Year 8

Mathematics Unit 8

Name:

Class:

Contents

1 Expanding Single Brackets
1.1 Distributive Law
1.2 Expanding Single Brackets without Powers
1.3 Expanding Single Brackets with Powers
1.4 Expanding Single Brackets with Index Laws
1.5 Expanding and Simplifying Single Brackets

2 Factorising to a Single Bracket
2.1 Highest Common Factor
2.2 Factorising to a Single Bracket
2.3 Factorising to a Single Bracket with Index Laws
2.4 Finish Factorising

3 Solving Linear Equations
3.1 Terminology
3.2 Forming Expressions
3.3 One Side
3.4 Both Sides
3.5 Fractions
3.6 Cross Multiplication
3.7 Forming and Solving Equations

1 Expanding Single Brackets

1.1 Distributive Law

In this section you will look at the distributive law.
The distributive law says that multiplying a number by a group of numbers added together is the same as doing each multiplication separately.

For example: $3 \times(2+4)=3 \times 2+3 \times 4$
So the " 3 " can be "distributed" across the " $2+4$ " into 3 times 2 and 3 times 4 .

$3 \times(2+4)$

$3 \times 2+3 \times 4$

Use the distributive property to calculate:
a) $7 \times(80+3)$
b) $(70+8) \times 3$

Use the distributive property to calculate:
a) $3 \times(80+7)$
b) $(30+8) \times 7$

1.2 Expanding Single Brackets without Powers

In this section you will look at expanding single brackets without powers.

Expand:
$\begin{array}{ll}\text { a) } & 2(x-3) \\ \text { b) } & -2(x-3)\end{array}$
Expand:
a) $2(3-x)$
b) $-2(3-x)$

1.3 Expanding Single Brackets with Powers

In this section you will look at expanding single brackets with powers.

Expand:
$\begin{array}{ll}\text { a) } & 2 x(x-3) \\ \text { b) } & -2 x(x-3)\end{array}$

Expand:
a) $2 x(3-x)$
b) $-2 x(3-x)$

1.4 Expanding Single Brackets with Index Laws

In this section you will look at expanding single brackets with index laws.

Expand and simplify:
a) $a^{3} b c\left(10 b^{2} c^{2}+9 a^{2}\right)$
b) $\quad 4 a^{5} b^{2}\left(3 a^{4} b^{4}-5 b^{2}\right)$

Expand and simplify:
a) $a^{3} b^{5}\left(3 a^{3} b+7 a b^{4} c\right)$
b) $7 x^{5} y^{4}\left(6 x^{2} y+5 x^{4} y\right)$

1.5 Expanding and Simplifying Single Brackets

In this section you will look at expanding and simplifying single brackets.

Worked Example

Expand and simplify:
a) $\quad 4+7(6 x-5)$
b) $8 x+6+8(5 x+9)$

Expand and simplify:
a) $-5+2(4 y-1)$
b) $6 z+6+5(7 z+2)$

Worked Example

Expand and simplify:
a) $2(x-1)+3(x-4)$
b) $2(x-1)-3(x-4)$

Expand and simplify:
a) $2(x-1)+5(x-4)$
b) $2(x-1)-5(x-4)$

Worked Example

Your Turn

Expand and simplify:
a) $\quad 2 x(x-1)-3 x(x-4)$
b) $2 x(x-1)-3(x-4)$

Expand and simplify:
a) $2 x(x-1)-5 x(x-4)$
b) $2 x(x-1)-5(x-4)$

2 Factorising to a Single Bracket

Factorising to a Single Bracket

Factorising means:

To turn an expression into a product of factors.

Year 8 Factorisation

$$
2 x^{2}+4 x z
$$

Factorise

$$
2 x(x+2 z)
$$

Year 9 Factorisation

$$
x^{2}+3 x+2
$$

Factorise

A Level Factorisation
Factorise
$2 x^{3}+3 x^{2}-11 x-6 \xrightarrow{\text { Factorse }}(2 x+1)(x-2)(x+3)$

Factorising is the reverse of expanding. When you have a sum of terms, just identify the common factor. i.e. Find the largest expression each of your terms is divisible by.

2.1 Highest Common Factor

In this section you will look at highest common factor of algebraic terms.

Worked Example

Find the highest common factor of:
a) $3 a$ and $5 a$
b) 6 and $6 a$
c) $3 a$ and $6 a$
d) $4 a b^{2}$ and $6 a^{2}$ b

Find the highest common factor of:
a) $2 b$ and $3 b$
b) 6 and $12 b$
c) $6 b$ and $12 b^{2}$
d) $8 a^{2} b$ and $12 a^{2} b^{2}$

2.2 Factorising to a Single Bracket

In this section you will look at factorising to a single bracket.

