Mathematics UNIT 1

Reasoning with Number

Name:

Class:

Contents

How to use booklets:

You will write in a printed booklet in lessons as directed by your teacher. An online version is available via the QR code.

You can also access and download this booklet from the Maths section of the school website or your year group team. The PDF version will allow you to click on any links to other resources so we highly recommend you do this.

1.1 Number

Fraction Arithmetic pg 2
Prime Factorisation, HCF and LCM pg 8
Standard Index Form (SIF) pg 28
Types of Number/Surds pg 65

1.2 Percentages

FDP and Percentage Change pg 83
Reverse Percentages pg 93
Repeated Percentage Change pg 106

1.3 Maths and Money

Compound and Simple Interest pg 111
Unit Pricing and Exchange Rates pg 114

Review

Summary $1.2+1.3$ pg 120
Mixed Exam Questions pg 124
1.1 Number

Fraction Arithmetic
Simplifying Fractions - you can scale a fraction by multiplying or dividing the top AND bottom by the same number

$$
\frac{30}{45} \underset{\div 5}{\underset{\div 5}{\leftrightarrows}} \frac{6}{9} \stackrel{\times \frac{1}{3}}{=} \frac{2}{3}
$$

Mixed and improper fractions -

$$
\begin{aligned}
& 2 \frac{3}{4}=2+\frac{3}{4}=\frac{8}{4}+\frac{3}{4}=\frac{11}{4} \\
& \text { mixed } \xrightarrow{\text { improper }} \\
& \frac{17}{3} \rightarrow 3117 r^{2} \rightarrow 5 \frac{2}{3} \\
& \text { improper } \longrightarrow \text { mixed. }
\end{aligned}
$$

Multiplying and dividing:
(1) Must express as improper

(4) Multiply across the top and the bottom

$$
\left\{\begin{array}{l}
e \cdot y \cdot \frac{1}{5} \div \frac{6}{7} \\
(1)=\frac{8}{5} \div \frac{6}{7} \\
(2)=\frac{8}{5} \times \frac{7}{6} \\
(3)=\frac{4}{5} \times \frac{7}{63} \\
(4)=\frac{28}{15}
\end{array}\right.
$$

FIND COMMON DENOMINATOR (LCM)

$$
\begin{aligned}
5 \frac{3}{5}-2 \frac{5}{6} & =5+\frac{3}{5}-2-\frac{5}{6} \\
& =5-2+\frac{3}{5}-\frac{5}{6} \\
1 \operatorname{cm}(5,6)=30 & =3+\frac{18-25}{30} \\
\underbrace{1+1+\underbrace{1-\frac{73}{30}}}_{2} \stackrel{=3+-\frac{7}{30}}{ } & =2 \frac{23}{30}
\end{aligned}
$$

Prerequisite Knowledge Check

Quiz A

Website: https://diagnosticquestions.com/Quizzes/Go\#172778 PDF: https://handsworthgrammar-
my.sharepoint.com/:b:/g/personal/gdhillow handsworth bham sc h uk/ETE9FRBMbuVHqlJU655IpTQBZHDIABJePnuT6q1irhtUQ?e=FNM885

Quiz B

Website: https://diagnosticquestions.com/Quizzes/Go\#172779 PDF: https://handsworthgrammarmy.sharepoint.com/:b:/g/personal/gdhillow handsworth bham sc h uk/EUyyRsXH6glHtVWGggqYIrYBPaDwEsb4niWOHN2iBADswA?e =3dZelA

Extension

the fraction

Questions

Exercise 1M

Work out without a calculator and give the answer in its simplest form.
(1) $\frac{1}{4}+\frac{3}{8}$
(2) $\frac{3}{5}+\frac{1}{10}$
(3) $\frac{2}{3}+\frac{1}{6}$
(5) $\frac{7}{8}-\frac{1}{2}$
(6) $\frac{1}{3}+\frac{1}{2}$
(7) $\frac{3}{5}-\frac{1}{4}$
(10) $\frac{2}{5}+\frac{1}{3}$
(11) $\frac{1}{7}+\frac{1}{2}$
(14) $\frac{7}{9}-\frac{1}{6}$
(15) $\frac{4}{5}-\frac{2}{7}$
(4) $\frac{5}{12}+\frac{1}{4}$
(8) $\frac{4}{7}-\frac{1}{2}$
(12) $\frac{1}{5}-\frac{1}{6}$
(16) $\frac{7}{10}-\frac{1}{3}$
(13) $\frac{2}{3}-\frac{5}{12}$
(18) $1 \frac{3}{4}-\frac{2}{3}$
(19) $3 \frac{1}{4}+1 \frac{3}{5}$
20) $2 \frac{5}{6}+1 \frac{1}{4}$

