KING EDWARD VI

Year 8

2023 Mathematics 2024 Unit 7 Booklet

HGS Maths

Tasks

Name:

Contents

1 Prime Factorisation
1.1 Prime Factors
1.2 Product of Prime Factors
1.3 Using Product of Prime Factors
1.4 Factors from Prime Factors
1.5 Types of Numbers from Prime Factors
1.6 Using Prime Factorisation to Simplify Fractions
1.7 Using Prime Factorisation to Find Roots
1.8 Number of Factors
2 Probability
2.1 Probability Scale
2.2 Probability of Single Events
2.3 Mutually Exclusive Events
2.4 Exhaustive Events
2.5 Expectation
2.6 Relative Frequency
2.7 Probability with Equations
2.8 Listing Outcomes
2.9 Sample Space Diagrams
3 Expanding Single Brackets
3.1 Distributive Law
3.2 Expanding Single Brackets without Powers
3.3 Expanding Single Brackets with Powers
3.4 Expanding Single Brackets with Index Laws
3.5 Expanding and Simplifying Single Brackets

1 Prime Factorisation

1.1 Prime Factors

3 is a prime factor of 36 (True / False)

9 is a prime factor of 36 (True / False)

1 is a prime factor of 36 (True / False)

2 is a prime factor of 36 (True / False)

7 is a prime factor of 36 (True / False)

Intelligent Practice

7 is a prime factor of 12 (True / False)
6 is a prime factor of 12 (True / False)
5 is a prime factor of 12 (True / False)
4 is a prime factor of 12 (True / False)
3 is a prime factor of 12 (True / False)
2 is a prime factor of 12 (True / False)
1 is a prime factor of 12 (True / False)
1 is a prime factor of 27 (True / False)
2 is a prime factor of 27 (True / False)

3 is a prime factor of 27 (True / False)
7 is a prime factor of 27 (True / False)

9 is a prime factor of 27 (True / False)
13 is a prime factor of 27 (True / False)

13 is a prime factor of 26 (True / False)
3 is a prime factor of 26 (True / False)
2 is a prime factor of 26 (True / False)
2 is a prime factor of 25 (True / False)

5 is a prime factor of 25 (True / False)
12.5 is a prime factor of 25 (True / False)

1.2 Product of Prime Factors

Product of Prime Factors	Yes $/$ No ?
9×11	
19×11	
19×11^{2}	
$2 \times 19 \times 11^{2}$	
$2 \times 19 \times 101^{2}$	

Intelligent Practice

Product of Prime Factors	Yes / No ?
$5+7$	
5×7	
4×7	
3×7	
2×7	
1×7	
$1 \times 7 \times 9$	
$2 \times 7 \times 9$	
$2 \times 7 \times 11$	
$2 \times 7+11$	
$2 \times 7 \times 11 \times 21$	
$2 \times 7 \times 11 \times 31$	
$1 \times 2 \times 7 \times 11 \times 31$	
$2 \times 7 \times 7 \times 11 \times 31$	
$2 \times 7^{2} \times 11 \times 31$	
$2^{2} \times 7^{2} \times 11 \times 31$	
$2^{3} \times 7^{2} \times 11 \times 31$	
$2^{3} \times 7^{2} \times 11^{5} \times 31^{4}$	
$1^{3} \times 7^{2} \times 11^{5} \times 31^{4}$	
$2^{3} \times 7^{2} \times 11^{5} \times 41^{4}$	

Worked Example
Express 24 as a product of prime factors

Your Turn

Express 48 as a product of prime factors

Worked Example
Express 40 as a product of prime factors

Your Turn
Express 80 as a product of prime factors

Express $2^{3} \times 3$ as an ordinary number

Express $3^{2} \times 5$ as an ordinary number

Fill in the Gaps

Number	Prime Factor Decomposition	Index Form
6		
	$2 \times 2 \times 3$	
48		
240		
		$2^{4} \times 3^{2} \times 5$
	$2 \times 2 \times 2 \times 3 \times 3$	
216		
		$2^{2} \times 3^{2}$
	$2 \times 2 \times 3 \times 3 \times 5 \times 5$	
		$2 \times 3 \times 5$
420		
12600		

Number	Factor Tree	Product of Prime Factors	Number	Factor Tree	Product of Prime Factors
18		$2 \times 3 \times 3$ 2×3^{2}	20		
42			55		
12			45		
27			36		
60			126		

