

Year 8 2023 Mathematics 2024 Unit 8 Booklet

HGS Maths

Dr Frost Course

Name:

Class:

Contents

- 1 Factorising to a Single Bracket
- 1.1 Highest Common Factor
- **1.2** Factorising to a Single Bracket
- **1.3** Factorising to a Single Bracket with Index Laws
- 1.4 **Finish Factorising**
- 2 Solving Linear Equations 2
- 2.1 Brackets
- 2.2 Both Sides
- 2.3 Variable in the Denominator
- 2.4 Cross Multiplication
- 2.5 Forming and Solving Equations

3 <u>Sequences</u>

- 3.1 Finding the Next Term
- 3.2 Constant Differences
- 3.3 <u>Term to Term Rule</u>
- 3.4 **Types of Sequences**
- 3.5 **Position to Term Rule**
- 3.6 Generating Sequences
- 3.7 Linear Sequences
- 3.8 Patterns
- 3.9 Fibonacci-Type Sequences
- 3.10 Is a Term in the Sequence?

1 Factorising to a Single Bracket

1.1 Highest Common Factor

	Wo	rke	d Ex	am	ple	9					Yo	ur	Tu	rn			
of a) b) c)	factors 3a 6a 6a ² 6a ² t	:	owing	as a	a pro	odu	ct	of a) b) c)	fact 27 17 17	tors b	:	ow	ing	as a	ı pro	odu	ct

	W	ork	ed E	Exan	nplo	е					Yo	ur	Tu	rn			
of: a) b) c)	За 6 а За	e high and 5 nd 6 and 6 b ² an	5a 1 5a	comm 2 ² b	ion f	acto	or	of a) b) c)	2 6 6	b ar anc b ar	nigh nd 3 1 12 nd 1 9 an	b b $2b^2$	2		on f	acto)r

Factorising is the **reverse of expanding**.

When you have a sum of terms, just **identify the common factor**. i.e. Find the largest expression each of your terms is divisible by.

	١	No	rke	ed	Ex	am	ple	е				Yo	ur	Tu	rn		
b)	Fa	cto	rise	12	x +	18 18 + 1	y		a) b) c)	Fa	cto cto cto	rise	12:	x —	20	y)	

Work	ed Exa	mple				Yo	ur	Tu	rn			
Factorise Factorise Factorise	$12x^2 +$	18 <i>xy</i>	,	b)	Facto Facto Facto	rise	122	c ² -	- 20)xy	, ²	

Fill in the Gaps

Expanded Expression	HCF of Numbers	HCF of Variables	Factorised Expression
7x + 14	7		7(x+2)
20 + 30a	10		10(+)
15b - 5	5		
12x + 15			
30a - 12b			
8cd + de		d	
10a + ab			
$x^2 - 5x$		x	
$6x^2 + xy$			
4ab + 8b	4	b	4 <i>b</i> (+)
10cd-25de	5	d	
$4x^2 + 2x$			
$14xy - 21x^2$			
6x + 3 - 9y			
$5x^2 - 10xy + 20x$			
$24a^2b + 16abc$			
18 <i>xyz</i>			(x-3z)
12x + -16yz			$4(\bigcirc +2y-\bigcirc)$
35 <i>a</i> ² <i>b</i> ² +			$(5a^2b + 2cd)$

1.3 Factorising to a Single Bracket with Index Laws

	Worke	ed Exa	ampl	е				Yo	ur	Tu	rn		
Fac a) b)	torise: $x^4y^2 - 10x^7y$	$-x^3y^5$	5 $5x^3v^2$		Fa a)	cto	rise x ² y 20e	e: ,5 _ ,5 f	- x	y ³ - 12	ρ^2	f	
	ion y							· J		16		J	

1.4 Finish Factorising

	Wo	ork	ed	Exa	am	ple	9			Yo	ur	Tu	rn		
Fini a)	ish fa 4(1								n fa 4(5						
	4(:								4(2						

2 Solving Linear Equations **2**

2.1 Brackets

To solve an equation means that we find the value of the variable(s).

Strategy: To get x on its own on one side of the equation, we gradually need to 'claw away' the things surrounding it.

Note: In algebra, we tend to give our answers as fractions rather than decimals (unless asked). And never recurring decimals. Don't round also (unless asked).

