Year 8

Mathematics Unit 3 - Student

Name:

Class:

Contents

1 Changing the Subject
1.1 Subject of a Formula
1.2 Addition and Subtraction
1.3 Multiplication and Division
1.4 Addition or Subtraction then Division
1.5 Addition or Subtraction then Multiplication
1.6 Brackets
1.7 Powers and Roots
1.8 Review and Problem Solving
2 Angles in Polygons
2.1 Polygons
2.2 Interior and Exterior Angles
2.3 Interior Angles
2.4 Exterior Angles
2.5 Review and Problem Solving
3 Straight Line Graphs
3.1 Coordinates
3.2 Horizontal and Vertical Lines
3.3 Drawing Straight Line Graphs
3.4 Gradient
3.5 Equation of Straight Line Graphs
3.6 Review and Problem Solving

1 Changing the Subject

A formula is a mathematical equation containing two or more variables.

Suppose that you have the formula such as $2 x=3 a$
We could write this formula as $x=\frac{3 a}{2}$ in which case we would say that x is the subject of the formula, or that x is given/written in terms of a.

Note: x is the subject of the formula above as it appears on its own on one side of an equals sign.

1.1 Subject of a Formula

The subject of a formula is the variable that is being worked out. It can be recognised as the letter on its own on one side of the equals sign.

Is a the subject?

$a=3 x+1$	\boldsymbol{a} is the subject	\boldsymbol{a} is the NOT subject
$a+1=3 b+2$	\boldsymbol{a} is the subject	\boldsymbol{a} is the NOT subject
$4 a=3 b+2$	\boldsymbol{a} is the subject	\boldsymbol{a} is the NOT subject
$4 b+2=a$	\boldsymbol{a} is the subject	\boldsymbol{a} is the NOT subject
$a=5 a-7 b+3$	\boldsymbol{a} is the subject	\boldsymbol{a} is the NOT subject
$a^{2}=3 b+2$	\boldsymbol{a} is the subject	\boldsymbol{a} is the NOT subject
$a=\frac{1}{2} b$	\boldsymbol{a} is the subject	\boldsymbol{a} is the NOT subject
$a=\frac{7 b+55 c}{2}$	\boldsymbol{a} is the subject	\boldsymbol{a} is the NOT subject
$\sqrt{b}=a$	\boldsymbol{a} is the subject	\boldsymbol{a} is the NOT subject
$\sqrt{a}=b$	\boldsymbol{a} is the subject	\boldsymbol{a} is the NOT subject
$a+0=b$	\boldsymbol{a} is the subject	\boldsymbol{a} is the NOT subject

Fluency Practice

Formula	Is a the subject?
$a=b+3$	
$b+3=a$	
$a+3=b$	
$a+c=b$	
$a c=b$	
$a=b c$	
$a=b c-6$	
$a=b c-x$	
$a=b c-a$	
$a=b c-a^{2}$	
$-a=b+3$	
$\frac{1}{a}=b+3$	
$a^{2}=b+3$	
$a=b^{2}+3$	
$2 a=b^{2}+3$	
$\sqrt{a}=b^{2}+3$	
$a=\sqrt{\frac{b^{2}+3}{2}}$	
$\sqrt{\frac{b^{2}+3}{2}}=a$	
$\sqrt{\frac{b^{2}+3}{2 a}}=a$	

Worked Example

Make x the subject of the following formulae:
(a) $y=x+z$
(b) $y=x-w$
(c) $y=x+\sqrt{r s}$

Your Turn

Make x the subject of the following formulae:
(a) $y=x+k$
(b) $y=x-q$
(c) $y=x-\sqrt{a b}$

Intelligent Practice

Make x the subject for each of the following formulae:

1) $y=x+a$
2) $y=b+x$
3) $y=x+a b c$
4) $y=\operatorname{def}+x$
5) $y=x-a$
6) $y=-b+x$
7) $y=x-a b c$
8) $y=-\operatorname{def}+x$

1.3 Multiplication and Division

Worked Example

Make x the subject of the following formulae:
(a) $y=a x$
(b) $y=\frac{x}{p q}$
(c) $y=-\frac{x}{\sqrt{z}}$

Make x the subject of the following formulae:
(a) $y=b x$
(b) $y=\frac{x}{a b c}$
(c) $y=-\frac{x}{\sqrt{w}}$

Intelligent Practice

Make x the subject for each of the following formulae:

1) $y=a x$
2) $y=-a x$
3) $y=b c x$
4) $y=-b c x$
5) $y=\frac{x}{a}$
6) $y=-\frac{x}{\sqrt{a}}$
7) $y=\frac{x}{b c}$
8) $y=-\frac{x}{\sqrt{b c}}$

1.4 Addition or Subtraction then Division

Worked Example

Make x the subject of the following formulae:
$y=m x+c$

Make x the subject of the following formulae:
$y=a b x+c$

Intelligent Practice

Make x the subject for each of the following formulae:

1) $y=a x+b$
2) $y=b^{2}+a x$
3) $y=a x+b c d$
4) $y=d^{2} e f+a x$
5) $y=a x-b$
6) $y=-\sqrt{b}+a x$
7) $y=a x-b c d$
8) $y=-\sqrt{b c d}+a x$

Worked Example

Make x the subject of the following formulae:
(a) $y=\frac{x}{m}+c$
(b) $y=-\frac{x}{e f}+c^{2}$

Make x the subject of the following formulae:
(a) $y=\frac{x}{a b}+c$
(b) $y=-\frac{x}{c d}+e^{2}$

Intelligent Practice

Make x the subject for each of the following formulae:

1) $y=\frac{x}{a}+c$
2) $y=-\frac{x}{a}+c$
3) $y=\frac{x}{a^{2}}-c$
4) $y=-\frac{x}{a^{2}}-c$
5) $y=\frac{x}{b c}+\sqrt{q r s}$
6) $y=-\frac{x}{b c}-\sqrt{q r s}$

1.6 Brackets

Worked Example

Make x the subject of the following formulae:
$y=p(x+q)$

Make x the subject of the following formulae:
$y=p(x-q)$

Fluency Practice

Make x the subject of these equations.
There are two ways to rearrange each equation so there are two sets of answer boxes. You only need to fill in your answer once. Use the boxes where your answer fits best.

$$
\begin{array}{lll}
a(x+b)=c & x=--\square & \text { or } \quad x=\square \\
2(x+a)=b & x=--\square & \text { or } \\
x=\square \\
a(x-6)=b & x=-\square+\square & \text { or } x=\square \\
c(7+x)=2 & x=-\square-\square & \text { or } x=\square
\end{array}
$$

Extension:

The following formula can be used to convert temperatures from Fahrenheit (F) into Celsius (C):

$$
C=\frac{5(F-32)}{9}
$$

Find a formula to convert temperatures from Celsius (C) into Fahrenheit.

