KING EDWARD VI

Year 8

2023

Mathematics

2024

Unit 8 Booklet

Dr Frost Course

Name:

Contents

$1 \quad$ Factorising to a Single Bracket

1.1 Highest Common Factor

1.2 Factorising to a Single Bracket
1.3 Factorising to a Single Bracket with Index Laws
1.4 Finish Factorising

2 Solving Linear Equations 2
2.1 Brackets
2.2 Both Sides
2.3 Variable in the Denominator
2.4 Cross Multiplication
2.5 Forming and Solving Equations

3 Sequences
3.1 Finding the Next Term
3.2 Constant Differences
3.3 Term to Term Rule
3.4 Types of Sequences
3.5 Position to Term Rule
3.6 Generating Sequences
3.7 Linear Sequences
3.8 Patterns
3.9 Fibonacci-Type Sequences
3.10 Is a Term in the Sequence?

1.1 Highest Common Factor

Worked Example

Your Turn

Write the following as a product of factors:
a) $3 a$
b) $6 a$
c) $6 a^{2}$
d) $6 a^{2} b$

Write the following as a product of factors:
a) $2 b$
b) $12 b$
c) $12 b^{2}$
d) $12 a^{2} b^{2}$

Worked Example

Find the highest common factor of:
a) $3 a$ and $5 a$
b) 6 and $6 a$
c) $3 a$ and $6 a$
d) $4 a b^{2}$ and $6 a^{2}$ b

Find the highest common factor of:
a) $2 b$ and $3 b$
b) 6 and $12 b$
c) $6 b$ and $12 b^{2}$
d) $8 a^{2} b$ and $12 a^{2} b^{2}$

1.2 Factorising to a Single Bracket

Factorising means:

To turn an expression into a product of factors.

Year 8 Factorisation

$$
2 x^{2}+4 x z
$$

Factorise

$$
2 x(x+2 z)
$$

Year 9 Factorisation

$$
x^{2}+3 x+2
$$

Factorise

A Level Factorisation
Factorise
$2 x^{3}+3 x^{2}-11 x-6 \xrightarrow{\text { Factorse }}(2 x+1)(x-2)(x+3)$

Factorising is the reverse of expanding. When you have a sum of terms, just identify the common factor. i.e. Find the largest expression each of your terms is divisible by.

Your Turn

a) Factorise $12 x-20$
b) Factorise $12 x-20 y$
c) Factorise $12 x^{3}-20$

Your Turn

a) Factorise $12 x^{2}-20 x$
b) Factorise $12 x^{2}-20 x y$
c) Factorise $12 x^{2} y-20 x y^{2}$

Fill in the Gaps

Expanded Expression	HCF of Numbers	HCF of Variables	Factorised Expression
$7 x+14$	7		$7(x+2)$
$20+30 a$	10		$10(\square+\square)$
$15 b-5$	5		
$12 x+15$			
$30 a-12 b$			
$8 c d+d e$		d	$d(\square+\square)$
$10 a+a b$			
$x^{2}-5 x$		x	
$6 x^{2}+x y$			
$4 a b+8 b$	4	b	$4 b(\square+\square)$
$10 c d-25 d e$	5	d	
$4 x^{2}+2 x$			
$14 x y-21 x^{2}$			
$6 x+3-9 y$			
$5 x^{2}-10 x y+20 x$			
$24 a^{2} b+16 a b c$			
$\square-18 x y z$			$\int(x-3 z)$
$12 x+\square-16 y z$			$4(\square+2 y-\square)$
$35 a^{2} b^{2}+\square$			$\left(5 a^{2} b+2 c d\right)$

1.3 Factorising to a Single Bracket with Index Laws

Factorise:
a) $x^{4} y^{2}-x^{3} y^{5}$
b) $10 x^{7} y^{4}-25 x^{3} y^{2}$

Factorise:
a) $x^{2} y^{5}-x y^{3}$
b) $20 e^{5} f^{2}-12 e^{2} f$

1.4 Finish Factorising

Finish factorising:
a) $4(10 x+50)$
b) $4(30 x+50)$

Finish factorising:
a) $4(5 x+15)$
b) $4(25 x+15)$

2.1 Brackets

To solve an equation means that we find the value of the variable(s).