Your Turn

a) Factorise $12 x-20$
b) Factorise $12 x-20 y$
c) Factorise $12 x^{3}-20$

Your Turn

a) Factorise $12 x^{2}-20 x$
b) Factorise $12 x^{2}-20 x y$
c) Factorise $12 x^{2} y-20 x y^{2}$

2.3 Factorising to a Single Bracket with Index Laws

In this section you will look at factorising to a single bracket with index laws.

Factorise:
a) $x^{4} y^{2}-x^{3} y^{5}$
b) $10 x^{7} y^{4}-25 x^{3} y^{2}$

Factorise:
a) $x^{2} y^{5}-x y^{3}$
b) $20 e^{5} f^{2}-12 e^{2} f$

2.4 Finish Factorising

In this section you will look at expressions which need to be fully factorised.

Finishing factorising:
a) $4(10 x+50)$
b) $4(30 x+50)$

Finishing factorising:
a) $4(5 x+15)$
b) $4(25 x+15)$

3 Solving Linear Equations

3.1 Terminology

In this section you will look at the terminology used in this topic.

- An expression is a collection of letters and numbers with no equals sign, for example $3 x+1$
- An equation contains an equals sign and an unknown letter to be solved, for example $3 x+1=10$
- A formula is a relationship between two or more letters, and it contains an equals sign, for example $A=b h$
- An identity is an equation that is always true, no matter what values are substituted, for example $2 x+3 x=5 x$ (use \equiv)

Your Turn

For the following equations waterfall, indicate the step which has been carried out to both sides of the equation:

3.2 Forming Expressions

In this section you will look at forming expressions.

Forming Expressions
Form the following expressions starting from x :

$4 x-5$	
$5-4 x$	
$\frac{x}{4}-5$	
$\frac{x-5}{4}$	
$4(x-5)$	

3.3 One Side

In this section you will look at equations with the variable on one side.

To solve an equation means that we find the value of the variable(s).

Strategy: To get x on its own on one side of the equation, we gradually need to 'claw away' the things surrounding it.

Note: In algebra, we tend to give our answers as fractions rather than decimals (unless asked). And never recurring decimals. Don't round also (unless asked).

Solve the following equations:
a) $4 x+17=43$
b) $17+4 x=43$

Solve the following equations:
a) $6 x+27=53$
b) $27+6 x=43$

Worked Example

Solve the following equations:
a) $4 x-17=43$
b) $17-4 x=43$

Solve the following equations:
a) $6 x-27=53$
b) $27-6 x=53$

Solve the following equations:
a) $4(x+8)=50$
b) $4(2 x+8)=50$

Solve the following equations:
a) $6(x-8)=50$
b) $6(3 x-8)=50$

Worked Example

Solve the following equations:
a) $-4(2 x+8)=50$
b) $-4(2 x-8)=50$

Solve the following equations:
a) $-6(3 x+8)=50$
b) $-6(3 x-8)=50$

Worked Example

Solve the following equations:
a) $8(x+3)+3(2 x+6)=84$
b) $8(x+3)-3(2 x-6)=84$

Solve the following equations:
a) $3(x-3)+4(2 x-6)=110$
b) $3(x-3)-4(2 x-6)=110$

3.4 Both Sides

In this section you will look at equations with the variable on both sides.

- Collect the variable terms (i.e. the terms involving x) on one side of the equation, and the 'constants' (i.e. the individual numbers) on the other side.
- Collect the variable terms on the side of the equation where there's more of them (and move constant terms to other side).

Balancing

- We eliminate the variable from the side with the smaller number of the variable.
- We eliminate the variable by applying the inverse to both sides.

Which side do you eliminate the variable from?
How would you balance both sides?

- $3 x+4=2 x+6$
- $2 x+4=3 x+6$
- $2 x-4=3 x-6$
- $4-2 x=3 x-6$
- $4-2 x=6-3 x$

Solve the following equations:
a) $5 x+7=2 x+31$
b) $2 x-23=7-x$

Solve the following equations:
a) $5 x+7=3 x+23$
b) $2 x-23=12-3 x$

Solve the following equations:
a) $3(x+2)=2(x+3)$
b) $3(x+5)-7=2(x+2)$

Solve the following equations:
a) $9(x-3)=4(x+7)$
b) $7(x+6)-7=4(x+2)$

Solve the following equation:
$3(2 w-1)-4=4(w+2)+1$

Solve the following equation:
$2(2 p-2)-4=2(p+3)-3$

3.5 Fractions

In this section you will look at equations with fractions.