Questions 21 to 40 involve either multiplying or dividing.
(21) $\frac{2}{3} \times \frac{1}{5}$
(22) $\frac{3}{5} \times \frac{3}{4}$
(23) $\frac{5}{9} \times \frac{3}{4}$
(24) $1 \frac{3}{4} \times \frac{1}{5}$
(25) $\frac{3}{8} \times \frac{4}{5}$
(26) $\frac{2}{9} \times \frac{6}{7}$
(27) $\frac{5}{12} \times \frac{3}{10}$
(28) $\frac{5}{8} \times \frac{6}{15}$
(29) $\frac{5}{6} \div \frac{1}{2}$
(30) $\frac{7}{8} \div \frac{2}{3}$
(31) $\frac{5}{9} \div \frac{3}{4}$
(32) $2 \frac{1}{2} \div \frac{1}{5}$
(33) $3 \frac{1}{4} \times 2 \frac{1}{2}$
(34) $\frac{5}{8} \div 1 \frac{1}{2}$
(35) $\frac{5}{9} \div \frac{1}{3}$
(36) $\frac{3}{5} \div \frac{9}{100}$
(37) $\frac{3}{5} \div 2$
(38) $\frac{4}{7} \div 3$
(39) $1 \frac{1}{4} \div 4$
(40) $5 \frac{1}{2} \div 3$
(41) $\left(\frac{3}{5} \div \frac{1}{3}\right)+\left(1 \frac{1}{4} \times \frac{1}{10}\right)$
(42) $\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{9}\right) \div\left(\frac{1}{4}-\frac{1}{9}\right)$

Exercise 1E

Copy each square and fill in the missing numbers or symbols $(+,-, \times, \div)$. The arrows act as equals signs.

1

	\div	2	\rightarrow	$1 \frac{1}{2}$
\div		\div		
	\times		\rightarrow	2
\downarrow		\downarrow		
	\times	8	\rightarrow	

3

	-	$\frac{1}{5}$	\rightarrow	$\frac{7}{15}$
-		\times		
	\div		\rightarrow	$1 \frac{1}{2}$
\downarrow		\downarrow		
	\div	$\frac{1}{20}$	\rightarrow	

2

$\frac{1}{4}$	-	$\frac{1}{16}$	\rightarrow	
		+		
$\frac{1}{8}$	\div		\rightarrow	1
\downarrow		\downarrow		
$\frac{1}{8}$			\rightarrow	$\frac{5}{16}$

4

	-	$\frac{1}{5}$	\rightarrow	$\frac{1}{20}$
\times		\div		
2	\div		\rightarrow	
\downarrow		\downarrow		
	\times	$\frac{4}{5}$	\rightarrow	

5

$\frac{2}{3}$	\times	4	\rightarrow	
		\div		
$\frac{1}{2}$	\div		\rightarrow	$\frac{1}{16}$
\downarrow		\downarrow		
$\frac{1}{3}$			\rightarrow	$\frac{5}{6}$

(6

	\times	$\frac{1}{3}$	\rightarrow	$\frac{1}{8}$
		\div		
$\frac{1}{4}$			\rightarrow	$\frac{11}{12}$
\downarrow		\downarrow		
$\frac{5}{8}$	-		\rightarrow	$\frac{1}{8}$

Resources

Tasks

- https://handsworthgrammarmy.sharepoint.com/:b:/g/personal/gdhillow handsworth bham sch uk/ERMR4Qpxi5IJtFVWpPE2F74Bc6JX5mVaWwLPR1WLh6 Oq2Q?e=oXqEar

Exercises

- Textbook 1.4 pg 18
- https://corbettmaths.com/wp-content/uploads/2018/11/Fractions-Addition-2-pdf.pdf
- https://corbettmaths.com/wp-content/uploads/2018/12/Multiplying-Fractions-pdf.pdf
- https://corbettmaths.com/wp-content/uploads/2018/11/Dividing-Fractions-pdf.pdf

Extensions

- https://diagnosticquestions.com/Quizzes/Go\#46398
- Simplify:

$\frac{3}{12}$	$\frac{12 x}{6 x}$
$\frac{3 x}{12}$	$\frac{12 x y}{6 x}$
$\frac{3}{12 x}$	$\frac{6 x}{12 x y}$
$\frac{12 x}{3}$	$\frac{10 x}{12 x y}$
$\frac{12 x}{6}$	$\frac{10 x}{12 x y^{2}}$

Extra Notes

Extra Notes

Page 7

Prime Factorisation, HCF and LCM

Every number bigger than one, is either prime or is made up of a product of prime numbers.