	١	No	rke	ed	Exa	am	ple	е					Yo	ur	Tu	rn			
a)	4	the (<i>x</i> - (2 <i>x</i>	+ 8)) =	50	equ 0	atic	ons:		a)	6	the (<i>x</i> - (3 <i>x</i>	- 8)) =	50		atic	ons:	

Worked Example	Your Turn
Solve the following equations: a) $-4(2x + 8) = 50$ b) $-4(2x - 8) = 50$	Solve the following equations: a) $-6(3x + 8) = 50$ b) $-6(3x - 8) = 50$

Worked	d Example	Your Turn
	ing equations: 3(2x + 6) = 84 3(2x - 6) = 84	Solve the following equations: a) $3(x-3) + 4(2x-6) = 110$ b) $3(x-3) - 4(2x-6) = 110$

2.2 Both Sides

- Collect the variable terms (i.e. the terms involving x) on one side of the equation, and the 'constants' (i.e. the individual numbers) on the other side.
- Collect the variable terms on the side of the equation where there's more of them (and move constant terms to other side).

Balancing

- We eliminate the variable from the side with the smaller number of the variable.
- We eliminate the variable by applying the inverse to both sides.

Which side do you eliminate the variable from? How would you balance both sides?

- 3x + 4 = 2x + 6
- 2x + 4 = 3x + 6
- 2x 4 = 3x 6
- 4 2x = 3x 6
- 4 2x = 6 3x

	١	No	rke	ed	Ex	am	plo	e					Yo	ur	Tu	rn		
a)	5.	<i>x</i> +	foll 7 = 23	= 2:	x +		atic	ons:		a)	5	the $x + x - x$	7 =	= 3:	x +	23	ons:	

	١	No	rke	ed	Exa	am	ple	e					Yo	ur	Tu	rn			
a)	1	7x	foll = 1 = 1	0 <i>x</i>	+ 2		atic	ons:		a)	1	the $0x = 3x$	= 1	3 <i>x</i>	- 2	1	atic	ons:	

	Worked Example								Your Turn										
a)	Solve the following equations: a) $3(x+2) = 2(x+3)$ b) $3(x+5) - 7 = 2(x+2)$									Solve the following equations: a) $9(x-3) = 4(x+7)$ b) $7(x+6) - 7 = 4(x+2)$									

Worked Example	Your Turn									
Solve the following equation: 3(2w - 1) - 4 = 4(w + 2) + 1	Solve the following equation: 2(2p-2) - 4 = 2(p+3) - 3									

2.3 Variable in the Denominator

Worked Example	Your Turn								
Solve the following equation: a) $\frac{3}{x} + 2 = 6$	Solve the following equation: a) $\frac{15}{x} - 2 = 6$								
b) $\frac{3}{x+2} = 6$	b) $\frac{15}{x-2} = 6$								

Worked Example	Your Turn									
Solve the following equation: $\frac{3x+6}{2} = x+3$	Solve the following equation: $9x - 27 = x \pm 7$									
$\frac{-1}{2} = x + 3$	$\frac{9x - 27}{4} = x + 7$									

Worked Example	Your Turn
Solve the following equation $\frac{3x+6}{x+3} = 2$	Solve the following equation: $\frac{7x - 21}{x + 7} = 2$

2.4 Cross Multiplication

You can cross multiply to solve equations which are in the form: $\frac{a}{b} = \frac{c}{d}$

Are the following equations ready to be cross multiplied?

- $\bullet \quad \frac{2x}{3} = \frac{5}{9}$
- $\frac{2x}{3} + 1 = \frac{5}{9}$
- $\frac{2x}{3} + 1 = 5$
- $\bullet \quad \frac{2x+1}{3} = 5$

$$\bullet \quad \frac{3}{2x+1} = \frac{5}{x}$$

Worked Example	Your Turn								
Solve the following equations: a) $\frac{x}{5} = \frac{3}{2}$	Solve the following equations: a) $\frac{2x}{5} = \frac{3}{2}$								
b) $\frac{x+1}{5} = \frac{3}{2}$	b) $\frac{2x+1}{5} = \frac{3}{2}$								

	Wo	Your Turn														
	ve the $\frac{3x-4}{5}$	Solve the following equations: a) $\frac{x+4}{7} = \frac{x-4}{3}$														
b) $\frac{4}{2-3x} = \frac{5}{6-2x}$								b) $\frac{4}{2+3x} = \frac{5}{6+2x}$								

2.5 Forming and Solving Equations

Worked E	Your Turn										
I think of a numbe the number by 6 t 3. The result is 15 original number?	I think of a number. I multiply the number by 4 then subtract 5. The result is 27. What was my original number?										

Worked Example									Your Turn								
A is x years old. B is 3 years older than A. C is twice as old as A. The sum of the ages of A, B and C is 51. What are their ages?							 A is x years old. B is 3 years younger than A. C is three times as old as A. The sum of the ages of A, B and C is 57. What are their ages? 									d	

Worked Example	Your Turn						
A triangle is shown in the diagram below.	The diagram below shows a triangle.						
$\int_{dx-7} \int_{dx-7} \int$	All the measurements are in centimetres. The area of the triangle is 9 cm^2 . Find the value of x .						