Strategy: To get x on its own on one side of the equation, we gradually need to 'claw away' the things surrounding it.

Note: In algebra, we tend to give our answers as fractions rather than decimals (unless asked). And never recurring decimals. Don't round also (unless asked).

Solve the following equations:
a) $4(x+8)=50$
b) $4(2 x+8)=50$

Solve the following equations:
a) $6(x-8)=50$
b) $6(3 x-8)=50$

Worked Example

Solve the following equations:
a) $-4(2 x+8)=50$
b) $-4(2 x-8)=50$

Solve the following equations:
a) $-6(3 x+8)=50$
b) $-6(3 x-8)=50$

Worked Example

Solve the following equations:
a) $8(x+3)+3(2 x+6)=84$
b) $8(x+3)-3(2 x-6)=84$

Solve the following equations:
a) $3(x-3)+4(2 x-6)=110$
b) $3(x-3)-4(2 x-6)=110$

2.2 Both Sides

- Collect the variable terms (i.e. the terms involving x) on one side of the equation, and the 'constants' (i.e. the individual numbers) on the other side.
- Collect the variable terms on the side of the equation where there's more of them (and move constant terms to other side).

Balancing

- We eliminate the variable from the side with the smaller number of the variable.
- We eliminate the variable by applying the inverse to both sides.

Which side do you eliminate the variable from?
How would you balance both sides?

- $3 x+4=2 x+6$
- $2 x+4=3 x+6$
- $2 x-4=3 x-6$
- $4-2 x=3 x-6$
- $4-2 x=6-3 x$

Solve the following equations:
a) $5 x+7=2 x+31$
b) $2 x-23=7-x$

Solve the following equations:
a) $5 x+7=3 x+23$
b) $2 x-23=12-3 x$

Solve the following equations:
a) $17 x=10 x+21$
b) $10 x=17 x+21$

Solve the following equations:
a) $10 x=13 x-21$
b) $13 x=10 x-21$

Solve the following equations:
a) $3(x+2)=2(x+3)$
b) $3(x+5)-7=2(x+2)$

Solve the following equations:
a) $9(x-3)=4(x+7)$
b) $7(x+6)-7=4(x+2)$

Solve the following equation:
$3(2 w-1)-4=4(w+2)+1$

Solve the following equation:
$2(2 p-2)-4=2(p+3)-3$

2.3 Variable in the Denominator

Worked Example

Solve the following equation:
a) $\frac{3}{x}+2=6$
b) $\frac{3}{x+2}=6$

Solve the following equation:
a) $\frac{15}{x}-2=6$
b) $\frac{15}{x-2}=6$

Solve the following equation:
$3 x+6$
$\frac{3 x+6}{2}=x+3$

Solve the following equation:
$\frac{9 x-27}{4}=x+7$

Solve the following equation: $\frac{3 x+6}{x+3}=2$

Solve the following equation:
$7 x-21$
$\frac{x-7}{x+7}=2$

2.4 Cross Multiplication

You can cross multiply to solve equations which are in the form:
$\frac{a}{b}=\frac{c}{d}$

Are the following equations ready to be cross multiplied?

