Year 8

Mathematics

Unit 10

Name:

Class:

Contents

1 Estimation
1.1 Significant Figures
1.2 Estimations

2 Circles
2.1 Parts of the Circle
2.2 Circumference of Circles
2.3 Perimeter of Semicircles
2.4 Area of Circles
2.5 Area of Semicircles
2.6 Area and Circumference of Circles
2.7 Area and Perimeter of Compound Shapes

3 Angles in Parallel Lines
3.1 Transversals
3.2 Corresponding Angles
3.3 Alternate Angles
3.4 Co-Interior Angles
3.5 Mixed
3.6 Angles in Parallel Lines with Equations

1 Estimation

1.1 Significant Figures

In this section you will look at how to round numbers to significant figures.

1.2 Estimations

In this section you will look at estimations.
Calculating an approximate answer to a calculation by rounding the numbers used in the calculation prior to carrying out the calculation.

- Typically, number used in the calculation will be rounded to 1 significant figure.
- The result of the calculation will be close to the actual real answer.
- Do not forget to use the correct notation: \approx 'approximately equal to'

Estimate:

(a) $409+571$
(b) $\frac{409+571}{0.53}$
(C) $\frac{409+571}{0.53-0.11}$

Estimate:
(a) $593+401$
(b) $\frac{593+401}{0.47}$
(c) $\frac{593+401}{0.47-0.43}$

Worked Example

Estimate:
a) $354 \div 6.9$
b) $\sqrt{17} \times 14$

Estimate:
a) $357 \div 8.9$
b) $\frac{\sqrt{150}}{3}$

2 Circles

2.1 Parts of the Circle

In this section you will look at the different parts of a circle.

Radius

Chord

Segment

Diameter

Arc

Sector

Fluency Practice

Labelling parts of a circle

Use the words below to label each part of the circle correctly

Arc Chord Circumference Diameter Radius Sector Segment Tangent

Circle Vocabulary: Match each word with its definition.
Arc Line joining two points on a circumference.

Segment Perimeter of a circle.

Chord Part of a circle between a chord and an arc.
Radius Line touching the circumference of a circle once.

Diameter
Distance from the centre of a circle to the edge.

Circumference Part of the circumference of a circle.

Tangent Part of a circle between two radii and an arc.
Sector
Width of a circle.
2.2 Circumference of Circles

In this section you will look at calculating the circumference of circles.

The circumference is the perimeter of a circle.
Circumference $=\pi \times$ diameter

$$
C=\pi \times d
$$

Calculate the circumference of the circle below. Give your answer in terms of π and to 1 decimal place.

Calculate the circumference of the circle below. Give your answer in terms of π and to 1 decimal place.

Calculate the circumference of the circle below. Give your answer in terms of π and to 1 decimal place.

Calculate the circumference of the circle below. Give your answer in terms of π and to 1 decimal place.

Worked Example

Calculate the diameter, d, of the semi-circle below given that the circumference is 12.6 cm . Give your answer to 2 decimal places.

Your Turn

Calculate the diameter, d, of the semi-circle below given that the circumference is 25.1 cm . Give your answer to 2 decimal places.

Diagram	Radius	Diameter	Calculation	Circumference (in terms of π)	Circumference (1 dp)
2 cm					

Diagram	Radius	Diameter	Calculation	circumference (in terms of π)	Circumference $(1 \mathrm{dp})$
				$16 \pi \mathrm{~km}$	
0.5 cm					

2.3 Perimeter of Semicircles

In this section you will look at calculating the perimeter of semicircles.

Calculate the perimeter of the semi-circle below. Give your answer in terms of π and to 1 decimal place.

Calculate the perimeter of the semi-circle below. Give your answer in terms of π and to 1 decimal place.

Diagram	Radius	Diameter	Calculation	Perimeter (in terms of π)	Perimeter (1 dp)

2.4 Area of Circles

In this section you will look at calculating the area of circles.

$$
\begin{gathered}
\text { Area }=\pi \times \text { radius }^{2} \\
A=\pi \times r^{2}
\end{gathered}
$$

Worked Example

Calculate the area of the circle below. Give your answer in terms of π and to 1 decimal place.

Calculate the area of the circle below. Give your answer in terms of π and to 1 decimal place.

Worked Example

Calculate the area of the circle below. Give your answer in terms of π and to 1 decimal place.

Calculate the area of the circle below. Give your answer in terms of π and to 1 decimal place.

Worked Example

Your Turn

Calculate the diameter, d, of the semi-circle below given that the area is $12.6 \mathrm{~cm}^{2}$. Give your answer to 2 decimal places.

Calculate the diameter, d, of the semi-circle below given that the area is $50.3 \mathrm{~cm}^{2}$. Give your answer to 2 decimal places.

