Year 8

Mathematics

 Unit 6

Name:

Class:

Contents

1 Ratio

1.1 Writing Ratios

1.2 Ratios to Fractions and Percentages
1.3 Equivalent Ratios
1.4 Simplifying Ratios
1.5 n :1 and 1:n Ratios
1.6 Ratio in Different Forms
1.7 Scale Drawings
1.8 Combining Ratios
1.9 One Quantity Given
1.10 Difference Given
1.11 Total Given

2 Algebra Recap
2.1 Collecting Like Terms
2.2 Multiplying Terms
2.3 Dividing Terms
2.4 Substitution

3 Index Laws
3.1 Multiplying
3.2 Dividing
3.3 The Power Zero
3.4 Combined
3.5 Powers of Powers

1 Ratio

Page 2

1.1 Writing Ratios

In this section you will look at how to write ratios. A ratio shows how much of one thing there is compared to another. Ratios are usually written in the form $a: b$.

Note that the order in which a ratio is written is important!

Worked Example

a) Write down the ratio of shaded circles to unshaded circles in the diagram below.

b) Write down the ratio of White : Grey : Black in the diagram below.

a) Write down the ratio of shaded circles to unshaded circles in the diagram below.

b) Write down the ratio of White : Grey : Black in the diagram below.

1.2 Ratios to Fractions and Percentages

In this section you will look at how to convert ratios to fractions and percentages.

The ratio of blue and red counters in a bag is $4: 3$
a) What fraction of the counters are blue?
b) What fraction of the counters are red?

The ratio of blue and red
counters in a bag is $5: 7$
a) What fraction of the counters are blue?
b) What fraction of the counters are red?

The ratio of blue, red and yellow counters in a bag is $4: 3: 7$
a) What fraction of the counters are blue?
b) What fraction of the counters are red?
c) What fraction of the counters are yellow?

The ratio of blue, red and yellow counters in a bag is $5: 7: 3$
a) What fraction of the counters are blue?
b) What fraction of the counters are red?
c) What fraction of the counters are yellow?

1.3 Equivalent Ratios

In this section you will look at equivalent ratios.
Note that both sides of a ratio can be multiplied or divided by the same number to give an equivalent ratio.

Worked Example	Your Turn
All the ratios below are equivalent.	All the ratios below are equivalent.
Complete the gaps below:	Complete the gaps below:
1:3	1: 4
_: 6	_: 8
_ : 12	_ : 16
24 :	12 :
_ : 36	_ : 12
_ : 3.6	_ : 1.2

Worked Example	Your Turn
All the ratios below are equivalent.	All the ratios below are equivalent.
Complete the gaps below:	Complete the gaps below:
$2: 3$	$2: 5$
_: 9	_ : 15
_ : 18	_ : 30
24 :	24 :
_ : 54	_ : 0.6
__: 0.54	__: 4.8

Worked Example	Your Turn
All the ratios below are equivalent.	All the ratios below are equivalent.
Complete the gaps below:	Complete the gaps below:
$3: 2: 4$	$3: 2: 5$
_ : $4:$	_ : 4:_
_: 8:	_ : 8: _
24: __ :	24: __ _
2.4 : __ :	2.4 : __ :

Fluency Practice

pair off the equivalent ratios
(1)
$5: 20$
$10: 25$
$11 / 2: 2^{1 / 2}$

	$3: 12$	$9: 12$	
	$6: 71 / 2$		$24: 40$
$3: 7 \frac{1}{2}$			
	$20: 25$	$15: 20$	

(2) $101 / 2: 7$

$$
21 / 2: 1 \quad 2: 11 / 2
$$

$$
1 / 2: 0.3
$$

$11 / 2: 1$
$71 / 2: 3$

$$
10: 71 / 2
$$

(4)

81 : 72

108: 96

$$
70: 65
$$

$$
90: 84
$$

Fluency Practice

1.4 Simplifying Ratios

In this section you will look at simplifying ratios.
Note that to simplify a ratio, divide all the numbers in the ratio by the same number until they cannot be divided any more.