- $\frac{2 x}{3}=\frac{5}{9}$
- $\frac{2 x}{3}+1=\frac{5}{9}$
- $\frac{2 x}{3}+1=5$
- $\frac{2 x+1}{3}=5$
- $\frac{3}{2 x+1}=\frac{5}{x}$

Worked Example

Solve the following equations:
a) $\frac{x}{5}=\frac{3}{2}$
b) $\frac{x+1}{5}=\frac{3}{2}$

Solve the following equations:
a) $\frac{2 x}{5}=\frac{3}{2}$
b) $\frac{2 x+1}{5}=\frac{3}{2}$

Worked Example

Solve the following equations:
a) $\frac{3 x-4}{5}=\frac{x+4}{3}$
b) $\frac{4}{2-3 x}=\frac{5}{6-2 x}$

Solve the following equations:
a) $\frac{x+4}{7}=\frac{x-4}{3}$
b) $\frac{4}{2+3 x}=\frac{5}{6+2 x}$

2.5 Forming and Solving Equations

Worked Example

I think of a number. I multiply the number by 6 then subtract 3. The result is 15 . What was my original number?

I think of a number. I multiply the number by 4 then subtract 5. The result is 27 . What was my original number?
A is x years old.
B is 3 years older than A.
C is twice as old as A.
The sum of the ages of A, B and C is 51 .
What are their ages?
A is x years old.
B is 3 years younger than A.
C is three times as old as A.
The sum of the ages of A, B and C is 57 .
What are their ages?

Worked Example

Find x

Find x

Find x

Find x

Find x

Find x

Worked Example

The perimeter of the rectangle is equal to 72 square units. Find x.
$2 x+3$

The perimeter of the rectangle is equal to 72 square units. Find x.

$$
4 x+6
$$

Worked Example

The perimeter of the isosceles triangle is equal to 34 square units. Find x.

$$
x+1
$$

The perimeter of the isosceles triangle is equal to 34 square units. Find x.

$x+1$

Find x and y
Find x and y

$y+8$	$3 y-4$	$3 y-8$	$4 x-3$	$y+12$

Find x

Find x

Worked Example

A triangle is shown in the diagram below.

All the measurements are in centimetres.
The area of the triangle is $28 \mathrm{~cm}^{2}$.
Find the value of x.

The diagram below shows a triangle.

All the measurements are in centimetres.
The area of the triangle is $9 \mathrm{~cm}^{2}$.
Find the value of x.

Worked Example

Your Turn

A is shown in the diagram below.

All the measurements are in centimetres. The area of the trapezium is $42 \mathrm{~cm}^{2}$.

Find the value of x.

The diagram below shows a trapezium.

All the measurements are in centimetres. The area of the trapezium is $34 \mathrm{~cm}^{2}$.

Find the value of x.

The diagram shows a rectangle and a triangle.

All the measurements are in centimetres.
The area of the rectangle is half the area of the triangle.
Work out the value of x.

The diagram shows a rectangle and a triangle.

All the measurements are in centimetres.
The area of the rectangle is twice the area of the triangle.
Work out the value of x.

3.1 Finding the Next Term

A sequence is simply an ordered list of items (possibly infinitely long), usually with some kind of pattern.

Each item in a sequence is called a term.

A sequence starts with:
24, 29, 34, 39 ...
Work out the next 3 terms.

A sequence starts with: 41, 36, 31, 26 ...
Work out the next 3 terms.

A sequence starts with: 2048, 512, 128, 32 ... Work out the next 3 terms.

A sequence starts with:
7, 42, 252, 1512 ...
Work out the next 3 terms.

A sequence starts with:
5, 9, 14, 23, 37 ...
Work out the next 3 terms.

A sequence starts with: 6, 10, 16, 26, 42 ... Work out the next 3 terms.

3.2 Constant Differences

Worked Example

What is the constant difference in the sequence?

The $10^{\text {th }}$ term is 52 and the $18^{\text {th }}$ term is 76

What is the constant difference in the sequence?

The $10^{\text {th }}$ term is 52 and the $22^{\text {nd }}$ term is 76

Worked Example

What is the constant difference in the sequence?

The $10^{\text {th }}$ term is 76 and the $18^{\text {th }}$ term is 52

What is the constant difference in the sequence?