Fill in the Gaps

Fill in the Gaps

Diagram	Radius	Diameter	Calculation	Area (in terms of π)	Area (1 dp)

2.5 Area of Semicircles

In this section you will look at calculating the area of semicircles.

Worked Example

Calculate the area of the semicircle below. Give your answer in terms of π and to 1 decimal place.

Calculate the area of the semicircle below. Give your answer in terms of π and to 1 decimal place.

Fill in the Gaps

Diagram	Radius	Diameter	Calculation	Area (in terms of $\boldsymbol{\pi}$)	Area (1 dp)

2.6 Area and Circumference of Circles

In this section you will look at calculating the area and circumference of circles.

Fluency Practice

Which units should we use for the answer?

Question	Description	Units
1.	A circle has a radius of 10 m, what is the area?	
2.	A circle has a radius of 10 cm, what is the area?	
3.	A circle has a radius of 10 cm, what is the circumference?	
4.	A circle has a diameter of 10 cm, what is the circumference?	
5.	A circle has a circumference of 10 cm, what is the diameter?	
6.	A circle has an area of $10 \mathrm{~cm}^{2}$, what is the diameter?	
7.	A circle has an area of $10 \mathrm{~cm}^{2}$, what is the circumference?	
8.	A circle has an circumference of 10 cm, what is the area?	

9. Write a circles question where the units of the answer would be mm
10. Write a circles question where the units of the answer would be mm^{2}

Circumference $=$

Area $=$

Circumference $=$

Area $=$

Fill in the Gaps

Round all answers to 1 decimal place. Remember to give units.

Radius	Diameter	Circumference	Area
3 cm	6 cm		$28.3 \mathrm{~cm}^{2}$
7 cm	14 cm	44.0 cm	
5 mm			$78.5 \mathrm{~mm}^{2}$
	2.4 m	7.5 m	
4.5 cm	9 cm		
6 cm			
	8 cm		
0.7 m	40 mm		
		100.5 mm	$804.2 \mathrm{~mm}^{2}$
		11.3 cm	$530.9 \mathrm{~m}^{2}$
		147.0 mm	$498.8 \mathrm{~cm}^{2}$

2.7 Area and Perimeter of Compound Shapes

In this section you will look at calculating the area and perimeter of compound shapes with circles.

Worked Example

Your Turn

Find the perimeter of this shape. Round your answer to 1 decimal place.

Find the perimeter of this shape. Round your answer to 1 decimal place.

Worked Example

Your Turn

Find the area of this shape.
Round your answer to 1 decimal place.

Find the area of this shape.
Round your answer to 1 decimal place.

Worked Example

The circle, of radius 1.05 cm , is inside a square. Work out the shaded area.

The circle, of radius 2.1 cm , is inside a square. Work out the shaded area.

3 Angles in Parallel Lines

3.1 Transversals

In this section you will look at what transversals are and how to identify them.

Frayer Model - Transversal

| Definition |
| :--- | :--- |
| A transversal is a line that |
| crosses or touches at least two |
| other lines at different points. |\quad| Characteristics |
| :--- |
| O The lines must be straight. |
| parallel. |

Highlight any transversals
The diagrams are not drawn accurately

When you have two parallel lines cut by a transversal, you get four acute angles and four obtuse angles (except when you get 8 right angles).

- All the acute angles are equal.
- All the obtuse angles are equal.
- Each acute angle is supplementary (two angles add up to 180°) to each obtuse angle.

3.2 Corresponding Angles

In this section you will look at what corresponding angles are and how to identify them.

Frayer Model - Corresponding Angles

Definition
Corresponding angles are on
the same side of the
transversal and in
corresponding positions in
relation to the lines the
transversal crosses or touches.

Characteristics

- The lines must be straight.
- The lines don't have to be parallel.
- Corresponding positions means matching positions above/below or left/right.

Examples

Non-Examples

Fluency Practice

For each question, write either 'corresponding' or 'not corresponding' on the line.

These angles are \qquad -.

These angles are \qquad -.

These angles are \qquad
(4)
 These angles are \qquad
(8)

These angles are

For each question, write either 'corresponding' or 'not corresponding' on the line.

These angles are \qquad -.

These angles are \qquad -.

These angles are \qquad -.
(6)

These angles are \qquad

These angles are \qquad . These angles are

(8)

These angles are \qquad . These angles are

\qquad

Fluency Practice

Each diagram has one angle shaded in.
Mark and shade in their corresponding angles.
(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

Find all the pairs of corresponding angles in each diagram.
Use three letter notation to identify the angles (e.g. " $\angle A C B$ and $\angle H G C$ ").
(a)

(b)

(c)

(d)

(e)

(f)

Fluency Practice

Use your knowledge of corresponding angles to decide which diagrams contain parallel lines. Explain how you made your decision for each question.
(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

Fluency Practice

3.3 Alternate Angles

In this section you will look at what alternate angles are and how to identify them.

