6. Which calculation works out the area of this parallelogram?
a) 5×10
b) 10×8
c) 7×8
d) 5×7
7. The grid is made of 1 cm by 1 cm squares.

Draw three different parallelograms with an area of $10 \mathrm{~cm}^{2}$
8. This grid is made of 1 cm by 1 cm squares.

Draw three squares with areas of $4 \mathrm{~cm}^{2}, 9 \mathrm{~cm}^{2}$ and $16 \mathrm{~cm}^{2}$

Fill in the Gaps

Question	Diagram	Base	Perpendicular Height	Calculation	Area
(a)		8 cm	2 cm	8×2	$16 \mathrm{~cm}^{2}$
(b)					
(c)					
(d)					
(e)					
(f)					$27 \mathrm{~cm}{ }^{2}$
(g)		5 cm			$40 \mathrm{~cm}^{2}$
(h)					$48 \mathrm{~mm}{ }^{2}$
(i)					
(j)					$x y \mathrm{~cm}^{2}$

Fill in the Gaps

		E		$\stackrel{\text { ¢ }}{\text { N }}$						
\mid	E	ミ			$\stackrel{\text { 厤 }}{ }$				$\stackrel{\text { \％}}{\text { E }}$	
$=$	E	号	$\underset{\sim}{\text { En }}$	$\underset{\text { cim }}{5}$		$\stackrel{5}{\sim}$	\％			$\stackrel{E}{8}$
-	$\stackrel{\text { gig }}{\substack{0}}$	E	$\stackrel{\text { E，}}{\substack{10}}$		¢	$\stackrel{5}{\square}$			$\stackrel{5}{\sim}$	
		E	$\stackrel{\text { Eju }}{\sim}$	E		${ }_{\sim}^{5}$	\％		$\stackrel{5}{\square}$	$\stackrel{5}{\sim}$

Complete the tables for the parallelogram below．

					$\begin{aligned} & \underset{U}{E} \\ & \infty \\ & \sim \end{aligned}$	$\begin{aligned} & E \\ & U \\ & 0 \\ & m \end{aligned}$	E E m
『゙			$\begin{aligned} & \text { N } \\ & \text { E } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \underset{U}{\infty} \\ & \sim \\ & N \end{aligned}$			N E O en
τ	$\begin{gathered} \tilde{U} \\ m \end{gathered}$	$\begin{gathered} \tilde{U} \\ m \end{gathered}$	$\begin{gathered} \tilde{U} \\ \sim \end{gathered}$		$\begin{aligned} & \text { E } \\ & 4 \end{aligned}$	$\begin{aligned} & \underset{U}{Z} \\ & \underset{\sim}{H} \end{aligned}$	
\checkmark	$\begin{aligned} & \underset{U}{3} \\ & \underset{4}{2} \end{aligned}$	E	$\begin{gathered} E \\ 0 \\ m \end{gathered}$	$\begin{aligned} & \text { g } \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} g \\ 0 \end{gathered}$		E 0 0 \square
σ	$\begin{gathered} E \\ U \end{gathered}$	E		E ＋ ＋		E N	
	－i	～	लं	$\dot{\square}$	กั	${ }^{\circ}$	$\stackrel{ }{ }$

Fluency Practice

Question 1: Find the area of each triangle.
(a)

(b)

(c)

(d)

(e)

(f)

Question 2: Find the area of each triangle.
(a)

(b)

(c)

(d)

(e)

(f)

Question 3: Find the area of each triangle.
(a)

(b)

(c)

(d)

(e)

(f)

Question 4: Find the area of the triangle with a base of 12 cm and perpendicular height of 9 cm .

Question 5: Find the area of the triangle with a base of 9 cm and perpendicular height of 14 cm .

Question 6: Find the area of the triangle with a base of 19 cm and perpendicular height of 7 cm .

Fluency Practice

Question 7: The area of the triangle is $20 \mathrm{~cm}^{2}$, find x .

Question 8: The area of the triangle is $30 \mathrm{~cm}^{2}$, find y .

Question 9: The area of the triangle is $12 \mathrm{~cm}^{2}$, find z .

Question 10: The area of the triangle is $56 \mathrm{~cm}^{2}$, find a.

Question 11: The area of the triangle is $165 \mathrm{~cm}^{2}$, find b .

Fluency Practice

Find the area of the triangles on these cm^{2} grids.
(a)

(c)

(d)

Find the area of each of these triangles.

(c)
(d)

Given the area, find the missing base or height.
(a) Area $=72 \mathrm{~cm}^{2}$
(b) Area $=22.5 \mathrm{~mm}^{2}$

A triangle has an area of $32 \mathrm{~cm}^{2}$. Find as many possible pairs of bases and heights as you can.