We can use factor trees to fully factorise any number into a unique product of prime factors egg.:

HCF - Highest Common Factor
LCM - Lowest Common Multiple
You can find the HCF and LCM of numbers by either:
(i) Listing or (ii) Using prime factors, e.g.:

LCM of 8 and 14

$$
\text { HCF of } 36 \text { and } 90
$$

(i) $36=\left\{\begin{array}{l}1 \times 36 \\ 2 \times 18 \\ 3 \times 12 \\ 4 \times 9\end{array} \quad 90=\left\{\begin{array}{l}1 \times 90 \\ 2 \times 45 \\ 3 \times 30 \\ 4 \times 15 \\ 5 \times 15 \\ 5 \times 1(18)\end{array}\right.\right.$
$H C F(36,90)=18$

$$
\begin{aligned}
\text { (ii) } 8 & =2^{3} \\
14 & =2^{\prime} \times 7^{\prime} \\
\operatorname{km}(8,14) & =2^{3} \times 7^{\prime} \\
& =56
\end{aligned}
$$

[For LCM pick largest]

$$
\text { (ii) } \begin{aligned}
36 & =2^{2} \times 3^{2} \\
90 & =2^{1} \times 3^{2} \times 5^{1} \\
\text { hf }(36,90) & =2^{1} \times 3^{2} \times 5^{0} \\
& =18
\end{aligned}
$$

[For HCF pick smallest]

Worked Example

Find the HCF and LCM of:
$2^{2} \times 3^{2} \times 5^{2} \times 11$
$2^{3} \times 3 \times 5^{2} \times 7$

Find the HCF and LCM of:
$2 \times 3^{3} \times 5 \times 7^{2}$
$2^{2} \times 3^{2} \times 7^{2} \times 11$

Questions

Find the HCF and LCM of:

1) $2^{2} \times 3^{3}$ $2^{3} \times 3^{2}$
2) $2^{2} \times 3^{3}$
$2^{3} \times 3^{3}$
3) $2^{2} \times 3^{3} \times 5$ $2^{3} \times 3^{3}$
4) $2^{2} \times 3^{3} \times 5$ $2^{3} \times 3^{3} \times 7$
5) $2^{2} \times 3^{3} \times 5$ $2^{3} \times 3^{3} \times 5^{2} \times 7$
6) $2^{2} \times 3^{3} \times 5 \times 7$ $2^{3} \times 3^{3} \times 5^{2}$
7) $2^{2} \times 3^{3} \times 5 \times 7$ $2^{3} \times 3^{3} \times 5^{2} \times 11$
8) $\begin{aligned} & 2^{2} \times 5 \\ & 3^{3} \times 11\end{aligned}$
9) $2^{2} \times 5$ $2^{2} \times 5$

Questions

Using the digits 1 to 9 only once fill in the following boxes to form two 3 digit numbers:

Find the HCF and LCM of the two numbers above.

Exam Question

(a) Find the lowest common multiple (LCM) of 40 and 56 $A=2^{3} \times 3 \times 5$ $B=2^{2} \times 3 \times 5^{2}$
(b) Write down the highest common factor (HCF) of A and B.

Exam Question

(a) Express 108 as the product of powers of its prime factors.
(b) Find the Highest Common Factor (HCF) of 108 and 24

4 marks

Your Turn

HCF	LCM	Number \boldsymbol{a}	Number \boldsymbol{b}
11	66	22	

Questions

HCF	LCM	Number \boldsymbol{a}	Number \boldsymbol{b}
2	30		10
3	45	9	
		10	15
3	30		15
		12	20
6	60	12	
10	60	60	
1	60	T	15
8	120	24	
4	120	24	
4	120	40	
12	120		60
30	120	30	
1	120	15	
5	120	15	
120	120		

Page 15

Worked Example

The HCF of two numbers is 5 . The LCM of two numbers is a multiple of 12 . Write down two possible numbers.

The HCF of two numbers is 8 . The LCM of two numbers is a multiple of 5. Write down two possible numbers.

Exam Question

(a) Express 252 as a product of its prime factors.

James thinks of two numbers.
He says "The Highest Common Factor (HCF) of my two numbers is 3 The Lowest Common Multiple (LCM) of my two numbers is $45^{\prime \prime}$
(b) Write down two numbers that James could be thinking of.

6 marks

SSDD Problem

Find the lowest common multiple and the highest common factor for:

I think of two numbers, one is 140.

Their highest common factor is 20.
Their lowest common multiple is 420.

What is my other number?

Factors and multiples!

The lowest common multiple of two numbers is 420 .

Their sum is 144 .
Find their highest common factor.

I think of two numbers
One is $8 x^{2} y^{2}$.
Their highest common factor is $4 x^{2} y$.
Their lowest common multiple is $24 x^{5} y^{2}$
What is my other number?

Exam Question

Buses to Acton leave a bus station every 24 minutes.
Buses to Barton leave the same bus station every 20 minutes.
A bus to Acton and a bus to Barton both leave the bus station at 900 am .
When will a bus to Acton and a bus to Barton next leave the bus station at the same time?

3 marks

Exam Question

Martin is organising a summer fair.
He needs bread buns and burgers for the barbecue.
Bread buns are sold in packs. Each pack contains 40 bread buns. Burgers are sold in packs. Each pack contains 24 burgers. Martin buys exactly the same number of bread buns as burgers.

