# Year 8 Mathematics Unit 10



# Name:

# **Class:**

#### Contents

#### 1 <u>Estimation</u>

- 1.1 Significant Figures
- 1.2 <u>Estimations</u>

#### 2 <u>Circles</u>

- 2.1 Parts of the Circle
- 2.2 Circumference of Circles
- 2.3 Perimeter of Semicircles
- 2.4 Area of Circles
- 2.5 Area of Semicircles
- 2.6 Area and Circumference of Circles
- 2.7 Area and Perimeter of Compound Shapes
- 3 Angles in Parallel Lines
- 3.1 <u>Transversals</u>
- 3.2 Corresponding Angles
- 3.3 <u>Alternate Angles</u>
- 3.4 <u>Co-Interior Angles</u>
- 3.5 <u>Mixed</u>
- 3.6 Angles in Parallel Lines with Equations

### **1** Estimation

## **1.1 Significant Figures**

In this section you will look at how to round numbers to significant figures.

#### **1.2 Estimations**

In this section you will look at estimations.

Calculating an approximate answer to a calculation by rounding the numbers used in the calculation prior to carrying out the calculation.

- Typically, number used in the calculation will be rounded to 1 significant figure.
- The result of the calculation will be close to the actual real answer.
- Do not forget to use the correct notation: ≈ 'approximately equal to'

|     | ١ | No           | rke | ed | Exa | am | ple | e |                            |   |              | Your Turn |  |  |  |  |  |  |
|-----|---|--------------|-----|----|-----|----|-----|---|----------------------------|---|--------------|-----------|--|--|--|--|--|--|
|     |   | ate:<br>09 - |     | 71 | -   |    |     | - | Estimate:<br>(a) 593 + 401 |   |              |           |  |  |  |  |  |  |
| (b) | 4 | 09+5<br>0.53 |     |    |     |    |     |   | (b)                        | 5 | 93+4<br>0.42 |           |  |  |  |  |  |  |
| (c) |   | 09+5<br>53-0 |     |    |     |    |     |   | (c)                        |   | 93+4<br>47-0 |           |  |  |  |  |  |  |
|     |   |              |     |    |     |    |     |   |                            |   |              |           |  |  |  |  |  |  |
|     |   |              |     |    |     |    |     |   |                            |   |              |           |  |  |  |  |  |  |
|     |   |              |     |    |     |    |     |   |                            |   |              |           |  |  |  |  |  |  |
|     |   |              |     |    |     |    |     |   |                            |   |              |           |  |  |  |  |  |  |
|     |   |              |     |    |     |    |     |   |                            |   |              |           |  |  |  |  |  |  |
|     |   |              |     |    |     |    |     |   |                            |   |              |           |  |  |  |  |  |  |
|     |   |              |     |    |     |    |     |   |                            |   |              |           |  |  |  |  |  |  |
|     |   |              |     |    |     |    |     |   |                            |   |              |           |  |  |  |  |  |  |
|     |   |              |     |    |     |    |     |   |                            |   |              |           |  |  |  |  |  |  |
|     |   |              |     |    |     |    |     |   |                            |   |              |           |  |  |  |  |  |  |
|     |   |              |     |    |     |    |     |   |                            |   |              |           |  |  |  |  |  |  |
|     |   |              |     |    |     |    |     |   |                            |   |              |           |  |  |  |  |  |  |
|     |   |              |     |    |     |    |     |   |                            |   |              |           |  |  |  |  |  |  |