Simplify:
a) $25: 30$
b) $45: 75$
c) $15: 20: 35$
d) $150 \mathrm{~cm}: 1 \mathrm{~m}$

Simplify:
a) $42: 35$
b) $24: 60$
c) $16: 32: 72$
d) $450 \mathrm{~g}: 1.3 \mathrm{~kg}$

$1.5 \mathrm{n}: 1$ and 1:n Ratios

In this section you will look at simplifying ratios into the form $n: 1$ and $1: n$

The diagram below shows a number of circles and triangles.

a) Write the ratio of circles to triangles in the ratio $1: n$
b) Write the ratio of circles to triangles in the ratio $n: 1$

The diagram below shows a number of circles and triangles.

a) Write the ratio of circles to triangles in the ratio $1: n$
b) Write the ratio of circles to triangles in the ratio $n: 1$

Worked Example

a) Write the ratio $2: 5$ in the ratio $1: n$
b) Write the ratio $2: 5$ in the ratio $n: 1$

Your Turn

a) Write the ratio $4: 5$ in the ratio 1 : n
b) Write the ratio $4: 5$ in the ratio $n: 1$

1.6 Ratio in Different Forms

In this section you will look at how to write ratios in different forms.

Worked Example	Your Turn
$\begin{aligned} & a: b \\ & 7: 1 \end{aligned}$	$\begin{aligned} & a: b \\ & 8: 1 \end{aligned}$
a as a fraction of the whole	a as a fraction of the whole
a as a fraction of b	a as a fraction of b
In the form $1: n$	In the form 1: n
In the form $n: 1$	In the form $n: 1$

Fill in the Gaps

				$\begin{aligned} & \sim \\ & \because \\ & \sim \end{aligned}$				$\begin{aligned} & \hat{N} \\ & \hat{o} \\ & \ddot{r} \end{aligned}$			
			~ 10				Ln				
$\begin{gathered} \text { әочм } \\ \text { әч7 fo ио!!วедя e se } p \end{gathered}$		$\neg 1 \mathrm{~m}$				n IN					
	$\begin{aligned} & m \\ & \because \\ & \sim \end{aligned}$				$\begin{gathered} \because \\ \ddot{i n} \end{gathered}$						$\begin{aligned} & \lambda \\ & \ddot{\gamma} \end{aligned}$

1.7 Scale Drawings

In this section you will look at how to work with scale drawings. Scale drawings allow us to draw large objects on a smaller scale while keeping them accurate. All scale drawings must have a scale written on them. Scales are usually expressed as ratios. The ratio $1: 100$ means that for every 1 cm on the scale drawing the length will be 100 cm in real life.

Fluency Practice

a) If a map is in the scale 1 : 500 what real-life distance does 1 cm represent?
b) If a map is in the scale $1: 20,000$ what real-life distance does 1 cm represent?
a) If a map is in the scale $1: 2000$ what real-life distance does 1 cm represent?
b) If a map is in the scale $1: 250,000$ what real-life distance does 1 cm represent?

Fluency Practice

Fluency Practice

Scale Drawings

These are scale images of real objects.
Each object is at a different scale.
What is the marked length of the real object?

1: 175 million

Fluency Practice

Scale Stars Each line is drawn at a different scale.
Measure the lines and calculate how long they would be in real life.

Scale Stars Each line is drawn at a different scale.
Measure the lines and calculate how long they would be in real life.

1.8 Combining Ratios

In this section you will look at how to combine two ratios into one ratio.

Note that we are only able to combine ratios if one of the components is present in both of the ratios. If this is the case, we can combine the ratios by making the value for the component that appears in both of the ratios the same. We make the value for the component that appears in both of the ratios the lowest common multiple of the current values for that component in the two separate ratios. After we have made the values for the component that appears in both of the ratios the same, we can combine the ratios.