Fluency Practice

Alpha Exercise

Find the area of each of the following triangles:
(1)

(2)

(3)

(4)

(5)

(6)

Beta Exercise

Find the area of each of the following triangles:
(1)

(2)

(3)

(4)

Gamma Exercise

Find the area of each of the following triangles:
(1)

(2)

(3)

(4)

Exam Questions

Exam-style question 1

Four identical triangles are tiled as shown to form one large triangle with a base of 12 metres, and a height of 10 metres, as shown in the diagram.

Work out the area of one tile.

Exam-style question 2

Tyler draws a triangle whose base is equal to its perpendicular height.
The area of the triangle is $18 \mathrm{~cm}^{2}$, and one of the sides is 9 cm long.
Find the base and height of the triangle.

Exam-style question 3

Here is a grid made up of equilateral triangles. Each small triangle has an area of $5 \mathrm{~cm}^{2}$.

What is the area of the shaded triangle?

Purposeful Practice

biggest
 area

 in each row, which triangle is largest?

Extension

Fluency Practice

learn by heart

Area of a Triangle:
(base \times perpendicular height) $\div 2$

example

exercise 8g

1. In this triangle, the base is \qquad long and the perpendicular height is \qquad long.

10 cm
2. On each triangle the base is shown. Draw on the perpendicular height.
a)
b)

c)

d)

e)

f)

3. Which calculation works out the area of this triangle?
a) $\frac{10 \times 6}{2}$
b) $\frac{6+8}{2}$
c) $\frac{6 \times 8}{2}$
d) $\frac{10 \times 8}{2}$

10
4. Which calculation can be used to work out the area of this triangle?
a) $\frac{15 \times 9}{2}$
b) $\frac{15 \times 12}{2}$
C) $\frac{9 \times 12}{2}$
d) $\frac{9 \times 12 \times 15}{2}$

Fluency Practice

5. Calculate the area of each triangle. Lengths are all measured in cm .
a)

b)

c)

d)

e)

f)

g)

h)

6. On the grid, draw two more triangles with the same area as the one given:

7. The area of the triangle is 3 times bigger than the area of the parallelogram.

Work out x.

Fill in the Gaps

Question	Diagram	Base	Height	Calculation	Area
(a)		6 cm	8 cm	$\frac{6 \times 8}{2}$	$24 \mathrm{~cm}^{2}$
(b)					
(c)					
(d)					
(e)					
(f)		7 m	6 m	$\frac{7 \times 6}{2}$	
(g)				$\frac{3 \times 5}{2}$	
(h)		8 mm			$12 \mathrm{~mm}{ }^{2}$
(i)					$18 \mathrm{~cm}^{2}$

Extension

Heron's (or Hero's) formula for the area of a triangle

$s=1 / 2(a+b+c)$
then area, $\mathrm{A}=$

show that these triangles all have whole number
(integer) areas:
c

Instructions: Calculate the value in the middle box. The complete the remaining boxes trying to make the minimal change possible.

Fluency Practice

Question 1: Find the area of each trapezium.
(a)

(b)

(c)

(d)

(e)

(f)

Question 2: Find the area of each trapezium.
(a)

(b)

(c)

(d)

(e)

(f)

Fluency Practice

Question 3: Find x for each trapezium.
(a)
(b)

(c)

Question 4: Find x for each trapezium.
(a)

Fluency Practice

Find the area of each of these trapezia.
Give units with your answer.

Calculate the area each of these trapezia. Give units with your answer.

Find the missing measurements in each of these trapezia given their areas.
(a) Area $=48 \mathrm{~cm}^{2}$
(b) Area $=72 \mathrm{~cm}^{2}$

Fluency Practice

Alpha Exercise

Find the area of each of the following trapeziums:
(1)

(2)

(3)

(4)

Beta Exercise

Find the area of each of the following trapeziums:
(1)

(3)

(2)

(4)

Fluency Practice

Gamma Exercise

Find the missing length in each trapezium, given its area:
(1)

(2)

(3)

(4)

8 cm

Delta Exercise

The area of this trapezium is $8 \mathrm{~cm}^{2}$. You want to increase its area to $9 \mathrm{~cm}^{2}$ by extending the length of one of the three indicated sides. You can do this in three ways:

Trapezium 1

Trapezium 2

5 cm

Trapezium 3

(a) Find the values of p, q and r.
(b) Which trapezium has the longest unlabelled edge?

Exam Questions

Exam-style question 1

The trapezium in the diagram has an area of $18 \mathrm{~cm}^{2}$. Find its height.

Exam-style question 2

An $8 \times 12 \mathrm{~cm}$ rectangle of paper has had a piece cut out of it, as shown in the diagram.

By calculating the area of the piece that was cut out, show that the remaining paper has an area of $76 \mathrm{~cm}^{2}$.