Fill in the Gaps

Product of Prime

Factors Factor Tree | Product of Prime |
| :---: |
| Factors |

1.3 Using Product of Prime Factors

Worked Example
$84=2^{2} \times 3 \times 7$
How is 840 written as its
product of prime factors?
$84=2^{2} \times 3 \times 7$
How is 504 written as its product of prime factors?
$X=378 \times 12^{4}$
Write X as a product of its prime factors.
$N=242 \times 15^{2}$
Write N as a product of its prime factors.
$D=3^{e} \times 7^{f}$
a) $3 D$
b) $7 D$
c) $27 D$

1.4 Factors from Prime Factors

10 is a factor of $2 \times 5 \times 7 \times 11 \times 17$
(True / False)

10 is a factor of $2 \times 5^{3} \times 7 \times 11 \times 17$
(True / False)

15 is a factor of $2 \times 5^{3} \times 7 \times 11 \times 17$
(True / False)

25 is a factor of $2 \times 5^{3} \times 7 \times 11 \times 17$
(True / False)

22 is a factor of $2 \times 5^{3} \times 7 \times 11 \times 17$
(True / False)

Intelligent Practice

2 is a factor of $2 \times 3 \times 7 \times 13$
3 is a factor of $2 \times 3 \times 7 \times 13$
5 is a factor of $2 \times 3 \times 7 \times 13$
7 is a factor of $2 \times 3 \times 7 \times 13$
4 is a factor of $2 \times 3 \times 7 \times 13$
6 is a factor of $2 \times 3 \times 7 \times 13$
14 is a factor of $2 \times 3 \times 7 \times 13$
21 is a factor of $2 \times 3 \times 7 \times 13$
15 is a factor of $2 \times 3 \times 7 \times 13$

15 is a factor of $2 \times 3 \times 5 \times 7 \times 13$
30 is a factor of $2 \times 3 \times 5 \times 7 \times 13$
(True / False)

Intelligent Practice

9 is a factor of $2 \times 3 \times 5 \times 7 \times 13$
9 is a factor of $2 \times 3^{2} \times 5 \times 7 \times 13$
9 is a factor of $2 \times 3^{2} \times 5 \times 7 \times 23$
4 is a factor of $2 \times 3^{2} \times 5 \times 7 \times 23$
4 is a factor of $2^{3} \times 3^{2} \times 5 \times 7 \times 23$
8 is a factor of $2^{3} \times 3^{2} \times 5 \times 7 \times 23$
16 is a factor of $2^{3} \times 3^{2} \times 5 \times 7 \times 23$
2 is a factor of $2^{3} \times 3^{2} \times 5 \times 7 \times 23$
28 is a factor of $2^{3} \times 3^{2} \times 5 \times 7 \times 23$
28 is a factor of $2^{2} \times 3^{2} \times 5 \times 7 \times 23$
28 is a factor of $2 \times 3^{2} \times 5 \times 7 \times 23$
(True / False)

Fluency Practice

Number	Prime Factor Decomposition	Factor	Yes/No
2520	$2^{3} \times 3^{2} \times 5 \times 7$	$15=3 \times 5$	Yes
2520		8	
2520		25	
2520		45	
1320		22	
1320		45	
1320		88	
20250		12	
20250		27	
20250		15	
20250		75	
15120		16	
15120		21	
15120		70	
15120		18	

1.5 Types of Numbers from Prime Factors

- Square numbers have even powers in their prime factorisation.
- Cube numbers have powers which are multiples of 3 .

Product of Prime Factors	Square Number	Cube Number	Neither
$5^{2} \times 11$			
$5^{2} \times 11^{8}$			
$5^{6} \times 11^{8}$			
$5^{6} \times 11^{9}$			
$5^{6} \times 11^{9} \times 17^{13}$			

Intelligent Practice

Product of Prime Factors	Square Number	Cube Number	Neither
2×3			
3×3			
3^{2}			
3^{3}			
$3^{3} \times 7$			
$3^{3} \times 7^{2}$			
$3^{3} \times 7^{3}$			
$3^{2} \times 7^{2}$			
$5^{2} \times 7^{2}$			
$2 \times 5^{2} \times 7^{2}$			
$2^{2} \times 5^{2} \times 7^{2}$			
$2^{3} \times 5^{2} \times 7^{2}$			
$2^{3} \times 5^{3} \times 7^{3}$			