The $10^{\text {th }}$ term is 76 and the $22^{\text {nd }}$ term is 52

3.3 Term to Term Rule

Some sequences we can generate by stating a rule to say how to generate the next term given the previous term(s).

$$
3,7,11,15,19 \ldots
$$

What is the rule, in words, for this sequence?
We add 4 each time.

The problem is that this also describes many other sequences.
Can you think of another sequence that adds 4 every time?
We need to both state our rule and our starting term.

A better rule for this sequence would be:
Start with 3, add 4 each time.

Fill in the Gaps

First Five Terms of Sequence				Term-to-Term Rule
6	10	14		
5	3	1		
3		5		
1	3	9		
1.5	1.7		2.1	
	7	2	-3	
80	40	20		
	1		$1 \frac{1}{2}$	
8				add 3
2				add 7
	4			subtract 2
		2.5		add 0.5
			5	subtract 2.5
	2			multiply by 2
100				divide by 10
-4				subtract 3

3.4 Types of Sequences

Arithmetic/Linear: The terms' first difference is constant. e.g., $1,3,5,7, \ldots$

Geometric: The terms found by multiplying by the same number each time.
e.g., $2,4,8,16, \ldots$

Quadratic: The terms' second difference is constant.
e.g., $2,5,10,17, \ldots$

Fibonacci-Type: The terms found by adding the previous two terms together.
e.g., $1,3,4,7,11, \ldots$

Frayer Model - Linear Sequences

Definition	Characteristics

Examples
Non-Examples

3.5 Position to Term Rule

It is sometimes more helpful to be able to generate a term of a formula based on its position in the sequence.

We could use it to say find the $300^{\text {th }}$ term of a sequence without having to write all the terms out!

We use \boldsymbol{n} to mean the position in the sequence. So, if we want the $3^{\text {rd }}$ term, $n=3$.

The position to term rule is also called the $\boldsymbol{n}^{\text {th }}$ term rule.
This year, we will only look at how to work out the position to term rule for linear sequences. You will learn how to find the position to term rule for geometric and quadratic sequences in year 11.

Worked Example

Find the $n^{\text {th }}$ term rule:
$8,15,22,29,36, \ldots$
$-6,1,8,15,22, \ldots$
$36,29,22,15,8, \ldots$

Find the $n^{\text {th }}$ term rule:
$11,18,25,32,39, \ldots$
$-3,4,11,18,25, \ldots$
$39,32,25,18,11, \ldots$

Find the $n^{\text {th }}$ term rule:
$\frac{1}{2}, \frac{7}{10}, \frac{9}{10}, 1 \frac{1}{10}, \ldots$

Find the $n^{\text {th }}$ term rule:
$\frac{1}{3}, \frac{7}{9}, 1 \frac{2}{9}, 1 \frac{2}{3}, \ldots$

Find the $n^{\text {th }}$ term rule:

Find the $n^{\text {th }}$ term rule:
$\frac{6}{13}, \frac{8}{20}, \frac{10}{27}, \frac{12}{34}, \ldots$

3.6 Generating Linear Sequences

To generate a term of a linear sequence, substitute n (the position number) into the $n^{\text {th }}$ term rule.

Worked Example

Generate the first 5 terms of
a) $5 n+3$
b) $-3-5 n$

Your Turn
Generate the first 5 terms of
a) $6 n-3$
b) $3-6 n$

Worked Example

1) The nth term of a sequence is $5(-6 n+3)$
Work out the 50th term of the sequence.
2) The nth term of a sequence is $4 n^{2}+6 n-3$
Work out the 50th term of the sequence.

Your Turn

1) The nth term of a sequence is $4(-3 n-6)$ Work out the 50th term of the sequence.
2) The nth term of a sequence is $2 n^{2}-4 n+1$
Work out the 50th term of the sequence.

3.7 Linear Sequences

Fill in the Gaps

Fill in the Gaps

Fill in the Gaps
Work out the missing terms in each sequence, and then the $n^{\text {th }}$ term.
All sequences are decreasing arithmetic sequences.