1.7 Powers and Roots

Worked Example

Make a the subject of the following formulae:
(a)
$2 a^{2}=c$
(b) $\quad 2 \sqrt{a}=c$

Make a the subject of the following formulae:
$\begin{array}{ll}\text { (a) } & 2(a+b)^{2}=c \\ \text { (b) } & 2 \sqrt{a-b}=c\end{array}$

Intelligent Practice

Make a the subject for each of the following formulae:

1) $2 a^{2}+b=c$
2) $2 \sqrt{a}+b=c$
3) $2 a^{2}-b=c$
4) $2 \sqrt{a}-b=c$
5) $6 a^{2}-b=c$
6) $2(a-2 b)^{2}+b=c$
7) $2 \sqrt{a-2 b}+b=c$
8) $2(a+2 b)^{2}-b=c$
9) $2 \sqrt{a+2 b}-b=c$
10) $6(a+2 b)^{2}-b=c$
11) $6 \sqrt{a+2 b}-b=c$

1.8 Review and Problem Solving

Fluency Practice

Question 1: Make y the subject of each of the following
(a) $\mathrm{y}+\mathrm{w}=\mathrm{c}$
(b) $\mathrm{y}-\mathrm{p}=\mathrm{m}$
(c) $m+y=s$
(d) $y-2 g=n$
(e) $3 y=c$
(f) $a y=w$
(g) $\frac{\mathrm{y}}{\mathrm{c}}=\mathrm{w}$
(h) $\frac{y}{a}=2 c$
(i) $a=y+p$
(j) $c=y-k$
(k) $\mathrm{y}^{2}=\mathrm{s}$
(l) $y^{3}=x$
(m) $\sqrt{ } \mathrm{y}=\mathrm{g}$
(n) $\pi y=c$
(o) $\mathrm{n}-\mathrm{y}=\mathrm{t}$
(p) $r y=c$
(q) $4 \pi y=b$
(r) $y+7 t=c+r$
(s) $\frac{\mathrm{r}}{\mathrm{y}}=\mathrm{w}$
(t) $\mathrm{y}^{2}=\mathrm{k}+\mathrm{x}$
(u) A $=x y$

Question 2: Make x the subject of the following formulae
(a) $4 x+c=w$
(b) $\mathrm{dx}-\mathrm{t}=8$
(c) $\mathrm{x}^{2}+3=\mathrm{h}$
(d) $2 x+2 y=P$
(e) $s=x^{2}-3$
(f) $y=x z+s$
(g) $\frac{x}{n}+2=w$
(h) $\frac{x}{6}-5=w$
(i) $\frac{x+3}{c}=h$
(j) $3 y=4 x+1$
(k) $x^{2}+a=v$
(l) $x^{3}-4=5 y$
(m) $\frac{\mathrm{x}+\mathrm{t}}{\mathrm{m}}=2 \mathrm{c}$
(n) $\frac{w+x}{u}=3 z$
(o) $\mathrm{A}=\pi \mathrm{x}^{2}$
(p) $A=1 / 2 b x$
(q) $V=a b x$
(r) $\mathrm{v}^{2}=\mathrm{u}^{2}+2 \mathrm{ax}$
(s) $\frac{a+b}{x}=r$
(t) $\frac{5 c x}{b}=a$
(u) $\sqrt[3]{\frac{x}{k}}=w$

Question 3: Make c the subject of the following
(a) $(a+c)^{2}=t$
(b) $\mathrm{v}=\mathrm{u}+\mathrm{ac}$
(c) $v=\pi c^{2} h$

Question 1: Make x the subject of each of the following
(a) $A=1 / 2(x+y)$
(b) $A=\pi r^{2}+2 \pi r x$
(c) $\mathrm{T}=3 \mathrm{x}^{2}-\mathrm{y}$
(d) $s=\frac{m}{a x}$
(e) $s=u y+\frac{1}{2} x y^{2}$
(f) $1 / 3 \mathrm{~W}=1 / 4 \mathrm{x}+\mathrm{t}$
(g) $j=\frac{x+3}{d}$
(h) $g=\frac{t}{x-2}$
(i) $\mathrm{p}=3(\mathrm{y}+2 \mathrm{x})^{2}$
(j) $12 w=3 / 4(2 x+a)$

Intelligent Practice

Make a the subject of the following formulae:

1) $2 a=b$
2) $\frac{a+2}{c}=b$
3) $\frac{a}{2}=b$
4) $\frac{2 a}{c}=b$
5) $a+2=b$
6) $\frac{d(a+2)}{c}=b$
7) $a-2=b$
8) $\frac{a}{c}=b$
9) $\frac{a}{c}+2=b$
10) $a c=b$
11) $a c-2=b$
12) $a c-d=b$

Question 1: The circumference of a circle is given as $c=2 \pi r$ Make the radius, r, the subject of the formula.

Question 2: The formula to convert degrees Fahrenheit to degree Celsius is $\frac{5}{9}(F-32)=C$
Find the formula to convert from degrees Celsius to degrees Fahrenheit by making F the subject.

Question 3: Can you spot any mistakes below?

Make y the subject of the formula:
Express v in terms of t

$$
\begin{aligned}
& k=y^{2}+a \\
& \sqrt{k}=y+a \\
& \sqrt{k}-a=y \\
& y=\sqrt{k}-a
\end{aligned}
$$

$$
\begin{aligned}
& t=\frac{v}{4}+1 \\
& t-1=\frac{v}{4} \\
& \frac{t-1}{4}=v
\end{aligned}
$$

Linear Rearrangements

rearrangement: linear rules which go together?
each of these are all one of two linear relations
group them into two sets: rearrangements of the same linear relationship

ミ \quad ㅇ
등
(6)

Change the Subject - Science Formulae

2 Angles in Polygons

2.1 Polygons

Frayer Model - Polygon

Definition
Literally translates to "many
angles". Generally recognised
as a 2D shape made up of 3 or
more connected straight lines.