Worked Example

Your Turn

Solve the following equations:
a) $\frac{x}{3}+12=49$
b) $\frac{x+12}{3}=49$

Solve the following equations:
a) $\frac{x}{6}-12=49$
b) $\frac{x-12}{6}=49$

Worked Example

Your Turn
Solve the following equations:
a) $\frac{5 x}{6}-12=49$
b) $\frac{5 x-12}{6}=49$

Worked Example

Solve the following equation:
a) $\frac{3}{x}+2=6$
b) $\frac{3}{x+2}=6$

Solve the following equation:
a) $\frac{15}{x}-2=6$
b) $\frac{15}{x-2}=6$

Solve the following equation:
$3 x+6$
$\frac{3 x+6}{2}=x+3$

Solve the following equation:
$\frac{9 x-27}{4}=x+7$

Solve the following equation: $\frac{3 x+6}{x+3}=2$

Solve the following equation:
$7 x-21$
$\frac{x-7}{x+7}=2$

3.6 Cross Multiplication

In this section you will look at equations which can be solved using cross multiplication.

You can cross multiply to solve equations which are in the form:
$\frac{a}{b}=\frac{c}{d}$

Are the following equations ready to be cross multiplied?

- $\frac{2 x}{3}=\frac{5}{9}$
- $\frac{2 x}{3}+1=\frac{5}{9}$
- $\frac{2 x}{3}+1=5$
- $\frac{2 x+1}{3}=5$
- $\frac{3}{2 x+1}=\frac{5}{x}$

Worked Example

Solve the following equations:
a) $\frac{x}{5}=\frac{3}{2}$
b) $\frac{x+1}{5}=\frac{3}{2}$

Solve the following equations:
a) $\frac{2 x}{5}=\frac{3}{2}$
b) $\frac{2 x+1}{5}=\frac{3}{2}$

Worked Example

Solve the following equations:
a) $\frac{3 x-4}{5}=\frac{x+4}{3}$
b) $\frac{4}{2-3 x}=\frac{5}{6-2 x}$

Solve the following equations:
a) $\frac{x+4}{7}=\frac{x-4}{3}$
b) $\frac{4}{2+3 x}=\frac{5}{6+2 x}$

3.7 Forming and Solving Equations

In this section you will look at forming and solving equations.

Worked Example

I think of a number. I multiply the number by 6 then subtract 3 . The result is 15 . What was my original number?

I think of a number. I multiply the number by 4 then subtract 5. The result is 27 . What was my original number?
A is x years old.
B is 3 years older than A.
C is twice as old as A.
The sum of the ages of A, B and C is 51 .
What are their ages?
A is x years old.
B is 3 years younger than A.
C is three times as old as A.
The sum of the ages of A, B and C is 57 .
What are their ages?

Worked Example

Find x

Find x

Find x

Find x

Find x

Find x

Worked Example

Find x

Find x

Worked Example

The perimeter of the rectangle is equal to 72 square units. Find x.
$2 x+3$

The perimeter of the rectangle is equal to 72 square units. Find x.

$$
4 x+6
$$

Worked Example

The perimeter of the isosceles triangle is equal to 34 square units. Find x.

$$
x+1
$$

The perimeter of the isosceles triangle is equal to 34 square units. Find x.

$x+1$

Find x and y
Find x and y

$y+8$	$3 y-4$	$3 y-8$	$4 x-3$	$y+12$

Find x

Find x

Fluency Practice

The diagram shows a rectangle. The sides are measured in centimetres.
(a) Explain why $5 x+3=3 x+9$
\qquad
\qquad
(b) Solve $5 x+3=3 x+9$

$$
x=.
$$

(c) Calculate the perimeter of the rectangle.

Fluency Practice

A rectangle is shown below.

(a) Explain why $4 x+1=2 x+9$
\qquad
\qquad
(b) Find the size of x.

$$
\begin{equation*}
x= \tag{cm}
\end{equation*}
$$

(c) Work out the area of the rectangle.

Fluency Practice

Shown below is an isosceles triangle. Each side is measured in centimetres.

(a) Explain why $3 x-1=x+9$
\qquad
\qquad
(b) Solve the equation above.

$$
x=
$$

(c) Calculate the perimeter of the triangle.

Is 100 in the sequence	Is 100 in the sequence
$16,20,24,28,32, \ldots ?$	$26,30,34,38,42, \ldots ?$

Is -100 in the sequence
$42,38,34,30,26 \ldots$...?

Is -100 in the sequence
$32,28,24,20,16, \ldots$?