Fluency Practice

learn by heart

Area of a Trapezium: $\frac{a+b}{2} \times h$

a and b are the parallel sides of a trapezium

example

Calculate the area:

exercise 8h

1. Calculate the area of each trapezium:
a)

b)

c)

d)

e)
f)

g)

h)

i)

Areas of Trapezia

	$\sqrt{10}$

Interwoven Maths

Decimals
Fractions and
O

Find the area of each trapezium.
a) b)

a)
e)
\mathscr{T}

๔
d)

Interwoven Maths

Fractions and Decimals

\leftrightarrows

ฮ

d)

Interwoven Maths

Areas of Trapeziums

Interwoven Maths

Areas of Trapeziums

Instructions: Calculate the total area of the trapezium in the middle box. Complete the remaining boxes changing as little as
possible.

Complete the table for the trapezium.

Fluency Practice

Question 3: Work out the area of each of these shapes.
(a)

(b)

(c)

(d)

(e)

(f)

Question 4: Work out the shaded area.
(a)

(b)

(c)

Question 5: Work out the area of each of these shapes.
(a)

(b)

(c)

Fluency Practice

example

Calculate the area:

Area of Rectangle $=50 \mathrm{~cm}^{2}$
Area of triangle $=\frac{4 \times 10}{2}=20 \mathrm{~cm}^{2}$
Total Area $=70 \mathrm{~cm}^{2}$

exercise 8j

1. Calculate the area:

b)

c)

d)

e)

f)

Fluency Practice

2. Calculate the area of these shapes. All the lengths are measured in cm .
a)

d)
b)
c)

e)

f)

3. Calculate the missing dimensions. (All dimensions are in cm .) $\underbrace{\text { exta }}_{\text {challenge }}$
a)
14

b)

c)

d)

Fluency Practice

example

Calculate the area:

$$
\text { Area of Whole Rectangle }=90 \mathrm{~cm}^{2}
$$

Area of Missing Trapezium $=$ $\frac{10+6}{2} \times 5=40 \mathrm{~cm}^{2}$
Total Area $=90-40=50 \mathrm{~cm}^{2}$

exercise 8k

1. Calculate the shaded area of each shape:
a)

c)

e)

d)

f)

Fluency Practice

g)

2. Each of these diagrams are squares.

Calculate the shaded area in each diagram:
a)

b)

c)

d)

challenge

3. The line $A B$ is a straight line.

The area of the white triangle is $120 \mathrm{~cm}^{2}$.
What is the area of the blue triangle?

Fluency Practice

1. Calculate the area.	2. Calculate the perimeter.	3. Calculate the area.
4. Calculate the perimeter.	5. Calculate the area.	6. Calculate the area.
7. Calculate the perimeter.	8. Calculate the area.	9. Calculate the area.
10. Calculate the area.	11. Calculate the area.	12. Calculate the perimeter.
13. Calculate the area	14. Calculate the area.	15. Calculate the perimeter.
16. Calculate the area.	17. Calculate the area.	18. Calculate the perimeter.

Fluency Practice

One edge of a rectangle
decreases by 2 cm in each question, leaving one rectangle, four trapezia and a triangle.

1) Predict how you think the area of each
shape will change from question to question
2) Work out the area of each shape

Extension

1) Find the blue parallelogram's area in two different ways.

2) a) Explain why the area of this parallelogram is not $99 \mathrm{~cm}^{2}$
b) Will its area be greater than or less than $99 \mathrm{~cm}^{2}$?
Explain how you know.

3) Draw two different parallelograms with area $24 \mathrm{~cm}^{2}$ and perimeter 22 cm .
4) This shape is a parallelogram. Find the value of a.

5) This shape is made from two parallelograms. Explain why its area is $a b$

Find the area of this rhombus.

Here is a grid made up of equilateral triangles. Each small triangle has an area of $5 \mathrm{~cm}^{2}$.

What is the area of the shaded triangle?

Find the area of this trapezium.
The dashed line segment joins the midpoints of the 10 m and 12 m edges shown.

Can you find the perimeter of this trapezium?

Fluency Practice

Find the area and perimeter of each of these shapes.
(a)

(b)

1.6 m
(c)

Find the area and perimeter of each of these shapes.
(a)

(c)

Find the area and perimeter of each of these shapes.

(b)

A rectangle has an area of $32 \mathrm{~cm}^{2}$ and its length and width are both integers. What is the largest perimeter it could have?

Fluency Practice

Find the area and perimeter of these compound shapes.

Find the area and perimeter of these compound shapes.

Find the area of the shaded shapes.
(b)

Fluency Practice

These shapes are made of smaller shapes put together. Can you work out their total area?

The area of each of these shapes is shown. Can you work out the missing side lengths?

Problem Solving

area magic square

 Arrange the shapes so that each row, column and diagonal has the same total area.

Problem Solving

The shapes below have the same area. Fill in the gaps using only the numbers 1 to $\mathbf{1 0}$. You can only use each number once.

More-Same-Less

More-Same-Less

Interwoven Maths

[^0]: For which questions could you have more than one answer? For each of these explain the types of answers allowed and not allowed.