Examples

Characteristics

- Made of connected straight lines (no gaps)
- Flat shape

Non Examples

Triangle

Quadrilateral

Pentagon

Nonagon

Decagon

Frayer Model - Regular Polygon

Definition A polygon with all sides equal sized and all interior angles equal sized.	Characteristics • All connected straight sides • All sides equal sized • All angles equal sized
Examples	Non Examples

Fluency Practice

2.2 Interior and Exterior Angles

- The interior angles of a polygon are on the inside.
- The exterior angles of a polygon are on the outside.
- The interior and exterior angles form a straight line.

Interior Angle + Exterior Angle $=\mathbf{1 8 0}^{\circ}$

2.3 Interior Angles

Examples

Nonexamples

Sum of Interior Angles

Number of Sides	Name of Shape	Interior Angle Sum
3	Triangle	180°
4	Quadrilateral	360°
5	Pentagon	540°
6	Hexagon	720°
7	Heptagon	900°
8	1080°	

Note: The polygon can be regular or irregular.
Sum of interior angles of a polygon $=(n-2) \times 180^{\circ}$ where n is the number of sides on the polygon

Why?

A polygon with n sides can be split into $n-2$ triangles (with all triangle angles in the corners), and each triangle's angles add up to 180°.
e.g.

5 sides
3 triangles
$3 \times 180^{\circ}=540^{\circ}$
So the interior angles in a pentagon sum (add up) to 540°

Derivation 1

Derivation 2

Derivation 3

Page 42

Find the sum of interior angles of this polygon.

Find the sum of interior angles of this polygon.

Fluency Practice

Page 44

Worked Example

Find the sum of the interior angles of a polygon with 30 sides.

Find the sum of the interior angles of a polygon with 60 sides.

Fluency Practice

Question 2: Work out the sum of the interior angles for polygons with
(a) 10 sides
(b) 14 sides
(c) 20 sides
(d) 45 sides
(e) 50 sides
(f) 80 sides
(g) 100 sides
(h) 200 sides

Find angle x.

Find angle x.

Fluency Practice

Page 48

Fluency Practice

Question 1: Find the missing angle in each irregular polygon

(b)

(e)

(f)

(g)
(h)

(i)
(j)

(k)

(c)

(d)

(1)

(m)

(n)

Worked Example

The sum of the interior angles of a polygon is 3240°. How many sides does the polygon have?

The sum of the interior angles of a polygon is 6840°. How many sides does the polygon have?

Fluency Practice

Question 3: Work out the number of sides of polygons with these sum of interior angles
(a) 1260°
(b) 2880°
(c) 3960°
(d) 5040°
(e) 12240°
(f) 15840°
(g) 2340°
(h) 89640°

Fluency Practice
The diagrams are not drawn accurately

	- $\dot{்}$		

2.4 Exterior Angles

Examples

Nonexamples

Sum of Exterior Angles

Note: The polygon can be regular or irregular.
Sum of exterior angles of a polygon $=360^{\circ}$

Why?

Why?
All the exterior angles can fit around a point, and angles around a point add up to 360°.

Find angle x

Find angle x

Fluency Practice

Find angle x

Find angle x

Fluency Practice

Page 59

Fluency Practice

Page 60

A regular polygon has 12 sides. Find the size of each exterior angle.

A regular polygon has 48 sides. Find the size of each exterior angle.

Fluency Practice

Question 6: Each of the polygons below are regular.
Calculate the size of each exterior angle, y.
(a)

regular pentagon
(d)

regular nonagon
(b)

regular hexagon
(e)

regular decagon
(c)

regular octagon
(f)

regular dodecagon

Fluency Practice

Question 7: Calculate the size of each exterior angle in regular polygons with
(a) 15 sides
(b) 18 sides
(c) 20 sides
(d) 24 sides
(e) 30 sides
(f) 36 sides
(g) 40 sides
(h) 45 sides
(i) 60 sides
(j) 72 sides
(k) 90 sides
(l) 200 sides

A regular polygon has 12 sides. Find the size of each interior angle.

A regular polygon has 48 sides. Find the size of each interior angle.

Fluency Practice

Question 4: Each of the polygons below are regular. Calculate the size of each interior angle, x.
(a)

(d)

regular nonagon
(e)
(b)

regular decagon
(c)

(f)

Fluency Practice

Question 5: Calculate the size of each interior angle in regular polygons with
(a) 15 sides
(b) 20 sides
(c) 24 sides
(d) 30 sides
(e) 36 sides
(f) 40 sides
(g) 50 sides
(h) 60 sides
(i) 72 sides
(j) 80 sides
(k) 90 sides
(l) 100 sides

Worked Example

A section of a two different regular polygons are show below. How many sides do they each have?

A section of a two different regular polygons are show below. How many sides do they each have?

Fluency Practice

Fluency Practice

Page 69

Worked Example

The interior angle of a regular polygon is 160°.
How many sides does the polygon have?

The interior angle of a regular polygon is 140°.
How many sides does the polygon have?

Fluency Practice

Question 8: Shown below is one interior angle from regular polygons. Calculate how many sides the polygons have.
(a)

(b)

(c)

(d)

(e)

(f)
172.5°

The size of each interior angle of a regular polygon is 9 times the size of each exterior angle. How many sides does the polygon have?

The size of each interior angle of a regular polygon is 11 times the size of each exterior angle.
How many sides does the polygon have?

These are regular polygons.
Find x

These are regular polygons.
Find x

Extension

Question 1: In each diagram below, two regular polygons are shown.
Calculate x .
(a)
(b)
(c)

(d)

Question 2: Shown is a regular pentagon. Find y.

Question 3: A regular polygon has 18 sides.
Calculate the size of each interior angle.

Question 4: A regular polygon has 30 sides.
Calculate the size of each interior angle.
Question 5: Explain why this cannot be an interior angle from regular polygons.

Question 6: A polygon has an interior angle that is five times larger than the exterior angle. How many sides does it have?

Question 7: Explain why regular hexagons tessellate.

Question 8: Explain why regular pentagons do not tessellate.

Fluency Practice
I- Find the value of x

Fluency Practice
The diagrams are not drawn accurately

I. Calculate the sum of the interior angles in each polygon
a. 7 sides

2.5 Review and Problem Solving

Fill in the Gaps

Number of sides	Sum of interior angles	Size of one interior angle in a regular polygon
3	180°	
	360°	
7		
9		
10		144°
	1800°	150°
13	1980°	
14		
	2700°	

a) What is the total of the interior angles of a 9- sided shape?
b) Calculate the size of an interior angle in a regular octagon.
c) A regular polygon has an exterior angle of 12°. How many sides does it have?
a) What is the total of the interior angles of a 14- sided shape?
b) Calculate the size of an interior angle in a regular pentagon.
c) A regular polygon has an exterior angle of 10°. How many sides does it have?