What is the least number of each pack that Martin buys?

3 marks

Exam Question

Matt and Dan cycle around a cycle track.
Each lap Matt cycles takes him 50 seconds.
Each lap Dan cycles takes him 80 seconds.
Dan and Matt start cycling at the same time at the start line.
Work out how many laps they will each have cycled when they are next at the start line together.

3 marks

Exam Question

Rita is going to make some cheeseburgers for a party.
She buys some packets of cheese slices and some boxes of burgers.
There are 20 cheese slices in each packet.
There are 12 burgers in each box.
Rita buys exactly the same number of cheese slices and burgers.
(i) How many packets of cheese slices and how many boxes of burgers does she buy?

Rita wants to put one cheese slice and one burger into each bread roll. She wants to use all the cheese slices and all the burgers.
(ii) How many bread rolls does Rita need?

Exam Question

Here are three lamps.

Lamp A flashes every 20 seconds.
Lamp B flashes every 45 seconds.
Lamp C flashes every 120 seconds.
The three lamps start flashing at the same time.
How many times in one hour will the three lamps flash at the same time?
3 marks

Exam Question

Ali is planning a party.
He wants to buy some cakes and some sausage rolls.
The cakes are sold in boxes.
There are 12 cakes in each box.
Each box of cakes costs $£ 2.50$
The sausage rolls are sold in packs.
There are 8 sausage rolls in each pack.
Each pack of sausage rolls costs $£ 1.20$
Ali wants to buy more than 60 cakes and more than 60 sausage rolls. He wants to buy exactly the same number of cakes as sausage rolls. What is the least amount of money Ali will have to pay?

5 marks

Resources

Exercises

- Textbook ex 13 pg 15
- https://corbettmaths.com/wp-content/uploads/2013/02/product-of-primes-pdf3.pdf
- https://corbettmaths.com/wp-content/uploads/2013/02/lcm-and-hcf-using-product-of-primes-pdf.pdf

Extensions

- https://diagnosticquestions.com/Quizzes/Go\#46392

Extra Notes

Extra Notes

Standard Index Form (SIF)

Standard form is written in the form of $a \times 10^{n}$, where a is a number bigger than or equal to 1 and less than $10 . n$ can be any positive or negative whole number.

In Standard Form	Not in Standard Form
7.3×10^{3}	438,000
1×10^{-3}	54×10^{7}
9.36×10^{18}	0.6×10^{-4}
4×10^{1}	389×10000
5.002×10^{-7}	$6 \times 10^{1.5}$
	0.000372

Why use standard form?

- It allows us to write really small or really big numbers concisely.
- It allows us to easily compare small and big numbers.

Questions

Decide if the following numbers are in standard form:

$$
\begin{array}{ll}
3 \times 10^{5} & 3 \div 10^{5} \\
3 \times 10^{6} & 3+10^{5} \\
3 \times 10^{67} & 3-10^{5} \\
3 \times 10^{6.7} & 4 \times 10^{5} \\
3 \times 10^{0.67} & 40 \times 10^{5} \\
3 \times 10^{0.7} & 46 \times 10^{5} \\
3 \times 10^{7} & 4.6 \times 10^{5} \\
3 \times 10^{-7} & 3.46 \times 10^{5} \\
3 \times 10^{-0.7} & 3.46434561 \times 10^{5} \\
3 \times 11^{5} & -3.46434561 \times 10^{5} \\
3 \times 100^{5} & \\
3 \times 10.5^{5} & \\
3 \times-10^{5} & \\
3 \times(-10)^{5} &
\end{array}
$$

Converting Numbers to Standard Form

- For the first number, keep dividing or multiplying by 10 until you get a number between 1 and 9. $\dot{9}$.
- For the power of 10 , count how many times the decimal place moved leftwards or rightwards.

Worked Example

Your Turn

Write the following numbers in standard form:

70,000

72,000

720,000

Write the following numbers in standard form:

60,000

63,000

630,000

Questions

Write the following numbers in standard form:

1) 200
2) 2,000
3) 20,000
4) 29,000
5) 29,400
6) 29,470
7) 294,700
8) 994,700
9) $1,994,700$
10) 19,947
11) 10,000
12) 10,100
13) 10,010
14) $1,001,000,000$
15) 10.01×10^{8}
16) 100.1×10^{7}

Worked Example

Your Turn

Write the following numbers in standard form:
0.05
0.005
0.00572

Write the following numbers in standard form:
0.06
0.006
0.00683

Questions

Write the following numbers in standard form:

1) 0.2
2) 0.02
3) 0.002
4) 0.0023
5) 0.00239
6) 0.002039
7) 0.0020309
8) 0.0010309
9) 0.001
10) 0.0010
11) 0.0090
12) 0.00000090
13) 0.00000099
14) 0.00000199
15) 0.199×10^{-5}
16) 0.0199×10^{-4}

Exam Question

Work out the value of 350^{3}

Give your answer in standard form.