	$1^{\text {st }}$ term	$2^{\text {nd }}$ term	$3{ }^{\text {rd }}$ term	$4^{\text {th }}$ term	$5^{\text {th }}$ term	$6^{\text {th }}$ term	$7^{\text {th }}$ term	$8^{\text {th }}$ term	9th term	$10^{\text {th }}$ term	$n^{\text {th }}$ term
21		8		4							
Q2	15		9		3				-9		
23			11			-4					
04	23						11				
5		44				16					
26						82		74			
	14						-4				
18	-1			-7							
		-5				-21		-29			
			-12						-42		

Fill in the Gaps
Work out the missing terms in each sequence, and then the $n^{\text {th }}$ term.
All sequences are decreasing arithmetic sequences.

E E. E.										
E ¢ ¢ ¢			0							
E ¢ E										
				$\stackrel{m}{\mathrm{~N}}$	مٌ				${ }_{\infty}^{\infty}$	$\begin{aligned} & n \\ & \underset{\sim}{n} \\ & \hline 1 \end{aligned}$
Et						$\begin{aligned} & \text { n } \\ & \mathbf{N} \end{aligned}$				
¢		0	${ }_{\sim}^{\infty}$		$\stackrel{7}{7}$		$\underset{\underset{1}{+}}{\substack{1 \\ \hline}}$	$\underset{\oplus}{+}$		
¢	$\stackrel{N}{\top}$			∞						$\underset{\sim}{\sim}$
E ¢ ¢ en										
E ¢ ¢ N	$\stackrel{\infty}{\square}$					$\hat{\mathrm{N}}$	$\stackrel{\Gamma}{m}$			
		in						7	+i	
	$\underset{\sim}{\underset{\sigma}{2}}$	$\stackrel{N}{\underset{O}{0}}$	$\stackrel{m}{0}$	$\underset{O}{*}$	$\stackrel{0}{0}$	$\frac{\ominus}{0}$	$\stackrel{N}{\theta}$	$\stackrel{\infty}{\underset{0}{\infty}}$	$\frac{9}{0}$	$\stackrel{\rightharpoonup}{\mathrm{O}}$

				7						
									\%	5
$\stackrel{\square}{\square}$										
	\%									
						$\stackrel{\infty}{\infty}$				
	へ									
		\checkmark			\pm					
						-			\%	禹

Fill in the Gaps

3.8 Patterns

Worked Example

Pattern 1 Pattern 2 Pattern 3

\square

a) Draw the next pattern.
b) How many squares are in the $n^{\text {th }}$ pattern?
c) How many squares in the $50^{\text {th }}$ pattern?
d) Which pattern will use 145 squares?

Your Turn

Pattern 1 Pattern 2 Pattern 3

\square

a) Draw the next pattern.
b) How many squares are in the $n^{\text {th }}$ pattern?
c) How many squares in the $50^{\text {th }}$ pattern?
d) Which pattern will use 154 squares?

Worked Example

Your Turn

Find the next three terms in these Fibonacci-type sequences:
$2,7,9,16, \ldots$
$\frac{2}{3}, \frac{5}{6}, \frac{3}{2}, \frac{7}{3}, \ldots$
$3 a+4 b, a+7 b, 4 a+11 b, \ldots$

Find the next three terms in these Fibonacci-type sequences:
$3,11,14,25, \ldots$
351929
$\frac{-}{4}, \frac{1}{6}, \frac{1}{12}, \overline{12}, .$.
$3 a-4 b, 2 a-5 b, 5 a-9 b, \ldots$

3.10 Is a Term in the Sequence?

Is 100 in the sequence	Is 100 in the sequence
$16,20,24,28,32, \ldots ?$	$26,30,34,38,42, \ldots ?$

Is -100 in the sequence
$42,38,34,30,26 \ldots$...?

Is -100 in the sequence
$32,28,24,20,16, \ldots$?