Fill in the Gaps

			$\stackrel{\circ}{\circ}$			$\stackrel{\circ}{N}$			\circ 0 0 \sim m
		o			$\begin{aligned} & \text { O} \\ & \text { L? } \end{aligned}$		$\begin{aligned} & \circ \\ & \underset{\sim}{\mathrm{O}} \end{aligned}$		
		$\begin{aligned} & \circ \\ & \text { ò } \\ & \text { en } \end{aligned}$		$\begin{aligned} & \circ \\ & \underset{\sim}{N} \\ & \text { Nָ } \end{aligned}$			$\begin{aligned} & \circ \\ & \underset{N}{N} \end{aligned}$		$\begin{aligned} & \circ \\ & \underset{\sim}{0} \\ & \underset{\sim}{1} \end{aligned}$
	m				$\stackrel{1}{\square}$			$\underset{\sim}{\mathrm{N}}$	
$\begin{aligned} & \text { O } \\ & \stackrel{1}{0} \\ & \mathbf{Z} \end{aligned}$			$\begin{aligned} & \text { ᄃ } \\ & 00 \\ & \stackrel{0}{U} \\ & 0 \end{aligned}$		ᄃ 0 00 0 0 0 0 0 0				

Ratio and Polygon Angles

a regular polygon
(1) exterior angle : interior angle $=1: 2$ how many sides does the polygon have?
(2) exterior angle : interior angle $=2: 7$
how many sides does the polygon have?
(3) exterior angle : interior angle is $2: 13$
how many sides does the polygon have?
(4) exterior angle : total of the interior angles $=1: 40$ how many sides does the polygon have?
(5) exterior angle : total of the interior angles $=1: 24$ how many sides does the polygon have?
(1) the numbers of sides are the ratio $1: 2$ the interior angles are in the ratio $2: 3$ how many sides do they have?
(2) the numbers of sides are the ratio $2: 3$ the interior angles are in the ratio 12:13 how many sides do they have?
(3) the numbers of sides are the ratio $3: 5$ the interior angles are in the ratio $20: 21$ how many sides do they have?
(4) the interior angles are in the ratio $7: 6$ the exterior angles are in the ratio 1:3 how many sides do they have?
(5) the interior angles are in the ratio 5:6 the exterior angles are in the ratio $5: 2$ how many sides do they have?
regular polygons

E
©
(3)

Regular Polygon Angles

regular polygon questions
(1) work out the size of an exterior angle of a regular nonagon (9 sides)
(2) work out the interior angle of a regular dodecagon (12 sides)
(3) calculate the size of an interior angle of a regular 20-sided
polygon (an 'icosagon')
(4) the size of each exterior angle of a regular polygon is 15°
work out the number of sides of the polygon
(5) the size of each interior angle of a regular polygon is 156°
work out the number of sides of the polygon
(6) how many times bigger is the interior angle of a regular nonagon to an exterior angle?
(7) which regular polygon has an interior angle three times an exterior angle?
(8) what is the angle shown between a regular octagon and a regular hexagon?
(9) what is the angle between a regular pentagon and a square?
(10) what is the angle between a regular nonagon and a regular decagon
if they share a common side?

(13) the size of each interior angle of a regular polygon is 11 times the size of each exterior angle
how many sides does the polygon have?
(14) find the obtuse angle between two lines of symmetry
of a regular pentagon
(15) what are the angles in the kite, shown inside a regular hexagon?

what are the angles in this type of kite inside other
regular polygons that have an even number of sides?
(10)
(11)
(12) a square is surrounded by four regular pentagons what is the angle shown?
when four of the same regular polygon meet
they form two equilateral triangles as shown how many sides do the regular polygons have?

3 Straight Line Graphs

3.1 Coordinates

Coordinates are pair of numbers written in the form (x, y) where x is the amount moved horizontally, and y the amount moved vertically from the origin on a graph. The two values are referred to, in order, as the x-coordinate and the y-coordinate.

Plot the coordinates:
$(2,5)$
$(2,-5)$
$(-2,5)$
$(-2,-5)$

Plot the coordinates:
$(3,4)$
$(3,-4)$
$(-3,4)$
$(-3,-4)$

Question 1: Write down the coordinates of the points A, B, C, D, E, F, G and H.

Question 2: Make a copy of the grid shown and then plot the points:
(a) $\mathrm{A}(3,1)$
(b) $\mathrm{B}(2,5)$
(c) $\mathrm{C}(5,4)$
(d) $\mathrm{D}(1,1)$
(e) $\mathrm{E}(4,0)$
(f) $\mathrm{F}(0,1)$
(g) $G(3,3)$
(h) $\mathrm{H}(0,0)$

Question 3: Write down the coordinates of the points A, B, C, D, E, F, G and H.

Question 4: Make a copy of the grid shown and then plot the points:
(a) $\mathrm{A}(1,4)$
(b) $B(-1,1)$
(c) $\mathrm{C}(-3,-4)$
(d) $\quad \mathrm{D}(2,-1)$
(e) $\quad E(-2,0)$
(f) $F(-1,-2)$
(g) $\quad G(3,-2)$
(h) $\mathrm{H}(0,-4)$
(i) $I(-2,2)$
(j) $\quad \mathrm{J}(-4,-1)$
(k) $\mathrm{K}(0,1)$

Extension

Question 1: Three points are shown on a grid.
$A B C D$ is a rectangle.
(a) Plot D
(b) Write down the coordinates of the point D

Question 2: Two points are shown on a grid $A B C$ is an isosceles triangle.
(a) Plot C
(b) Write down the coordinates of the point C

Question 3: Make a copy of the grid shown.
(a) Plot the point A $(-3,-2)$
(b) Plot the point $\mathrm{B}(1,-2)$
(c) Plot the point C $(3,1)$
(d) Plot the point $\mathrm{D}(-1,1)$
(e) What type of quadrilateral is ABCD?

Extension

For each question 4-5 below, you will need copies of this grid.

Question 4: (a) Plot the following coordinates

$$
(3,0)(-3,-2)(1,-4)(1,2)(-3,0)(-1,-4)(3,-2)(-1,2)
$$

(b) Join the shapes to make a polygon.
(c) Name the polygon that you have drawn.