2 marks

Converting Numbers from Standard Form

- Recall that the index of the 10 tells us how many times we are multiplying by 10 (or if negative, dividing by 10). Therefore count the number of decimal place jumps, adding 0 's if necessary.
- Remember that we use negative powers for small numbers (numbers less than 1), positive powers for large numbers (numbers bigger than or equal to 1).

Worked Example

Write the following as an ordinary number:
3.1×10^{6}

Write the following as an ordinary number:
3.2×10^{7}

Questions

Write the following as ordinary numbers:

1) 3.2×10^{3}
2) 3.3×10^{3}
3) 3.37×10^{3}
4) 3.37×10^{6}
5) 3.378×10^{6}
6) 1.3378×10^{6}
7) 1.3378×10^{9}
8) 1.03378×10^{9}
9) 9×10^{11}
10) 9.003378×10^{11}

Exam Question

(a) Write 6.4×10^{4} as an ordinary number.
(b) Write 0.0039 in standard form.
(c) Write 0.25×10^{7} in standard form.

3 marks

Worked Example

Write the following as an ordinary number:
4.1×10^{-6}

Write the following as an ordinary number:
4.2×10^{-7}

Questions

Write the following as ordinary numbers:

1) 4.2×10^{-3}
2) 4.3×10^{-3}
3) 4.37×10^{-3}
4) 4.37×10^{-6}
5) 4.378×10^{-6}
6) 4.2378×10^{-6}
7) 4.2378×10^{-9}
8) 4.02378×10^{-9}
9) 4×10^{-11}
10) 4.002378×10^{-11}

Exam Question

(a) Write 32460000 in standard form.
(b) Write 4.96×10^{-3} as an ordinary number.

Asma was asked to compare the following two numbers.

$$
A=6.212 \times 10^{8} \quad \text { and } \quad B=4.73 \times 10^{9}
$$

She says,
" 6.212 is bigger than 4.73 so A is bigger than B. "
(c) Is Asma correct?

You must give a reason for your answer.
3 marks

Multiplying and Dividing in Standard Form

To multiply $\left(a \times 10^{n}\right) \times\left(b \times 10^{m}\right)$:
All the four things are being multiplied, so we can multiply in any order!

- Multiply $a \times b$
- Multiply $10^{m} \times 10^{n}$ (add the powers)
- Make sure the answer is in standard form

Division works in the same way.

Worked Example

Work out:
$\left(3 \times 10^{5}\right) \times\left(2 \times 10^{4}\right)$
$\left(3 \times 10^{5}\right) \times\left(4 \times 10^{-4}\right)$

Work out:
$\left(3 \times 10^{5}\right) \times\left(4 \times 10^{4}\right)$
$\left(3 \times 10^{-5}\right) \times\left(2 \times 10^{4}\right)$

Questions

Work out:

1) $\left(4 \times 10^{5}\right) \times\left(2 \times 10^{4}\right)$
2) $\left(2 \times 10^{4}\right) \times\left(4 \times 10^{5}\right)$
3) $\left(4 \times 10^{5}\right) \times\left(4 \times 10^{4}\right)$
4) $\left(2 \times 10^{5}\right) \times\left(8 \times 10^{4}\right)$
5) $\left(8 \times 10^{5}\right) \times\left(2 \times 10^{4}\right)$
6) $\left(8.1 \times 10^{5}\right) \times\left(2 \times 10^{4}\right)$
7) $\left(8.01 \times 10^{5}\right) \times\left(2 \times 10^{4}\right)$
8) $\left(2 \times 10^{5}\right) \times\left(8.01 \times 10^{4}\right)$
9) $\left(2 \times 10^{5}\right) \times\left(8.01 \times 10^{-4}\right)$
10) $\left(2 \times 10^{-5}\right) \times\left(8.01 \times 10^{4}\right)$
11) $\left(2 \times 10^{-5}\right) \times\left(8.01 \times 10^{-4}\right)$

Exam Question

The number of atoms in one kilogram of helium is 1.51×10^{26}
Calculate the number of atoms in 20 kilograms of helium. Give your answer in standard form.

2 marks

Worked Example

Work out:
$\left(4 \times 10^{9}\right) \div\left(2 \times 10^{3}\right)$
$\left(8 \times 10^{5}\right) \div\left(2 \times 10^{-4}\right)$

Work out:
$\left(2 \times 10^{9}\right) \div\left(4 \times 10^{3}\right)$
$\left(2 \times 10^{5}\right) \div\left(8 \times 10^{-4}\right)$

Questions

Work out:

1) $\left(9 \times 10^{6}\right) \div\left(3 \times 10^{2}\right)$
2) $\left(6 \times 10^{6}\right) \div\left(3 \times 10^{2}\right)$
3) $\left(3 \times 10^{6}\right) \div\left(6 \times 10^{2}\right)$
4) $\left(3 \times 10^{2}\right) \div\left(6 \times 10^{6}\right)$
5) $\left(3 \times 10^{-2}\right) \div\left(6 \times 10^{6}\right)$
6) $\left(3 \times 10^{6}\right) \div\left(6 \times 10^{-2}\right)$
7) $\left(3 \times 10^{6}\right) \div\left(1.5 \times 10^{2}\right)$
8) $\left(1.5 \times 10^{6}\right) \div\left(3 \times 10^{2}\right)$
9) $\left(1.5 \times 10^{-6}\right) \div\left(3 \times 10^{2}\right)$
10) $\left(1.5 \times 10^{6}\right) \div\left(6 \times 10^{-2}\right)$
11) $\left(1.5 \times 10^{-6}\right) \div\left(6 \times 10^{-2}\right)$
12) $\left(6 \times 10^{-6}\right) \div\left(1.5 \times 10^{-2}\right)$

Exam Question

The surface area of Earth is $510072000 \mathrm{~km}^{2}$. The surface area of Jupiter is $6.21795 \times 10^{10} \mathrm{~km}^{2}$.

The surface area of Jupiter is greater than the surface area of Earth. How many times greater?
Give your answer in standard form.
3 marks

Exam Question

In May 2019, the distance between Earth and Mars was $3.9 \times 10^{7} \mathrm{~km}$.
In May 2019, a signal was sent from Earth to Mars.
Assuming that the signal sent from Earth to Mars travelled at a speed of $3 \times 10^{5} \mathrm{~km}$ per second,
(a) how long did the signal take to get to Mars?

The speed of the signal sent from Earth to Mars in May 2019 was actually less than $3 \times 10^{5} \mathrm{~km}$ per second.
(b) How will this affect your answer to part (a)?

Calculator

Use the $\times \mathbf{1 0}^{\boldsymbol{x}}$ button on your calculator to make calculations involving standard form. While you can explicitly write 3×10^{7} using the $\boldsymbol{x}^{\boldsymbol{y}}$ button, it is faster to use the specialised standard form key.

Check the following using your calculator:
$\left(2.41 \times 10^{19}\right) \times\left(7.1 \times 10^{23}\right)=\mathbf{1 . 7 1 1 1} \times \mathbf{1 0}^{\mathbf{4 3}}$

Exam Question

$$
y^{2}=\frac{a b}{a+b}
$$

$$
\begin{aligned}
& a=3 \times 10^{8} \\
& b=2 \times 10^{7}
\end{aligned}
$$

Find y.
Give your answer in standard form correct to 2 significant figures.

3 marks

Exam Question

$$
p^{2}=\frac{x-y}{x y}
$$

$x=8.5 \times 10^{9}$
$y=4 \times 10^{8}$
Find the value of p.
Give your answer in standard form correct to 2 significant figures.

Adding and Subtracting in Standard Form

If the powers are not the same, either:

- Convert both numbers to normal numbers first, then add or subtract, then convert back to standard form.
- Or better, change the number with the smaller power of 10 so it matches the power of the larger one.

Work out:

$\left(3 \times 10^{4}\right)+\left(4 \times 10^{4}\right)$
$\left(3 \times 10^{4}\right)+\left(8 \times 10^{4}\right)$
$\left(3 \times 10^{5}\right)+\left(8 \times 10^{4}\right)$

Work out:
$\left(3 \times 10^{7}\right)+\left(2 \times 10^{7}\right)$
$\left(3 \times 10^{7}\right)+\left(9 \times 10^{7}\right)$
$\left(3 \times 10^{8}\right)+\left(9 \times 10^{7}\right)$

Questions

Work out:

1) $\left(5 \times 10^{4}\right)+\left(4 \times 10^{4}\right)$
2) $\left(15 \times 10^{4}\right)+\left(4 \times 10^{4}\right)$
3) $\left(150 \times 10^{4}\right)+\left(4 \times 10^{4}\right)$
4) $\left(5 \times 10^{3}\right)+\left(4 \times 10^{4}\right)$
5) $\left(5 \times 10^{2}\right)+\left(4 \times 10^{4}\right)$
6) $\left(5 \times 10^{4}\right)+\left(4 \times 10^{3}\right)$
7) $\left(30 \times 10^{3}\right)+\left(4 \times 10^{4}\right)$
8) $\left(3 \times 10^{4}\right)+\left(40 \times 10^{3}\right)$
9) $\left(30 \times 10^{3}\right)+\left(40 \times 10^{3}\right)$
10) $\left(0.3 \times 10^{2}\right)+\left(4 \times 10^{4}\right)$
11) $\left(35 \times 10^{-2}\right)+\left(4.5 \times 10^{4}\right)$

Exam Question

(a) Write the number 0.00008623 in standard form.
(b) Work out $\frac{3.2 \times 10^{3}+5.1 \times 10^{-2}}{4.3 \times 10^{-4}}$

Give your answer in standard form, correct to 3 significant figures.