|    | Worked Example                                             |  |  |  |  | Your Turn                                                   |  |  |  |  |  |  |  |  |      |  |
|----|------------------------------------------------------------|--|--|--|--|-------------------------------------------------------------|--|--|--|--|--|--|--|--|------|--|
| a) | Estimate:<br>a) $354 \div 6.9$<br>b) $\sqrt{17} \times 14$ |  |  |  |  | Estimate:<br>a) $357 \div 8.9$<br>b) $\frac{\sqrt{150}}{3}$ |  |  |  |  |  |  |  |  |      |  |
|    |                                                            |  |  |  |  |                                                             |  |  |  |  |  |  |  |  |      |  |
|    |                                                            |  |  |  |  |                                                             |  |  |  |  |  |  |  |  |      |  |
|    |                                                            |  |  |  |  |                                                             |  |  |  |  |  |  |  |  |      |  |
|    |                                                            |  |  |  |  |                                                             |  |  |  |  |  |  |  |  | <br> |  |
|    |                                                            |  |  |  |  | <br>                                                        |  |  |  |  |  |  |  |  |      |  |
|    |                                                            |  |  |  |  |                                                             |  |  |  |  |  |  |  |  |      |  |
|    |                                                            |  |  |  |  |                                                             |  |  |  |  |  |  |  |  |      |  |
|    |                                                            |  |  |  |  |                                                             |  |  |  |  |  |  |  |  |      |  |
|    |                                                            |  |  |  |  |                                                             |  |  |  |  |  |  |  |  | <br> |  |
|    |                                                            |  |  |  |  |                                                             |  |  |  |  |  |  |  |  | <br> |  |
|    |                                                            |  |  |  |  |                                                             |  |  |  |  |  |  |  |  | <br> |  |
|    |                                                            |  |  |  |  |                                                             |  |  |  |  |  |  |  |  |      |  |
|    |                                                            |  |  |  |  |                                                             |  |  |  |  |  |  |  |  |      |  |
|    |                                                            |  |  |  |  |                                                             |  |  |  |  |  |  |  |  |      |  |
|    |                                                            |  |  |  |  |                                                             |  |  |  |  |  |  |  |  | <br> |  |
|    |                                                            |  |  |  |  |                                                             |  |  |  |  |  |  |  |  |      |  |
|    |                                                            |  |  |  |  | <br>                                                        |  |  |  |  |  |  |  |  | <br> |  |

### 2 Circles





| <b><u>Circle Vocabulary</u>:</b> M | atch each word with its definition.               |
|------------------------------------|---------------------------------------------------|
| Arc                                | Line joining two points on a circumference.       |
| Segment                            | Perimeter of a circle.                            |
| Chord                              | Part of a circle between a chord and an arc.      |
| Radius                             | Line touching the circumference of a circle once. |
| Diameter                           | Distance from the centre of a circle to the edge. |
| Circumference                      | Part of the circumference of a circle.            |
| Tangent                            | Part of a circle between two radii and an arc.    |
| Sector                             | Width of a circle.                                |

### **2.2 Circumference of Circles**

In this section you will look at calculating the circumference of circles.

The circumference is the perimeter of a circle.

Circumference =  $\pi \times$  diameter  $C = \pi \times d$ 









| Diagram | Radius | Diameter | Calculation | Circumference<br>(in terms of $\pi$ ) | Circumference<br>(1 dp) |
|---------|--------|----------|-------------|---------------------------------------|-------------------------|
| 4 cm    |        |          |             |                                       |                         |
| 6 cm    |        |          |             |                                       |                         |
| 3 cm    |        |          |             |                                       |                         |
| 3 cm    |        |          |             |                                       |                         |
| 9 cm    |        |          |             |                                       |                         |
|         |        | 12 mm    |             |                                       |                         |
|         | 5 m    |          |             |                                       |                         |

| Diagram | Radius     | Diameter | Calculation | Circumference<br>(in terms of $\pi$ ) | Circumference<br>(1 dp) |
|---------|------------|----------|-------------|---------------------------------------|-------------------------|
|         |            |          |             | $16\pi$ km                            |                         |
| 0.5 cm  |            |          |             |                                       |                         |
| 34      |            |          |             |                                       |                         |
|         | 5 <i>a</i> |          |             |                                       |                         |

#### **2.3 Perimeter of Semicircles**

In this section you will look at calculating the perimeter of semicircles.