Question 5: (a) Plot the coordinates $A(-4,1), B(1,-2)$ and $C(2,1)$
(b) ABCD is a kite.
(c) Plot D
(d) Write down the coordinates of the point D .

Question 6: James has been asked to plot the coordinates A $(-3,2), B(0,2), C(-1,-4)$ and D $(4,-4)$

Can you spot any mistakes?

Quadrilaterals and Coordinates

Quadrilaterals and Coordinates

find the missing coordinates of the given shapes (ii)

3.2 Horizontal and Vertical Lines

Graphs of the form $y=c$ and $x=c$, will either be a horizontal or vertical line.

Horizontal and Vertical Lines

Horizontal and Vertical Lines

The relationship of the shared characteristic between points can be written as an equation.

All of these points have a y coordinate of 5 .

The straight line can be described as $y=5$ because this is true for every point on the line.

The relationship of the shared characteristic between points can be written as an equation.

All of these points have an x coordinate of 1 .

The straight line can be described as \qquad because this is true for every point on the line.

Worked Example
Find the equation of the line:

Horizontal and Vertical Lines

Which of these lines can be described as ' $x=$ \qquad ' or ' $y=$ '?
How many can you 'name'?
Why can't some of the lines be written as ' $x=$ \qquad ' or ' $y=$ '?

Vertical and horizontal lines.

1) Fill in the boxes with the equations of the straight lines.

2) Write the equation of the line that all of the following points will fall on.
(a) $(4,5),(4,9),(4,0),(4,-3)$
(b) $(-10,2),(173,2),(10,2),(-0.3,2)$
(c) $(4.3,0.1),(0,0.1),(-9,0.1)$
(d) $\left(-\frac{1}{3}, 10\right),\left(-\frac{1}{3},-3\right),\left(-\frac{1}{3}, 0.5\right),\left(-\frac{1}{3},-0.1\right)$
3) Thinking carefully about the coordinates can you find the equation of...
(a) The x-axis
(b) The y-axis

4) A point has the coordinates of $(3,-5)$.
(a) What are the equations of the horizontal and vertical lines that this point is on?
(b) The line is vertical. Which of those two equations from (a) will it be?
5) A shape is made by the area enclosed by the lines $x=1, x=9, y=2$ and $y=5$.
(a) What is the shape?
(b) What is the area of the shape?
6) Write down the equation of the straight line that would make the enclosed shape a square.

7) There is a rectangle below with a side missing. If the area of the rectangle is $24 \mathrm{~cm}^{2}$, what will be the equation of the missing line?

3.3 Drawing Straight Line Graphs

A linear equation is drawn as a straight line on a set of axes.
To draw the graph we need coordinates.

We generate these coordinates by substituting values into the linear equation.

Plot the graph of
$y=2 x+1$ for the values $-2 \leq x \leq 2$

x					
y					

Plot the graph of
$y=4 x+2$
for the values $-2 \leq x \leq 2$

x					
y					

Plot the graph of
$y=-2 x+1$ for the values $-2 \leq x \leq 2$

x					
y					

Plot the graph of
$y=-4 x-2$ for the values $-2 \leq x \leq 2$

x					
y					

Fluency Practice

1) $y=2 x+3$

x	-2	-1	0	1	2
y					

3) $y=2 x+5$

x	-2	-1	0	1	2
y					

5) $y=3 x+1$

x	-2	-1	0	1	2
y					

7) $y=3 x-2$

x	-2	-1	0	1	2
y					

9) $y=3 x-5$

x	-2	-1	0	1	2
y					

11) $y=-4 x-5$

x	-2	-1	0	1	2
y					

13) $y=-1 / 2 x-5$

x	-2	-1	0	1	2
y					

x	-2	-1	0	1	2
y					

Plot the graph of
$2 x+y=8$
for the values $-2 \leq x \leq 2$

x					
y					

Plot the graph of
$2 x-y=8$
for the values $-2 \leq x \leq 2$

x					
y					

Plot the graph of
$x+2 y=8$
for the values $-2 \leq x \leq 2$

x					
y					

Plot the graph of
$x-2 y=8$
for the values $-2 \leq x \leq 2$

x					
y					

Fluency Practice

Question 6: For each equation, complete the table of values and draw its graph for values of x from -1 to 3 .
(a) $x+y=3$

x	-1	0	1	2	3
y					

(b) $2 x+y=4$

x	-1	0	1	2	3
y					

(c) $x+2 y=-2$

x	-1	0	1	2	3
y					

(d) $2 x-y=4$

x	-1	0	1	2	3
y					

Extension

Question 7: For each equation, draw its graph for values of x from -2 to 3.
(g) $\quad x+y=8$
(h) $2 x+y=12$
(i) $x+2 y=10$
(j) $2 x+3 y=12$
(k) $2 x+5 y-20=0$

Intelligent Practice

Plot each pair of linear graphs on the axes given.
Write a sentence about what you notice about each pair of lines.

1) On the axes on the right, plot the graphs of $y=2 x+1$ and
$y=3 x+1$
Table of values of $\boldsymbol{y}=\mathbf{2 x + 1}$

x	-2	-1	0	1	2
y					

Table of values of $\boldsymbol{y}=\mathbf{3 x + 1}$

x	-2	-1	0	1	2
y					

2) On the axes on the right, plot the graphs of $y=2 x-1$ and
$y=2 x-2$
Table of values of $\boldsymbol{y}=\mathbf{2 x} \mathbf{- 1}$

x	-2	-1	0	1	2
y					

Table of values of $\boldsymbol{y}=\mathbf{2 x} \mathbf{- 2}$

x	-2	-1	0	1	2
y					

3) On the axes on the right, plot the graphs of $y=-2 x$ and
$y=-2 x+1$
Table of values of $\boldsymbol{y}=-\mathbf{2 x}$

x	-2	-1	0	1	2
y					

Table of values of $\boldsymbol{y}=\mathbf{- 2 x + 1}$

x	-2	-1	0	1	2
y					

Intelligent Practice

4) On the axes on the right, plot the graphs of
$y=\frac{1}{2} x$ and
$y=2 x$
Table of values of $y=\frac{1}{2} x$

x	-2	-1	0	1	2
y					

Table of values of $\boldsymbol{y}=\mathbf{2 x}$

x	-2	-1	0	1	2
y					

5) On the axes on the right, plot the graphs of $y=-\frac{1}{2} x$ and
$y=-2 x$
You need to draw your own tables of values form now on.