3 marks

Worked Example

Work out:
$\left(7 \times 10^{4}\right)-\left(4 \times 10^{4}\right)$
$\left(7 \times 10^{4}\right)-\left(0.4 \times 10^{4}\right)$
$\left(7 \times 10^{5}\right)-\left(0.4 \times 10^{4}\right)$

Work out:
$\left(6 \times 10^{7}\right)-\left(2 \times 10^{7}\right)$
$\left(6 \times 10^{7}\right)-\left(0.2 \times 10^{7}\right)$
$\left(6 \times 10^{7}\right)-\left(0.2 \times 10^{8}\right)$

Questions

Work out:

1) $\left(5 \times 10^{4}\right)-\left(4 \times 10^{4}\right)$
2) $\left(15 \times 10^{4}\right)-\left(5.1 \times 10^{4}\right)$
3) $\left(15 \times 10^{4}\right)-\left(3 \times 10^{4}\right)$
4) $\left(5 \times 10^{-4}\right)-\left(4 \times 10^{-4}\right)$
5) $\left(5 \times 10^{5}\right)-\left(4 \times 10^{4}\right)$
6) $\left(50 \times 10^{4}\right)-\left(4 \times 10^{5}\right)$
7) $\left(30 \times 10^{-3}\right)-\left(4 \times 10^{-4}\right)$
8) $136,000-\left(40 \times 10^{3}\right)$
9) $\left(0.045 \times 10^{4}\right)-\left(35 \times 10^{-2}\right)$
10) $\left(1,360 \times 10^{-2}\right)-\left(0.004 \times 10^{3}\right)$

Giantburgers

This headline appeared in a newspaper.

eat at Giantburger restaurants

Decide whether this headline is true using the following information.

- There are about 8×10^{3} Giantburger restaurants in America.
- Each restaurant serves about 2.5×10^{3} people every day.
- There are about 3×10^{8} Americans.

Explain your reasons and show clearly how you figured it out.

Goal Free Problem

Rob is learning about the planets. Rob makes a model of the sun. He also makes a model of the planet Jupiter. Rob is going to hang the two models in the school hall. Rob wants a distance of 16 m between the two models. The real distance between the planet Jupiter and the sun is $8 \times 10^{8} \mathrm{~km}$.

Work out what you can from this information.

Resources

Exercises

- Student Textbook 1.6 pg 14
- https://corbettmaths.com/wp-content/uploads/2019/10/Standard-Form-Textbook.pdf

Extra Notes

Extra Notes

Types of Number

TYPE	Definition	Examples
Integer	Whole number	$-5,0,1, \sqrt{4}, 10^{6}$
Rational	Can be written as a fraction	$0,0.32,0 . \dot{3}, 0 . \dot{2} 1 \dot{7}$
Irrational	Can't be written as a fraction	$\sqrt{2}, 3 \sqrt{2}, \pi, \frac{\pi}{3}$
Negative	Less than zero	$-21,-\pi,-\sqrt{2}$
Multiple	In a number's times table	Of 3: 3, 6, 15, 42
Factor	Divides into a number	Of 10, 1,2,5,10
Prime	Only factors are 1 and itself	$2,3,5,7,11,($ not $1!)$

Which of the equations have rational solutions?

Investigate whether the statements are always, sometimes or never true. Give examples and/or counterexamples to justify your answers.

- Integers are rational numbers
\square Rational numbers are integers
\square Rational numbers are real numbers
- Terminating decimals are rational numbers
\square Recurring decimals are rational numbers
- The square roots of negative numbers are real, but not rational

Which of these cards have integer values?

| $\sqrt{25}$ | $\sqrt{50}$
 $\sqrt{125}$
 $\sqrt[3]{125}$
 $\sqrt{9 \times 4}$ $\sqrt{2 \times 32}$
 $\sqrt{12 \times 4}$ $\sqrt[3]{9 \times 3}$ |
| :--- | :--- | :--- | :--- |

Surds

When the root (square root, cube root or higher root) of a number cannot be obtained exactly, the root is called a surd. A surd cannot be written as a fraction but can be written as a decimal, that goes on forever, without repeating (recurring) or ending (terminating). Hence, surds are irrational numbers.

Surds	Not Surds
$\sqrt{8}$	8
$\sqrt{10}$	-12.05
$\sqrt{91}$	0.62
$\sqrt[3]{7}$	$\frac{3}{7}$
$\sqrt[3]{16}$	$7 \frac{1}{2}$
$2 \sqrt{73}$	$\sqrt{16}$
$2+\sqrt{5}$	$\sqrt{25}$
$\sqrt{17}$	$\sqrt[3]{8}$
$\sqrt{2}$	$\sqrt{2.25}$

$\sqrt{1}$
$\sqrt{4}$
$\sqrt{9}$
$\frac{1}{(\sqrt{5})^{2}}$
$\sqrt{36}$
$\sqrt{6}$
$\sqrt{24}$
$\sqrt{3}$
$\frac{\sqrt{1}}{\sqrt{4}}$
$\sqrt{\frac{1}{4}}$
$\sqrt{\frac{2}{8}}$
$2 \sqrt{3}$
$3 \sqrt{3}$
$3 \sqrt{4}$
$\sqrt{5}$
$\sqrt{5^{2}}$
$\frac{2}{\sqrt{9}}$
$\frac{\sqrt{7}}{2}$

Simplifying Surds

To simplify \sqrt{x} :
Write down a list of all the square numbers up to x.