Frayer Model - Alternate Angles

Fluency Practice

For each question, write either 'alternate' or 'not alternate' on the line.

These angles are \qquad

These angles are \qquad -. -.

These angles are \qquad -.
(7)

\qquad
These angles are

[^0](5)

These angles are

These angles are \qquad
(6)
 . These angles are

\qquad

For each question, write either 'alternate' or 'not alternate' on the line.

These angles are \qquad -.

These angles are \qquad .

These angles are \qquad These angles are
(7)

These angles are \qquad -
(6)

These angles are \qquad -

These angles are \qquad
\qquad
\qquad

Fluency Practice

Each diagram has one angle shaded in.
Mark and shade in their alternate angles.
(1)

(2)

(4)

(5)

(6)

(7)

(8)

Find all the pairs of alternate angles in each diagram.
Use three letter notation to identify the angles (e.g. " \angle DCG and $\angle H G C$ ").
(a)

(b)

(c)

(d)

(e)

(f)

Fluency Practice

Use your knowledge of alternate angles to decide which diagrams contain parallel lines. Explain how you made your decision for each question.
(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

The diagrams are not drawn accurately

1. Do the diagrams show alternate angles? Provide a reason for your answer.
2. Write down the three letter notation for any alternate angles to the one that is marked on the diagram

3.4 Co-Interior Angles

In this section you will look at what co-interior angles are and how to identify them.

Frayer Model - Co-Interior Angles

Definition
Co-interior angles are on the
same side of the transversal
and between the two lines the
transversal crosses or touches.

Characteristics

- The lines must be straight.
- The lines don't have to be parallel.
- Co-interior is short for consecutive interior.
- Also called allied angles.

Examples

Non-Examples

Fluency Practice

For each question, write either 'co-interior' or 'not co-interior' on the line.

These angles are \qquad -.

These angles are \qquad .

These angles are

\qquad —. These angles are \qquad

These angles are \qquad These angles are

For each question, write either 'co-interior' or 'not co-interior' on the line.

These angles are \qquad

These angles are \qquad -.

These angles are \qquad . These angles are \qquad
(8)

These angles are \qquad _.
(4)
 . These angles are \qquad

Fluency Practice

Each diagram has one angle shaded in.
Mark and shade in their co-interior angles.
(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)
?

Find all the pairs of co-interior angles in each diagram.
Use three letter notation to identify the angles (e.g. " $\angle A C G$ and $\angle H G C$ ").
(a)

(b)

(c)

(d)

(e)

(f)

Fluency Practice

Use your knowledge of co-interior angles to decide which diagrams contain parallel lines. Explain how you made your decision for each question.

(2)

(3)

(4)

(5)

(6)

(7)

(8)

Fluency Practice
The diagrams are not drawn accurately

		© $\dot{m} \dot{\sigma}$	© ்் for \dot{j} $\left\|\begin{array}{ll}0 & \\ 0 & 0 \\ 0 & \\ 0 & \infty \\ & \end{array}\right\|$ ف

3.5 Mixed

In this section you will look at angles in parallel lines.

Rules

Angle Facts in Parallel Lines: Corresponding angles are equal.
On the same side of the transversal and in the same position in relation to the parallel lines.

Angle Facts in Parallel Lines: Alternate angles are equal.
Between the parallel lines, on opposite sides of the transversal.

Angle Facts in Parallel Lines: Co-interior angles add up to 180°.
Between the parallel lines and on the same side of the transversal.

Fluency Practice

Vertically opposite angles
Alternate angles
Corresponding angles
Co-interior angles
\rightarrow

Fluency Practice

On each diagram, label an angle according to each rule.

Fluency Practice

Worked Example

Work out the missing angles in the diagram below. Give reasons for your answer.

Your Turn

Work out the missing angles in the diagram below. Give reasons for your answer.

Angle Reasoning

Angle BXF =
because...

Angle DYF =
because...
(2) to find angle EYD:

Angle $\mathbf{E Y D}=$
because...

Angle AXF =
because...

Angle EYD =
because...
(3)

(4) $\begin{array}{ll}\text { Obtuse Angle } B A X= \\ \text { because... }\end{array}$

Fluency Practice

Fluency Practice
The diagrams are not drawn accurately

3.6 Angles in Parallel Lines with Equations

In this section you will look at angles in parallel lines with equations.

Worked Example

State what the angle n is, giving reasons for your answer.

Your Turn

State what the angle n is, giving reasons for your answer.

Fluency Practice

Equations \& Parallel Lines
Use angle facts for parallel lines to find the value of the variables a to p. For each question, state all the angle rules you have used.

[^0]: 蹅