6) On the axes on the right, plot the graphs of $y=\frac{1}{2} x+1$ and $y=-2 x+3$
7) On the axes on the right, plot the graphs of $y=\frac{3}{4} x+1$ and $y=-\frac{4}{3} x+3$

EXTENSION:

Generalise the conclusions you have made from the questions above. What do you notice? Can you give another pair of equations that follow the same rule?

3.4 Gradient

The gradient tells us how steep a line is, therefore the bigger the gradient the steeper the line is.

A positive gradient is a straight line which slopes up to the right.

A negative gradient is a straight line which slopes down to the right.

11
0
0
1
1
1

$\frac{-50}{10}=$
$\frac{50}{-10}=$
$-\frac{50}{10}=$
$50 \div 10=$
$50 \div-10=$
$\frac{50}{10}=$
$-50 \div 10=$
$-50 \div-10=$
$\frac{10}{-50}=$
$\frac{-10}{50}=$
$-10 \div-50=$

Gradient

Word	Gradient
Word class	Noun
Definition	1. an inclined part of a road or railway; a slope. $2 . \quad$ an increase or decrease in the magnitude of a property (e.g. temperature, pressure, or concentration) observed in passing from one point or moment to another.
Example	"The car has fail-safe brakes for use on steep gradients.
Synonyms	Slope, incline
Origins	From the Latin 'gradus', meaning step.

Worked Example

Calculate the gradient between the coordinates:
a) $(-2,-1)$ and $(5,7)$
b) $(2,-1)$ and $(-5,-7)$

Calculate the gradient between the coordinates:
a) $(-4,2)$ and $(6,8)$
b) $(-4,2)$ and $(-6,-8)$

Worked Example

Find the gradient of:

Find the gradient of:

Worked Example

Find the gradient of:

Find the gradient of:

Find the gradient of:

Find the gradient of:

Fluency Practice

Question 1: Find the gradient of each of these lines
(a)

(d)

(g)

(b)

(e)

(h)

(c)

(f)

(i)

Fluency Practice

Question 2: Draw lines with the following gradients
(a) 2
(b) 4
(c) 7
(d) -1
(e) -3
(f) -5
(g) $\frac{1}{2}$
(h) 10

Question 3: Find the gradient of each of these lines
(a)

(d)

(b)

(e)

(c)

(f)

Question 4: Draw lines with the following gradients
(a) $2 \frac{1}{2}$
(b) $\frac{1}{3}$
(c) $\frac{1}{5}$
(d) $-\frac{1}{6}$
(e) $\frac{3}{10}$
(f) $\frac{4}{5}$
(g) $1 \frac{1}{3}$
(h) $-\frac{3}{5}$

Question 5: Find the gradient of each of these lines
(a)

(b)

(d)

(e)

(c)

(f)

Question 6: Find the gradient of each line shown below
(a)

(b)

(c)

(d)

(e)

(f)

Fluency Practice

(g)

(h)

(i)

Question 7: Work out the gradient of the line passing through these pairs of points
(a) $(1,4)$ and $(3,10)$
(b) $(0,0)$ and $(3,12)$
(c) $(5,-2)$ and $(9,14)$
(d) $(-8,6)$ and $(0,-2)$
(e) $(-5,-9)$ and $(1,3)$
(f) $(-7,-2)$ and $(1,-4)$
(g) $(-2,1)$ and $(8,-7)$
(h) $(-2,9)$ and $(4,7)$
(i) $(-4.5,3)$ and $(6,-7.5)$

The gradient connecting the two points $(2 a, 5)$ and $(7 a, 8)$ is 6 .
Solve for a.

The gradient connecting the two points $(3 a, 7)$ and $(5 a, 12)$ is 6 . Solve for a.

The gradient connecting the two points $(2,10)$ and $(5, d)$ is 4 .
Solve for d .

The gradient connecting the two points $(-3,-10)$ and $(2, \mathrm{~d})$ is 12 .
Solve for d.

Fluency Practice

Question 1: Alisha says that the gradient of the line is 2. Explain her mistake.

Question 2: Find the gradient of the line passing through the points $(4 a,-a)$ and $(6 a, 5 a)$

Question 3: The line passing through $(5,-2)$ and $(8, c)$ has a gradient of 3. Find c.

Question 4: The line passing through $(-8,-9)$ and $(-2, h)$ has a gradient of 4. Find h.

Question 5: \quad The line passing through $(3,-4)$ and $(m, 10)$ has a gradient of 2. Find m.

Question 6: The line passing through $(-2,5)$ and $(2, n)$ has a gradient of $-1 / 2$ Find n.

Question 7: The line passing through $(1, \mathrm{p})$ and $(5,1)$ has a gradient of 0.75 Find p.

Question 8: Find the equation of the line shown

3.5 Equation of Straight Line Graphs

Straight line graphs can be written in the form $y=m x+c$, where m is the gradient, or steepness of the graph and c is the y intercept of the graph, where the graph cuts through the y-axis.

x	-3	-2	-1	0	1	2	3	4
y				c				
$+m$								

Gradient

$y=2 x+3$
Let us look at different ways to present information about the gradient.

- ...goes through $(0,3)$ and has a gradient of 2
- ...goes through $(0,3)$ and each time you move 1 unit to the right, you need to move 2 units up to find the line again
- ...goes through $(0,3)$ and each time you move 2 units to the right, you need to move 4 units up to find the line again
- ...goes through $(0,3)$ and each time you move 5 units to the right, you need to move 10 units up to find the line again
- ...goes through $(0,3)$ and $(\mathbf{1}, \mathbf{5})$
- ...goes through $(0,3)$ and $(2,7)$
- ...goes through $(0,3)$ and $(5,13)$
- ...goes through $(0,3)$ and $(-\mathbf{8},-\mathbf{1 3})$

y-intercept

$y=2 x+3$
Let us look at different ways to present information about the y-intercept.

- ...has a gradient of 2 and \boldsymbol{y}-intercept of 3
- ...has a gradient of 2 and crosses the y-axis at 3
- ...has a gradient of 2 and goes through (0, 3)
- ...has a gradient of 2 and $\boldsymbol{y}=\mathbf{3}$ when $\boldsymbol{x}=\mathbf{0}$
- ...has a gradient of 2 and goes through ($\mathbf{1 , 5} \mathbf{5})$
- ...has a gradient of 2 and goes through ($\mathbf{- 1 , 1}$)
- ...has a gradient of 2 and goes through ($-\mathbf{2}, \mathbf{- 1}$)
- ...has a gradient of 2 and goes through $(\mathbf{1 7}, \mathbf{3 7})$

Equation

$y=2 x+3$
Let us look at more abstract ways to present information about the line.