Intelligent Practice

Product of Prime Factors	Square Number	Cube Number	Neither
$2^{4} \times 5^{4} \times 7^{4}$			
$2^{5} \times 5^{5} \times 7^{5}$			
$2^{6} \times 5^{6} \times 7^{6}$			
$2^{7} \times 5^{7} \times 7^{7}$			
$2^{8} \times 5^{8} \times 7^{8}$			
$2^{9} \times 5^{9} \times 7^{9}$			
$2^{9} \times 5^{9} \times 7^{6}$			
$2^{2} \times 5^{9} \times 7^{6}$			
$2^{3} \times 5^{9} \times 7^{6}$			
$2^{6} \times 5^{18} \times 7^{12}$			
$2^{6} \times 5^{18} \times 7^{12} \times 11$			
$2^{6} \times 5^{18} \times 7^{12} \times 11^{2}$			
$2^{6} \times 5^{18} \times 7^{12} \times 11^{3}$			

Simplify $\frac{693}{1925}$
Simplify $\frac{693}{1155}$

1.7 Using Prime Factorisation to Find Roots

a) Find $\sqrt{784}$
b) Find $\sqrt[3]{216}$
a) Find $\sqrt{324}$
b) Find $\sqrt[3]{512}$

1.8 Number of Factors

To get the number of factors of a number in prime factorised form, add one to each power and times the powers together.

Worked Example

a) How many factors does 36 have?
b) How many factors does 37 have?
c) How many factors does 38 have?

Your Turn

a) How many factors does 72 have?
b) How many factors does 73 have?
c) How many factors does 74 have?

2.1 Probability Scale

- Probability is a numerical measure of how likely or unlikely an event is to occur.
- Probabilities are usually written as fractions, but can be written in any form equivalent to that fraction, e.g., $\frac{3}{4}=0.75=75 \%$
- Probabilities can be anywhere between 0 (impossible) and 1 (certain):

0.35674 Yes / No
1.35674 Yes / No

1
Yes / No

1
$\overline{3}$
Yes / No
$-\frac{1}{3}$
Yes / No

Intelligent Practice

0.3	Yes / No	1	Yes / No
-0.3	Yes / No	2	Yes / No
1.3	Yes / No	-1	Yes / No
0.000003	Yes / No	$\frac{2}{3}$	Yes / No
0.43045783	Yes / No	$1 \frac{2}{3}$	Yes / No
1.43045783	Yes / No	$-\frac{2}{3}$	Yes / No
-0.43045783	Yes / No	$\frac{3}{2}$	Yes / No
$0 . \dot{4}$	Yes / No	$\frac{43}{51}$	Yes / No
0	Yes / No		

Place a probability of $\frac{3}{8}$ on a line, and state how likely it is.

Place a probability of $\frac{6}{8}$ on a line, and state how likely it is.

Describe using impossible, unlikely, even chance, likely or certain the probability that:
a) You will walk to Mars.
b) The day after Monday is Tuesday.
c) You roll a three on a fair die.
d) You flip a tails on a fair coin.

Describe using impossible, unlikely, even chance, likely or certain the probability that:
a) You roll an even number on a fair die.
b) The day after Monday is Wednesday.
c) You roll a number between 1 and 6 on a fair die.
d) You will go to space in your life.

2.2 Probability of Single Events

The probability of an event occurring is defined as:
Probability $=\frac{\text { Number of desired outcomes }}{\text { Number of possible outcomes }}$

$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$
$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$
$\mathrm{P}($ yellow $)=$	P (yellow) $=$

A bag of sweets contains only 4 red sweets, 2 yellow sweets and 4 green sweets.
a) What is the probability of choosing a red sweet?
b) What is the probability of choosing a red or yellow sweet?
c) What is the probability of choosing a mint?

A bag of sweets contains only 8 red sweets, 4 yellow sweets and 8 green sweets.
a) What is the probability of choosing a red sweet?
b) What is the probability of choosing a red or yellow sweet?
c) What is the probability of choosing a mint?

2.3 Mutually Exclusive Events

Mutually exclusive means "cannot happen at the same time".

Examples

- Turning left or turning right (you cannot turn left and right at the same time).
- Going to Liverpool at 9am tomorrow or going to Manchester at 9 am tomorrow (you cannot be in two places at once).

Non-Examples

- Turning left and scratching your head can happen at the same time.
- Kings and hearts, because you can have a king of hearts.

2.4 Exhaustive Events

The probabilities of all possible outcomes add up to 1 .

Castle FC play football matches every Saturday.

The table shows the probability that Castle FC will win or lose.
a) Work out the probability that Castle FC will lose

Win	Lose
$\frac{3}{4}$	

b) Work out the probability that Castle FC will lose

Win	Lose
0.75	

Castle FC play football matches every Saturday.