Worked Example

Your Turn

The diagram shows a rectangle and a triangle.

All the measurements are in centimetres.

The area of the rectangle is half the area of the triangle.

Work out the value of x.

The diagram shows a rectangle and a triangle.

All the measurements are in centimetres.

The area of the rectangle is twice the area of the triangle. Work out the value of $\boldsymbol{x}.$

3 Sequences

3.1 Finding the Next Term

A **sequence** is simply an ordered list of items (possibly infinitely long), usually with some kind of pattern.

Each item in a sequence is called a **term**.

Worked Example	Your Turn								
A sequence starts with: 24, 29, 34, 39 Work out the next 3 terms.	A sequence starts with: 41, 36, 31, 26 Work out the next 3 terms.								

Worked Example							Your Turn											
A sequence starts with: 2048, 512, 128, 32 Work out the next 3 terms.								A sequence starts with: 7, 42, 252, 1512 Work out the next 3 terms.										

Worked Example	Your Turn								
A sequence starts with: 5, 9, 14, 23, 37 Work out the next 3 terms.	A sequence starts with: 6, 10, 16, 26, 42 Work out the next 3 terms.								

3.2 Constant Differences

Worked Example	Your Turn						
What is the constant difference in the sequence?	What is the constant difference in the sequence?						
The 10^{th} term is 52 and the 18^{th} term is 76	The 10^{th} term is 52 and the 22^{nd} term is 76						

Worked E	xample	Your Turn						
What is the const in the sequence?	ant difference	What is the constant difference in the sequence?						
The 10 th term is 7 term is 52	'6 and the $18^{ ext{th}}$	The 10^{th} term is 76 and the 22^{nd} term is 52						

3.3 Term to Term Rule

Some sequences we can generate by stating a rule to say how to generate the next term given the previous term(s).

3, 7, 11, 15, 19 ...

What is the rule, in words, for this sequence? **We add 4 each time.**

The problem is that this also describes many other sequences. Can you think of another sequence that adds 4 every time?

We need to both state our **rule** and our **starting term**.

A better rule for this sequence would be: Start with 3, add 4 each time.

Fill in the Gaps

Fir	st Five	Terms of	Sequence	Term-to-Term Rule
6	10	14		
5	3	1		
3		5		
1	3	9		
1.5	1.7		2.1	
	7	2	-3	
80	40	20		
	1		$1\frac{1}{2}$	
8				add 3
2				add 7
	4			subtract 2
		2.5		add 0.5
			5	subtract 2.5
	2			multiply by 2
100				divide by 10
-4				subtract 3

3.4 Types of Sequences

Arithmetic/Linear: The terms' first difference is constant. e.g., 1, 3, 5, 7, ...

Geometric: The terms found by multiplying by the same number each time. e.g., 2, 4, 8, 16, ...

Quadratic: The terms' second difference is constant. e.g., 2, 5, 10, 17, ...

Fibonacci-Type: The terms found by adding the previous two terms together. e.g., 1, 3, 4, 7, 11, ...

Frayer Model – Linear Sequences						
Definition	Characteristics					
Examples	<u>Non-Examples</u>					

3.5 Position to Term Rule

It is sometimes more helpful to be able to generate a term of a formula based on its position in the sequence.

We could use it to say find the 300th term of a sequence without having to write all the terms out!

We use n to mean the **position in the sequence**. So, if we want the 3^{rd} term, n = 3.

The **position to term rule** is also called the n^{th} term rule.

This year, we will only look at how to work out the position to term rule for linear sequences. You will learn how to find the position to term rule for geometric and quadratic sequences in year 11.

Worked Example	Your Turn							
Find the n^{th} term rule:	Find the n^{th} term rule:							
8, 15, 22, 29, 36,	11, 18, 25, 32, 39,							
-6, 1, 8, 15, 22,	-3, 4, 11, 18, 25,							
36, 29, 22, 15, 8,	39, 32, 25, 18, 11,							

Worked Example	Your Turn							
Find the n^{th} term rule:	Find the n^{th} term rule:							
$\frac{1}{2}, \frac{7}{10}, \frac{9}{10}, 1\frac{1}{10}, \dots$	$\frac{1}{3}, \frac{7}{9}, 1\frac{2}{9}, 1\frac{2}{3}, \dots$							

Worked Example	Your Turn
Find the n^{th} term rule:	Find the n^{th} term rule:
$\frac{5}{12}, \frac{7}{19}, \frac{9}{26}, \frac{11}{33}, \dots$	$\frac{6}{13}, \frac{8}{20}, \frac{10}{27}, \frac{12}{34}, \dots$

3.6 Generating Linear Sequences

To generate a term of a linear sequence, substitute n (the position number) into the n^{th} term rule.