- ...goes through $(2,7)$ and $(6,15)$
- ...goes through $(-4,-5)$ and $(6,15)$
- ...goes through $(-4,-5)$ and $(-10,-17)$
- ...goes through $(0,3),(a, b)$ and $(a+3, b+6)$
- ...goes through $(4,7),(a-2, b+1)$ and $(a+1, b+7)$

Worked Example	Your Turn
$y=2 x-1$	$y=3 x-4$
Gradient:	Gradient:
y-intercept:	y-intercept:
$y=-2 x+6$	$y=-3 x+6$
Gradient:	Gradient:
y-intercept:	y-intercept:
$2 x+3 y=6$	$3 x+2 y=6$
Gradient:	Gradient:
y-intercept:	y-intercept:

Fluency Practice

Question 1: Write down the gradient of each of these lines.
(a) $y=3 x+1$
(b) $y=2 x-5$
(c) $y=7 x+4$
(d) $y=10 x+5$
(e) $y=x-2$
(f) $y=6 x$
(g) $y=-4 x+3$
(h) $y=-3 x-7$
(i) $y=\frac{1}{2} x+3$
(j) $y=-\frac{4}{5} x-9$

Question 2: Write down where each of these lines cross the y-axis (y-intercept)
(a) $y=2 x+3$
(b) $y=7 x+1$
(c) $y=3 x-2$
(d) $y=x-5$
(e) $y=2 x$
(f) $y=-4 x+6$
(g) $y=-5 x-3$
(h) $y=-3 x$
(i) $y=\frac{4}{3} x+\frac{2}{5}$
(j) $y=-\frac{2}{3} x-\frac{1}{2}$

Question 12: Find the gradients and the y-intercepts of each of these lines
(a) $x+y=10$
(b) $x-y=4$
(c) $2 x+y=6$
(d) $3 x-y=-1$
(e) $8 x+2 y+9=0$
(f) $5 x-2 y-4=0$
(g) $7 x=1-2 y$
(h) $15 y-6 x=8$
(i) $2 / 3 x+2 y=5$
(j) $1 / 5 y-1 / 2 x=1$
(k) $2 / 3 x+3 / 4 y=11 / 2$

Worked Example	Your Turn
Write in the form $\mathrm{y}=m x+c$ the line with:	Write in the form $y=m x+c$ the line with:
Gradient 2 and y-intercept 3	Gradient 3 and y-intercept 4
Gradient $\frac{2}{3}$ and y-intercept -3	Gradient $-\frac{5}{6}$ and y-intercept -1
Gradient $-\frac{3}{2}$ and y-intercept 0	Gradient $\frac{3}{4}$ and y-intercept 0
Gradient 0 and y-intercept 4	Gradient 0 and y-intercept -5

Discussion

What about the equation of a straight line with gradient ∞ ?

Fluency Practice

Question 3: Write down the equation of the lines below
(a) gradient of 3 and y-intercept of 6
(b) gradient of 2 and y-intercept of -1
(c) gradient of -4 and y-intercept of 3
(d) gradient of 8 and y-intercept of 4
(e) gradient of 1 and passing though $(0,4)$
(f) passing through ($0,-2$) with gradient 4
(g) gradient of -5 and passing through the origin.

Worked Example

Find the equation of:

Find the equation of:

Worked Example

Find the equation of:

Find the equation of:

Find the equation of:

Find the equation of:

Question 5: Find the equation of each line

(d)

(g)

(j)

(b)

(e)

(h)

(k)

(c)

(f)

(i)

(1)

Fluency Practice

Question 6: Find the equation of each line below.
(a)

(d)

(b)

(c)

(e)
(f)

Question 7: Find the equation of the straight line that passes through the points
(a) $(0,3)$ and $(4,19)$
(b) $(0,2)$ and $(6,20)$
(c) $(0,0)$ and $(1,4)$
(d) $(0,-9)$ and $(9,0)$
(e) $(0,-6)$ and $(7,8)$
(f) $(-8,-10)$ and $(0,14)$
$(g)(0,2)$ and $(10,7)$
(h) $(-4,1)$ and $(0,7)$
(i) $(-4,0)$ and $(0,18)$

Worked Example

Find the equation of the line, given a point and the gradient:
$(-6,22)$ Gradient 3
Your Turn
Find the equation of the line, given a point and the gradient:
$(-2,5)$ Gradient 4

Fluency Practice

Question 8: Find the equation of the straight line that:
(a) has a gradient of 4 and passes through the point $(1,10)$
(b) has a gradient of 2 and passes through the point $(-3,3)$
(c) has a gradient of 1 and passes through the point $(5,2)$
(d) has a gradient of -3 and passes through the point $(-2,8)$
(e) has a gradient of -5 and passes through the point $(3,-1)$
(f) has a gradient of $1 / 2$ and passes through the point $(4,5)$
(g) has a gradient of $2 / 5$ and passes through the point $(-5,-5)$
(h) has a gradient of $-2 / 3$ and passes through the point $(9,15)$

Worked Example

Write the equation of the line in the form $y=m x+c$ which passes through the points $(2,3)$ and $(5,-9)$

Write the equation of the line in the form $y=m x+c$ which passes through the points $(3,10)$ and $(-5,18)$

Worked Example

Write the equation of the line in the form $y=m x+c$ which passes through the points
$(2,-3)$ and $(7,-5)$

Write the equation of the line in the form $y=m x+c$ which passes through the points
$(3,-2)$ and $(-7,5)$

Fluency Practice

Question 9: Find the equations of the lines below
(a)

(b)

(c)

(d)

(e)

(f)

Question 10: Find the equation of the straight line that passes through these pairs of points
(a) $(2,5)$ and $(4,11)$
(b) $(-4,2)$ and $(1,7)$
(c) $(-5,-8)$ and $(-4,-4)$
(d) $(-1,-2)$ and $(-6,3)$
(e) $(-6,-4)$ and $(-3,2)$
(f) $(3,5)$ and $(4,1)$
(g) $(-5,4)$ and $(5,2)$
(h) $(1,6)$ and $(5,4)$
(i) $(-10,-5)$ and $(-7,4)$