The table shows the probability that Castle FC will win or lose.
a) Work out the probability that Castle FC will lose

Win	Lose
$\frac{6}{8}$	

b) Work out the probability that Castle FC will win

Win	Lose
	0.75

There are green, red and blue counters in a bag.

The chance of picking a green counter is 0.1.

The chance of picking a red counter is 0.3 .

What is the chance of picking a blue counter?

It is either raining or not raining.
The chance that it rains tomorrow is 0.55 .

What is the chance that it does not rain?

Fluency Practice
These tables show the probabilities on a spinner. In each case, fill in the blank(s).

Red	Blue	Orange	Green
0.32	0.15	0.27	

(8) Red			
Blue			
Orange			
Green			
* For this question, blue and orange			
have the same probability.			

1 Red	Blue	Orange	Green
0.3	0.1	0.2	

(3) Red	Blue	Orange	Green
0.3	0.03	0.1	

5 Red	Blue	Orange	Green
$\frac{3}{10}$	$\frac{1}{10}$		$\frac{3}{10}$

2.5 Expectation

Expectation is the long-run average you would get if a test was repeated many times.

If an event has probability p, the expectation in n trials is $n \times p$.
Expectation is used as an estimate for how many times an event will occur.

Worked Example

The relative frequency of a teacher throwing a pen in the bin is 0.5 . A teacher throws a pen 100 times. How many throws will be successful?

Your Turn

The relative frequency of a teacher throwing a pen in the bin is 0.5 . A teacher throws a pen 1000 times. How many throws will be successful?

Worked Example

If I roll a fair dice 12 times, how many times would you expect it to land on the number 1 ?

Your Turn

If I roll a fair dice 60 times, how many times would you expect it to land on the number 1 ?

2.6 Relative Frequency

In most events, it is difficult to accurately predict the probability of an event happening.

When there is no theory behind the probability of an event happening, we use relative frequency to calculate probabilities.

Because it is often calculated after performing experiments, it is often called experimental probability.

The more trials there are, the more accurate that experimental probability becomes.

2.7 Probability with Equations

Different coloured counters are placed in a bag. The probabilities of each counter is given.

Colour	Red	Blue	Green	Purple
Probability	0.15	$6 x$	$5 x+0.1$	0.2

a) Find the probability of selecting a red counter.
b) You are told there are 24 red counters in the bag. Find how many blue, green and purple counters there are?

Different coloured counters are placed in a bag. The probabilities of each counter is given.

Colour	Red	Blue	Green	Purple
Probability	$5 x-0.1$	0.1	$2 x+0.04$	$3 x+0.16$

a) Find the probability of selecting a red counter.
b) You are told there are 9 blue counters in the bag. Find how many red, green and purple counters there are?

2.8 Listing Outcomes

List all the ways of arranging the letters in the word:
CAT

List all the ways of arranging the letters in the word:
DOG

Worked Example

I flip a coin and then roll a sixsided die. List the possible outcomes.

Your Turn

I flip a coin and then roll a 4sided die. List the possible outcomes.

The first five positive integers are $1,2,3,4,5$. I choose two numbers from this list. Write down all possible combinations of two numbers I can choose.

The four square numbers are $1,4,9,16$. I choose two numbers from this list. Write down all possible combinations of two numbers I can choose.

FINISH

Horse Race

HORSE RACE

1) Who won the race(s)?
2) Who did you expect to win?
3) Do some horses have a higher chance of winning? Why?
4) How many ways can you score a 2 ?
5) How many ways can you score a 12 ?
6) How many ways can you score a 4 ?
7) How many ways can you score a 10 ?
8) How many ways can you score a 7 ?

We can make this easier by using a Sample Space Diagram.

Remember, \quad Probability $=\frac{\text { number of ways outcome can happen }}{\text { total number of possible outcomes }}$
Use this to find:
d) Probability (12) =
e) $\operatorname{Probability}(8)=$
f) $P(4)=$
g) $P(9)=$
h) $P(7)=$
i) $P(1)=$

If you ran the horse race again, which horse would you pick?

Worked Example

Elisa throws a spinner with faces labelled R, G, B and Y and a foursided dice numbered $-1,-2,-3$ and -4 at the same time.

Draw a sample space diagram.

Elisa throws a spinner with faces labelled R, G, B and Y and a foursided dice numbered 2, 4, 6 and 8 at the same time.

Draw a sample space diagram.

Worked Example

Noel throws a four-sided dice and a four-sided dice at the same time and adds up the scores.

Draw a sample space diagram.

Kayleigh throws a four-sided dice numbered 2, 4, 6 and 8 and a four-sided dice at the same time and adds up the scores.