	Worked Example										Your Turn									
a)	5	n +		e firs	st 5	teri	ms (of		a)	ener 61 3	n —		e firs	st 5	terı	ns (of		

		Wo	rke	ed	Exa	am	ple	e					Yo	ur	Tu	rn			
1)	is W	ne <i>n</i> 5(- /ork ne se	-6 <i>n</i> out	+ 3 the	3) e 50		•			1)	is W	4(-	-3 <i>n</i> out	— (: the	6) e 50		-	enc n of	
2) The <i>n</i> th term of a sequence is $4n^2 + 6n - 3$ Work out the 50th term of the sequence.									2) The <i>n</i> th term of a sequence is $2n^2 - 4n + 1$ Work out the 50th term of the sequence.										

3.7 Linear Sequences

Fill in the Gaps

		Firs	t 5 te	rms		Term-to-term rule	0 th term	10 th term	Sum of first 5 terms	<i>n</i> th term rule
a.	5	8								
b.	5		9							
c.	5			8						
d.	5					Add 6				
e.	5						-2			
f.	5	3								
g.	10					Subtract 3				
h.	10						15			
i.	10							19		
j.		10			22					
k.			10				16			
I.				10	22					
m.						Add 3	4			
n.						Add 3		33		
о.						Add 3			30	
p.							6	26		
q.							26	6		
r.					21			36		
s.							2		25	
t.								40	60	

Fill in the Gaps										
n^{th} term										
10 th term										
9 th term		6-								-42
8 th term						74			-29	
7 th term				11			-4			
6 th term			-4		16	82			-21	
5 th term		3								
4 th term	4							-7		
3 rd term		6	11							-12
2 nd term	ω				44				-5	
1 st term		15		23			14	-1		
	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	6 0	Q10

then the n^{th} tarm τ \$ C 4 t ç ξ Morb out the

	1 st term	2 nd term	3 rd term	4 th term	5 th term	6 th term	7 th term	8 th term	9 th term	10 th term	n^{th} term
Q11		1.8		1.2							
Q12	2.9				0.5						
Q13					3.8					0.3	
Q14				9.8			2.3				
Q15					4.1		1.5				
Q16		2.7				2.5					
Q17		3.1			-4.4						
Q18	-4				-6.4						
Q19	-0.4						-8.8				
Q20				-7.2			-13.5				
]		

Fill in the Gaps

Work out the missing terms in each sequence, and then the n^{th} term. All sequences are decreasing arithmetic sequences.

				Fi	ll in	the	Gal	ps				
29th term								66				-67.5
10th term						52	26	28			-20	-20
1st term					2		-1				7	
term to term rule					+ 6	+ 6						
nth term rule		4n + 3		5n - 3					8 - 2n			
First 4 terms	5, 9, 13, 17,		8, 13, 18, 23,							7, 6, 5, 4,		
ď	Ŧ	3	m	4	'n	9	2	00	თ	10	11	12

3.8 Patterns

								Yo	ur	Tu	rn						
					F	Patte	ern 1	P	atte	rn 2	Ρ	Patte	rn 3				
								[1	₽	H	71		-			
a) b) c) d)	Ho Ho	w wc	mar mar	e nez ny so ny so atte	qua qua	res res	are in t	he S	50 th	pat	tter	n?	?				

3.9 Fibonacci-Type Sequences

Worked Example	Your Turn								
Find the next three terms in these Fibonacci-type sequences:	Find the next three terms in these Fibonacci-type sequences:								
2, 7, 9, 16,	3, 11, 14, 25,								
$\frac{2}{3}, \frac{5}{6}, \frac{3}{2}, \frac{7}{3}, \dots$	$\frac{3}{4}, \frac{5}{6}, \frac{19}{12}, \frac{29}{12}, \dots$								
$3a + 4b, a + 7b, 4a + 11b, \dots$	$3a - 4b, 2a - 5b, 5a - 9b, \dots$								

3.10 Is a Term in the Sequence?

Worked Example	Your Turn
Is 100 in the sequence	Is 100 in the sequence
16, 20, 24, 28, 32,?	26, 30, 34, 38, 42,?

Worked Example	Your Turn
Is -100 in the sequence	Is -100 in the sequence
42, 38, 34, 30, 26?	32, 28, 24, 20, 16,?