Worked Example

Find where the line intercepts the axes:

Line	x-intercept	y-intercept
$y=2 x+3$		
$y=3 x+2$		
$y=3 x-2$		
$y=2 x-3$		
$y=3-2 x$		
$y=2-3 x$		
$2 x+3 y=6$		
$3 x+2 y=6$		
$y=a x+b$		

Your Turn

Find where the line intercepts the axes:

Line	x-intercept	y-intercept
$y=4 x+5$		
$y=5 x+4$		
$y=5 x-4$		
$y=4 x-5$		
$y=5-4 x$		
$y=4-5 x$		
$4 x+5 y=20$		
$5 x+4 y=20$		
$a x+b y=c$		

Fluency Practice

Question 11: Find the coordinates where the following lines cross the x -axis
(a) $y=2 x+6$
(b) $y=-x+4$
(c) $y=3 x+9$
(d) $y=x-5$
(e) $y=4 x+1$
(f) $y=-2 x+10$
(g) $y=-4 x-10$
(h) $y=5 x+3$
(i) $\mathrm{y}=1 / 2 \mathrm{x}+3$
(j) $x+y=8$
(k) $4 x+2 y+7=0$
(l) $3 x+2 y-8=0$

Worked Example
Does the point $(2,9)$ lie on the line $y=4 x+1$?

Your Turn

Does the point $(2,9)$ lie on the line $y=9-2 x$?

Fluency Practice

Question 4:
(a) Does the point $(2,5)$ lie on the line $y=3 x-1$?
(b) Does the point $(4,1)$ lie on the line $y=3 x+1$?
(c) Does the point $(3,1)$ lie on the line $y=x-3$?
(d) Does the point $(5,7)$ lie on the line $y=-3 x+22$?
(e) Does the point $(-4,-8)$ lie on the line $y=-2 x$?
(f) Does the point $(-1,8)$ lie on the line $y=2 x+11$?
(g) Does the point $(12,60)$ lie on the line $y=7 x-18$?

Extension

Question 1: The point $(5,-2)$ lies on which lines below

$$
\begin{array}{ccc}
\text { Line A } & \text { Line B } & \text { Line C } \\
y=x+7 & y=-3 x+13 & y=4 x-18
\end{array}
$$

$$
\begin{array}{cc}
\text { Line D } & \text { Line E } \\
y=-2 x-8 & y=2 x-12
\end{array}
$$

Question 2: Do the points $(1,4),(4,10)$ and $(9,20)$ lie in a straight line?
Question 3: A line has equation $y=2 x+6$
The line crosses the x-axis at the point A
The line crosses the y-axis at the point B
The point C has coordinates $(1,8)$
(a) Find the coordinates of the point A
(b) Find the coordinates of the point B
(c) Find the equation of the straight line passing through the points A and C.

Question 4: Do the lines $y=3 x+1$ and $4 x-2 y+3=0$ have the same gradients?
Question 5: Line 1 has equation $y=3 x-12$
(a) Find the coordinates of P
(b) Find the equation of Line 2

Question 6: Lexi says the line below has an
 equation of $y=-2 x+8$ Explain her mistake.

Worked Example	Your Turn
$y=5 x+10$	$y=5 x+15$
$a x+b y=d$	$a x+b y=d$
Gradient:	Gradient:
x intercept:	x intercept:
y intercept:	y intercept:
Sketch:	Sketch:

Fill in the Gaps

¢ U U									
$\begin{aligned} & \stackrel{\rightharpoonup}{U} \\ & \stackrel{U}{U} \\ & \stackrel{ \pm}{ \pm} \\ & \lambda \end{aligned}$				$$	$\begin{aligned} & \overparen{\sim} \\ & \underset{1}{1} \\ & 0 \end{aligned}$		$\begin{aligned} & \text { n } \\ & \stackrel{-}{2} \end{aligned}$		
			$\begin{gathered} \text { o} \\ i \\ i \\ i \end{gathered}$	$\begin{aligned} & i \\ & i \end{aligned}$			$$		
$\begin{aligned} & \stackrel{\pi}{\bar{D}} \\ & \text { N } \\ & \frac{\pi}{0} \end{aligned}$			m		ナ				
$$		$\begin{aligned} & 0 \\ & 1 \\ & 11 \\ & \lambda \\ & 1 \\ & \vdots \\ & \text { N } \end{aligned}$							
$\begin{aligned} & u \\ & + \\ & \dot{\sim} \\ & \underset{N}{n} \\ & \\| \\ & \lambda \end{aligned}$	$\begin{aligned} & \infty \\ & + \\ & \underset{y}{x} \\ & \\| \\ & \lambda \end{aligned}$								
	-	\sim	m	∇	ம	6	N		

Fill in the Gaps

工 U ज								
$\begin{aligned} & \stackrel{\rightharpoonup}{U} \\ & \stackrel{y}{N} \\ & \stackrel{ \pm}{\vdots} \\ & \vec{\lambda} \end{aligned}$							$\begin{aligned} & \underset{1}{\leftrightarrows} \\ & \stackrel{y}{c} \end{aligned}$	
$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{y}{U} \\ & \stackrel{y}{*} \\ & \stackrel{y}{\vdots} \\ & \dot{y} \end{aligned}$				$$		$\begin{aligned} & \text { O} \\ & \infty \\ & \infty \end{aligned}$		
$\begin{aligned} & \stackrel{\rightharpoonup}{\bar{C}} \\ & \stackrel{0}{0} \\ & \stackrel{\pi}{0} \end{aligned}$				ツ1ナ		$\begin{gathered} m \mid+ \\ \square \end{gathered}$		
$\begin{aligned} & \theta \\ & 11 \\ & \partial \\ & + \\ & + \\ & \dot{\theta} \end{aligned}$								
$\begin{aligned} & u \\ & + \\ & \dot{~} \\ & \text { ミ } \\ & \\| \\ & \lambda \end{aligned}$	$\begin{gathered} + \\ + \\ + \\ \sim \\ 1 \\ 1 \\ I I \\ \lambda \end{gathered}$							
	∞	σ の＇	$\stackrel{+}{\square}$	$\stackrel{\rightharpoonup}{\text { न }}$	$\stackrel{\text { ¹ }}{ }$	$\stackrel{\sim}{\sim}$	$\stackrel{+}{\square}$	

Fill in the Blanks

Maths Venns

Maths Venns

Maths Venns