Draw a sample space diagram.

Worked Example

Carolina throws a four-sided dice numbered $1,3,5$ and 7 and a four-sided dice numbered -1, -$2,-3$ and -4 at the same time and multiplies the scores.

Draw a sample space diagram.

Carolina throws a six-sided dice and a four-sided dice numbered $-1,-2,-3$ and -4 at the same time and multiplies the scores.

Draw a sample space diagram.

Paul throws a four-sided dice numbered $2,4,6$ and 8 and a four-sided dice numbered 1, 3, 5 and 7 at the same time and find the difference between the scores.

Draw a sample space diagram.

Kayleigh throws a four-sided dice and a six-sided dice at the same time and find the difference between the scores.

Draw a sample space diagram.

I spin these two spinners then add the numbers together to get a score.
Work out the probability that I get a score of 4 .

I spin these two spinners then add the numbers together to get a score.
Work out the probability that I get a score of 4 .

Fill in the Gaps

Sample Space

A fair four-sided spinner is numbered 1 to 4. The spinner is spun twice, and the two scores added together.

A fair four-sided dice is numbered $2,3,4$ and 5 . The spinner is spun twice, and the two scores added together.

A fair four-sided dice is numbered $1,2,3$ and 4. The spinner is spun twice, and the two scores multiplied together.

A fair four-sided spinner is numbered 2, 3, 5 and 7. The spinner is spun and the difference between the two scores recorded.

Two fair four-sided spinners are spun, and the scores added together. The first spinner is numbered $1,2,3$ and 4 and the second spinner is numbered 3, 5, 7 and 9.

Probability Questions

Find the probability that the total score is 7.

Find the probability that the total score is greater than 4.

Find the probability that the total score is a multiple of 3 .

Find the probability that the total score is 8 .

Find the probability that the total score is less than 7.

Find the probability that the total score is a multiple of 4.

Find the probability that the total score is even.

Find the probability that the total score is greater than 6.

Find the probability that the total score is prime.

Find the probability that the difference is zero.

Find the probability that the difference is odd.

Find the probability that the difference is two or more.

Find the probability that the total score is 10.

3 Expanding Single Brackets

3.1 Distributive Law

The distributive law says that multiplying a number by a group of numbers added together is the same as doing each multiplication separately.

For example: $3 \times(2+4)=3 \times 2+3 \times 4$

So the " 3 " can be "distributed" across the " $2+4$ " into 3 times 2 and 3 times 4.

Definition \quad Characteristics

Examples
Non-Examples

Use the distributive property to calculate:
a) $7 \times(80+3)$
b) $(70+8) \times 3$

Use the distributive property to calculate:
a) $3 \times(80+7)$
b) $(30+8) \times 7$

3.2 Expanding Single Brackets without Powers

Expand:
$\begin{array}{ll}\text { a) } & 2(x-3) \\ \text { b) } & -2(x-3)\end{array}$
a) $2(3-x)$
b) $-2(3-x)$

3.3 Expanding Single Brackets with Powers

Expand:
$\begin{array}{ll}\text { a) } & 2 x(x-3) \\ \text { b) } & -2 x(x-3)\end{array}$

Expand:
a) $2 x(3-x)$
b) $-2 x(3-x)$

3.4 Expanding Single Brackets with Index Laws

Expand and simplify:
a) $a^{3} b c\left(10 b^{2} c^{2}+9 a^{2}\right)$
b) $\quad 4 a^{5} b^{2}\left(3 a^{4} b^{4}-5 b^{2}\right)$

Expand and simplify:
a) $a^{3} b^{5}\left(3 a^{3} b+7 a b^{4} c\right)$
b) $7 x^{5} y^{4}\left(6 x^{2} y+5 x^{4} y\right)$

Worked Example

Expand and simplify:
a) $\quad 4+7(6 x-5)$
b) $8 x+6+7(5 x+9)$

Expand and simplify:
a) $-5+2(4 y-1)$
b) $6 z+3+5(7 z+2)$

Worked Example

Expand and simplify:
a) $2(x-1)+3(x-4)$
b) $2(x-1)-3(x-4)$

Expand and simplify:
a) $2(x-1)+5(x-4)$
b) $2(x-1)-5(x-4)$

Worked Example

Your Turn

Expand and simplify:
a) $2 x(x-1)-3 x(x-4)$
b) $2 x(x-1)-3(x-4)$

Expand and simplify:
a) $2 x(x-1)-5 x(x-4)$
b) $2 x(x-1)-5(x-4)$