| Calculate the perimeter of the<br>semi-circle below. Give your<br>answer in terms of $\pi$ and to 1<br>decimal place.Calculate the perimeter of the<br>semi-circle below. Give your<br>answer in terms of $\pi$ and to 1<br>decimal place. | r |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 4 cm                                                                                                                                                                                                                                       |   |
|                                                                                                                                                                                                                                            |   |
|                                                                                                                                                                                                                                            |   |
|                                                                                                                                                                                                                                            |   |
|                                                                                                                                                                                                                                            |   |
|                                                                                                                                                                                                                                            |   |
|                                                                                                                                                                                                                                            |   |
|                                                                                                                                                                                                                                            |   |











| Diagram | Radius | Diameter | Calculation | Area (in terms of $\pi$ ) | Area<br>(1 dp) |
|---------|--------|----------|-------------|---------------------------|----------------|
| 3 cm    |        |          |             |                           |                |
| 9 cm    |        |          |             |                           |                |
| 3 cm    |        |          |             |                           |                |
| 6 cm    |        |          |             |                           |                |
| 4 cm    |        |          |             |                           |                |
|         | 6 mm   |          |             |                           |                |
|         |        | 10 m     |             |                           |                |

| Diagram | Radius | Diameter | Calculation | Area<br>(in terms of π) | Area<br>(1 dp) |
|---------|--------|----------|-------------|-------------------------|----------------|
|         |        |          |             | $16\pi$ km <sup>2</sup> |                |
| 0.5 cm  |        |          |             |                         |                |
|         | 5a     |          |             |                         |                |
| бу      |        |          |             |                         |                |

#### **2.5 Area of Semicircles**

In this section you will look at calculating the area of semicircles.

| Worked Example                                                                                                    | Your Turn                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Calculate the area of the semi-<br>circle below. Give your answer<br>in terms of $\pi$ and to 1 decimal<br>place. | Calculate the area of the semi-<br>circle below. Give your answer<br>in terms of $\pi$ and to 1 decimal<br>place. |
| 4 cm                                                                                                              | 8 cm                                                                                                              |
|                                                                                                                   |                                                                                                                   |
|                                                                                                                   |                                                                                                                   |
|                                                                                                                   |                                                                                                                   |
|                                                                                                                   |                                                                                                                   |
|                                                                                                                   |                                                                                                                   |
|                                                                                                                   |                                                                                                                   |
|                                                                                                                   |                                                                                                                   |
|                                                                                                                   |                                                                                                                   |
|                                                                                                                   |                                                                                                                   |



#### **2.6 Area and Circumference of Circles**

In this section you will look at calculating the area and circumference of circles.

#### **Fluency Practice**

Which units should we use for the answer?

| Question | Description                                                    | Units |
|----------|----------------------------------------------------------------|-------|
| 1.       | A circle has a radius of $10m$ , what is the area?             |       |
| 2.       | A circle has a radius of $10 cm$ , what is the area?           |       |
| 3.       | A circle has a radius of $10cm$ , what is the circumference?   |       |
| 4.       | A circle has a diameter of $10cm$ , what is the circumference? |       |
| 5.       | A circle has a circumference of $10cm$ , what is the diameter? |       |
| 6.       | A circle has an area of $10 cm^2$ , what is the diameter?      |       |
| 7.       | A circle has an area of $10cm^2$ , what is the circumference?  |       |
| 8.       | A circle has an circumference of $10cm$ , what is the area?    |       |

- 9. Write a circles question where the units of the answer would be *mm*
- 10. Write a circles question where the units of the answer would be  $mm^2$

| Worked Example  | Your Turn       |
|-----------------|-----------------|
| 8 cm            | 80 cm           |
| Circumference = | Circumference = |
| Area =          | Area =          |
|                 |                 |
|                 |                 |
|                 |                 |
|                 |                 |
|                 |                 |
|                 |                 |
|                 |                 |
|                 |                 |
|                 |                 |



Round all answers to 1 decimal place. Remember to give units.

| Radius        | Diameter | Circumference | Area                  |
|---------------|----------|---------------|-----------------------|
| 3 cm          | 6 cm     |               | 28.3 cm <sup>2</sup>  |
| 7 cm          | 14 cm    | 44.0 cm       |                       |
| 5 <i>mm</i>   |          |               | 78.5 mm <sup>2</sup>  |
|               | 2.4 m    | 7.5 m         |                       |
| 4.5 <i>cm</i> | 9 cm     |               |                       |
| 6 cm          |          |               |                       |
|               | 8 cm     |               |                       |
|               | 40 mm    |               |                       |
| 0.7 m         |          |               |                       |
|               |          | 49.0 cm       | 191.1 cm <sup>2</sup> |
|               |          | 100.5 mm      | $804.2 \ mm^2$        |
|               |          | 81.7 m        | $530.9 m^2$           |
|               |          | 11.3 cm       |                       |
|               |          | 147.0 mm      |                       |
|               |          |               | $38.5 m^2$            |
|               |          |               | 498.8 cm <sup>2</sup> |