The ratio of $a: b$ is $2: 3$
The ratio of $b: c$ is $1: 4$ What is the ratio of $a: c$?

The ratio of $a: b$ is $2: 5$
The ratio of $b: c$ is $1: 4$ What is the ratio of $a: c$?

Worked Example

There are red, yellow and blue counters in a bag. Find the ratio Red : Yellow : Blue if
(a) The ratio of Red: Yellow is $1: 2$ and the ratio of Yellow : Blue is $2: 3$
(b) The ratio of Red : Yellow is $1: 5$ and the ratio of Yellow : Blue is $10: 7$
(c) The ratio of Red : Yellow is $1: 3$ and the ratio of Yellow : Blue is $8: 5$

There are red, yellow and blue counters in a bag. Find the ratio Red : Yellow : Blue if
(a) The ratio of Red: Yellow is $1: 3$ and the ratio of Yellow : Blue is $3: 4$
(b) The ratio of Red : Yellow is $2: 5$ and the ratio of Yellow : Blue is $10: 3$
(c) The ratio of Red : Yellow is $2: 5$ and the ratio of Yellow : Blue is $7: 1$

1.9 One Quantity Given

In this section you will look at how to find quantities when one quantity is given.

Anju and Kieran share some money in the ratio $5: 2$. Anju receives $£ 30$. How much does Kieran receive?

Anju and Kieran share some money in the ratio $5: 3$. Anju receives $£ 30$. How much does Kieran receive?

1.10 Difference Given

In this section you will look at how to find quantities when the difference is given.

Worked Example

Zach and Olivia share some money in the ratio $2: 5$. Olivia receives $£ 30$ more than Zach. How much do they each receive?

Zach and Olivia share some money in the ratio $2: 5$. Olivia receives $£ 15$ more than Zach. How much do they each receive?

1.11 Total Given

In this section you will look at how to find quantities when the total is given.

Divide 30 in the ratio $2: 3$	Divide 45 in the ratio $8: 1$

2 Algebra Recap

2.1 Collecting Like Terms

In this section you will look at collecting like terms.
Recall that like terms are two or more terms, each with the same variables, to the same power or with the same function applied.

Like Terms

$3 p$	p	Like	Unlike
x^{2}	$3 x^{2}$	Like	Unlike
x^{2}	$2 x$	Like	Unlike
$-3 \sqrt{x}$	$27 \sqrt{x}$	Like	Unlike
$7 a$	$7 b$	Like	Unlike

$3 a$	$3 a$	Like	Unlike
a	$2 a$	Like	Unlike
$2 a$	$2 a$	Like	Unlike
$-3 a$	$2 a$	Like	Unlike
$4 a$	$4 b$	Like	Unlike
$3 a$	$3 a^{2}$	Like	Unlike
$2 a^{2}$	$7 a^{2}$	Like	Unlike
$-3 a^{2}$	$7 a^{2}$	Like	Unlike
$2 a^{2}$	$2 a^{-2}$	Like	Unlike
2^{a}	a^{2}	Like	Unlike
x	\sqrt{x}	Like	Unlike
1	2	Like	Unlike

2.2 Multiplying Terms

In this section you will look at multiplying terms.

2.3 Dividing Terms

In this section you will look at dividing terms.

2.4 Substitution

In this section you will look at substitution.

3 Index Laws

Power

We say 'two to the power of four'.

3.1 Multiplying

In this section you will look at how to use the index law for multiplying.

Complete the following:
$3^{4} \times 3=$
$3^{4} \times 3^{2}=$
$3^{4} \times 3^{3}=$
$3^{4} \times 3^{n}=$
$3^{m} \times 3^{n}=$

Simplify
a) $9^{5} \times 9^{2}$
b) $9^{5} \times 9^{-2}$

Simplify
a) $8^{6} \times 8^{3}$
b) $8^{6} \times 8^{-3}$

Multiplying

In this section you will look at how to use the index law for multiplying.