### **2.7 Area and Perimeter of Compound Shapes**

In this section you will look at calculating the area and perimeter of compound shapes with circles.

| Worked Example                                                                | Your Turn                                                                     |  |
|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--|
| Find the perimeter of this shape.<br>Round your answer to 1 decimal<br>place. | Find the perimeter of this shape.<br>Round your answer to 1 decimal<br>place. |  |
|                                                                               |                                                                               |  |
| 2 cm                                                                          | 4 cm                                                                          |  |
|                                                                               |                                                                               |  |
|                                                                               |                                                                               |  |
|                                                                               |                                                                               |  |
|                                                                               |                                                                               |  |
|                                                                               |                                                                               |  |
|                                                                               |                                                                               |  |
|                                                                               |                                                                               |  |
|                                                                               |                                                                               |  |
|                                                                               |                                                                               |  |
|                                                                               |                                                                               |  |

| Worked Example                                                           | Your Turn                                                             |  |
|--------------------------------------------------------------------------|-----------------------------------------------------------------------|--|
| Find the area of this shape.<br>Round your answer to 1 decimal<br>place. | Find the area of this shape.<br>Round your answer to 1 decimal place. |  |
|                                                                          |                                                                       |  |
| 2 cm                                                                     | 4 cm                                                                  |  |
|                                                                          |                                                                       |  |
|                                                                          |                                                                       |  |
|                                                                          |                                                                       |  |
|                                                                          |                                                                       |  |
|                                                                          |                                                                       |  |
|                                                                          |                                                                       |  |
|                                                                          |                                                                       |  |
|                                                                          |                                                                       |  |
|                                                                          |                                                                       |  |

| Worked Example                                                               |  | Your Turn                                                                   |  |
|------------------------------------------------------------------------------|--|-----------------------------------------------------------------------------|--|
| The circle, of radius 1.05 cm, is inside a square. Work out the shaded area. |  | The circle, of radius 2.1 cm, is inside a square. Work out the shaded area. |  |
| 1.05 cm                                                                      |  | 2.1 cm                                                                      |  |
|                                                                              |  |                                                                             |  |
|                                                                              |  |                                                                             |  |
|                                                                              |  |                                                                             |  |
|                                                                              |  |                                                                             |  |
|                                                                              |  |                                                                             |  |
|                                                                              |  |                                                                             |  |
|                                                                              |  |                                                                             |  |
|                                                                              |  |                                                                             |  |
|                                                                              |  |                                                                             |  |
|                                                                              |  |                                                                             |  |
|                                                                              |  |                                                                             |  |
|                                                                              |  |                                                                             |  |
|                                                                              |  |                                                                             |  |
|                                                                              |  |                                                                             |  |
|                                                                              |  |                                                                             |  |

# **3** Angles in Parallel Lines

## **3.1** Transversals

In this section you will look at what transversals are and how to identify them.



The diagrams are not drawn accurately Highlight any transversals

# **Key Points**

When you have two parallel lines cut by a transversal, you get four acute angles and four obtuse angles (except when you get 8 right angles).

- All the acute angles are equal.
- All the obtuse angles are equal.
- Each acute angle is supplementary (two angles add up to 180°) to each obtuse angle.

| obtuse acute |
|--------------|
| acute obtuse |
| obtuse acute |
| acute obtuse |
|              |
|              |
|              |
|              |
|              |
|              |

# **3.2 Corresponding Angles**

In this section you will look at what corresponding angles are and how to identify them.