Complete the following:
$x^{3} \times x^{2}=$
$x^{3} \times x^{3}=$
$x^{3} \times x^{4}=$
$x^{3} \times x^{n}=$
$x^{m} \times x^{n}=$

Simplify
a) $x^{7} \times x^{8}$
b) $3 x^{4} \times 2 x^{5}$

Simplify
a) $x^{9} \times x^{2}$
b) $4 x^{3} \times 5 x^{7}$

3.2 Dividing

In this section you will look at how to use the index law for dividing.
Complete the following:
$2^{4} \div 2=$
$2^{4} \div 2^{2}=$
$2^{4} \div 2^{3}=$
$2^{4} \div 2^{n}=$
$2^{m} \div 2^{n}=$

Simplify
a) $9^{5} \div 9^{2}$
b) $9^{5} \div 9^{-2}$

Simplify
a) $8^{12} \div 8^{3}$
b) $8^{12} \div 8^{-3}$

In this section you will look at how to use the index law for dividing.
Complete the following:
$x^{5} \div x=$
$x^{5} \div x^{2}=$
$x^{5} \div x^{3}=$
$x^{5} \div x^{n}=$
$x^{m} \div x^{n}=$

Simplify
a) $y^{12} \div y^{4}$
b) $12 y^{11} \div 6 y^{7}$
c) $\frac{5 y^{11}}{12 y^{7}}$

Simplify
a) $p^{14} \div p^{9}$
b) $56 y^{4} \div 8 y^{2}$
c) $\frac{8 y^{4}}{56 y^{2}}$

3.3 The Power Zero

In this section you will look at how to use the index law for the power zero.

Complete the following:
$2^{4}=$
$2^{3}=$
$2^{2}=$
$2^{1}=$
$2^{0}=$

Simplify:
a) $4 x^{0}$
b) $x^{4} \times x^{0}$
c) $\frac{x^{9}}{x^{0}}$
d) $x^{0} \div x^{-2}$

Simplify:
a) $8 x^{0}$
b) $x^{0} \times x^{8}$
c) $\frac{x^{0}}{x^{18}}$
d) $x^{-4} \div x^{0}$

3.4 Combined

In this section you will look at how to use the index laws combined.

Simplify
$15 x^{9} \times 2 x^{3}$
$10 x^{4}$

Simplify
$\frac{24 x^{10}}{13 x^{5} \times 4 x^{2}}$

3.5 Powers of Powers

In this section you will look at how to use the index law for powers of powers.

Complete the following:
$\left(2^{2}\right)^{1}=$
$\left(2^{2}\right)^{2}=$
$\left(2^{2}\right)^{3}=$
$\left(2^{2}\right)^{4}=$
$\left(2^{2}\right)^{5}=$
$\left(2^{2}\right)^{n}=$
$\left(2^{m}\right)^{n}=$

Simplify $\left(3^{4}\right)^{9}$

Powers of Powers

In this section you will look at how to use the index law for powers of powers.

Complete the following:
$\left(y^{3}\right)^{1}=$
$\left(y^{3}\right)^{2}=$
$\left(y^{3}\right)^{3}=$
$\left(y^{3}\right)^{4}=$
$\left(y^{3}\right)^{5}=$
$\left(y^{3}\right)^{n}=$
$\left(y^{m}\right)^{n}=$

Simplify
a) $\left(c^{4}\right)^{2}$
b) $-\left(c^{4}\right)^{2}$
c) $\left(-c^{4}\right)^{2}$

Simplify
a) $\left(c^{4}\right)^{3}$
b) $-\left(c^{4}\right)^{3}$
c) $\left(-c^{4}\right)^{3}$

Simplify
a) $\left(3 c^{4}\right)^{2}$
b) $\left(-3 c^{4}\right)^{2}$

Simplify
a) $\left(5 c^{-4}\right)^{2}$
b) $\left(-5 c^{-4}\right)^{2}$