# Frayer Model – Corresponding Angles

| Definition<br>Corresponding angles are on<br>the same side of the<br>transversal and in<br>corresponding positions in<br>relation to the lines the<br>transversal crosses or touches. | <ul> <li>Characteristics</li> <li>The lines must be straight.</li> <li>The lines don't have to be parallel.</li> <li>Corresponding positions means matching positions – above/below or left/right.</li> </ul> |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\frac{\text{Examples}}{\checkmark}$                                                                                                                                                  | $\frac{\text{Non-Examples}}{\checkmark}$                                                                                                                                                                      |





Use your knowledge of corresponding angles to decide which diagrams contain parallel lines. Explain how you made your decision for each question.





# **3.3 Alternate Angles**

In this section you will look at what alternate angles are and how to identify them.

# **Frayer Model – Alternate Angles**

| Definition<br>Alternate angles are on<br>opposite sides of the<br>transversal and between the<br>two lines the transversal<br>crosses or touches. | <ul> <li>Characteristics</li> <li>The lines must be straight.</li> <li>The lines don't have to be parallel.</li> </ul> |
|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| $^{\text{Examples}}$                                                                                                                              | $\frac{\text{Non-Examples}}{\checkmark}$                                                                               |





Use your knowledge of alternate angles to decide which diagrams contain parallel lines. Explain how you made your decision for each question.





## **3.4 Co-Interior Angles**

In this section you will look at what co-interior angles are and how to identify them.

# **Frayer Model – Co-Interior Angles**

| Definition<br>Co-interior angles are on the<br>same side of the transversal<br>and between the two lines the<br>transversal crosses or touches.    | <ul> <li><u>Characteristics</u></li> <li>The lines must be straight.</li> <li>The lines don't have to be parallel.</li> <li>Co-interior is short for consecutive interior.</li> </ul> |
|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                    | <ul> <li>Also called allied angles.</li> </ul>                                                                                                                                        |
| <b>Examples</b>                                                                                                                                    | Non-Examples                                                                                                                                                                          |
| $\begin{array}{c} \rightarrow & \rightarrow \\ \rightarrow & \rightarrow \\ \rightarrow & \rightarrow \\ \rightarrow & \rightarrow \\ \end{array}$ | $\begin{array}{c} \rightarrow & \rightarrow \\ \rightarrow & \rightarrow \\ \rightarrow & \rightarrow \\ \end{array}$                                                                 |
| \$X                                                                                                                                                | X X                                                                                                                                                                                   |





Use your knowledge of co-interior angles to decide which diagrams contain parallel lines. Explain how you made your decision for each question.





## 3.5 Mixed

In this section you will look at angles in parallel lines.

## Rules

#### Angle Facts in Parallel Lines: Corresponding angles are equal.

On the same side of the transversal and in the same position in relation to the parallel lines.



Angle Facts in Parallel Lines: Alternate angles are equal.

Between the parallel lines, on opposite sides of the transversal.



Angle Facts in Parallel Lines: Co-interior angles add up to 180°.

Between the parallel lines and on the same side of the transversal.











## Worked Example







#### Your Turn

Work out the missing angles in the diagram below. Give reasons for your answer.







| Angle<br>Connection        | Angle | Reason |
|----------------------------|-------|--------|
| ightarrow A                |       |        |
| $A \rightarrow B$          |       |        |
| $B \rightarrow C$          |       |        |
| $C \rightarrow D$          |       |        |
| $D \rightarrow \mathbf{E}$ |       |        |
| $E \rightarrow F$          |       |        |
| $F \rightarrow G$          |       |        |
| $G \rightarrow H$          |       |        |
| $H \rightarrow I$          |       |        |
| $I \rightarrow J$          |       |        |
| J → <b>K</b>               |       |        |
| $K \rightarrow L$          |       |        |
| $L \rightarrow M$          |       |        |
| $M \rightarrow N$          |       |        |
| $N \rightarrow \mathbf{O}$ |       |        |
| $0 \rightarrow \mathbf{P}$ |       |        |
| $P \rightarrow \mathbf{Q}$ |       |        |
| $Q \rightarrow R$          |       |        |
| $R \rightarrow S$          |       |        |
| $S \rightarrow T$          |       |        |



# **3.6 Angles in Parallel Lines with Equations**

In this section you will look at angles in parallel lines with equations.



#### Your Turn