1. Find the biggest square number which is a factor of x. Write x as a product using this square number.
2. Now write \sqrt{x} as this product.
3. Use the fact $\sqrt{a \times b}=\sqrt{a} \times \sqrt{b}$ to split the product.
4. Simplify your answer.

Simplify:
$\sqrt{60}$
$\sqrt{120}$

Simplify:
$\sqrt{50}$
$\sqrt{200}$

Questions

Simplify:

1) $\sqrt{8}$
2) $\sqrt{12}$
3) $\sqrt{32}$
4) $\sqrt{64}$
5) $\sqrt{128}$
6) $\sqrt{192}$
7) $\sqrt{320}$
8) $\sqrt{80}$
9) $\sqrt{40}$
10) $\sqrt{90}$
11) $\sqrt{160}$
12) $\sqrt{1600}$
13) $\sqrt{200}$
14) $\sqrt{250}$
15) $\sqrt{175}$
16) $\sqrt{350}$
17) $\sqrt{351}$
18) $\sqrt{353}$

Simplify:
$2 \sqrt{20}$
$4 \sqrt{40}$

Simplify:
$3 \sqrt{20}$
$4 \sqrt{50}$

Questions

Simplify:

1) $\sqrt{8}$
2) $2 \sqrt{8}$
3) $3 \sqrt{8}$
4) $7 \sqrt{49}$
5) $\sqrt{72}$
6) $5 \sqrt{72}$
7) $7 \sqrt{147}$
8) $5 \sqrt{144}$
9) $14 \sqrt{147}$
10) $5 \sqrt{1440}$
11) $7 \sqrt{294}$
12) $5 \sqrt{720}$
13) $7 \sqrt{295}$
14) $5 \sqrt{360}$
15) $7 \sqrt{2950}$

Worked Example

Write the following as a single root:
$2 \sqrt{15}$
$2 \sqrt{30}$

Write the following as a single root:
$5 \sqrt{2}$
$10 \sqrt{2}$

Questions

Write the following as a single root:

1) $2 \sqrt{2}$
2) $3 \sqrt{2}$
3) $2 \sqrt{3}$
4) $4 \sqrt{6}$
5) $5 \sqrt{7}$
6) $5 \sqrt{8}$
7) $5 \sqrt{9}$
8) 15
9) 15^{2}

Exam Question

Write $\sqrt{8}$ in the form $m \sqrt{2}$, where m is an integer.
2 marks

Exam Question
Given that $\sqrt{40}=k \sqrt{10}$, find the value of k.
1 mark

Exam Question

Write $\sqrt{45}$ in the form $k \sqrt{5}$, where k is an integer.
1 mark

Exam Question

Write $\sqrt{50}$ in the form $k \sqrt{2}$, where k is an integer.
2 marks

Exam Question

$8 \sqrt{8}$ can also be expressed in the form $m \sqrt{2}$ where m is a positive integer.
Express $8 \sqrt{8}$ in the form $m \sqrt{2}$
2 marks

Resources

Exercises

- Pearson Student Textbook 1.7 pg 17
- https://corbettmaths.com/wp-content/uploads/2013/02/surdspdf1.pdf

Extra Notes

Extra Notes

1.2 Percentages Percentages Prerequisite Knowledge Checks

Fraction, Decimal, Percentages Equivalence

Website: https://diagnosticquestions.com/Quizzes/Go\#172798 PDF: https://handsworthgrammar-
my.sharepoint.com/:b:/g/personal/gdhillow handsworth bham sc h uk/ETdXXmMFFaxNp1GGLgS-
U7cB9aiKnVaYcxCGDmqCHKevRQ?e=dfzhKO

Percentages of Amounts

Website: https://diagnosticquestions.com/Quizzes/Go\#172791 PDF: https://handsworthgrammarmy.sharepoint.com/:b:/g/personal/gdhillow handsworth bham sc h uk/EXfKs NsqFIPsxmj zMTsBIBIDc KADKgSwmWOXSMussqQ?e= JJB1Gb

To find 20%...

To increase by 20%...

To decrease by 20\% ... To decrease by 30%...

To find 0.5%...

To increase by 12.5%... To increase by 0.5%...

To decrease by 12.5%... To decrease by 0.5%...

Percentage	To find	To increase by	To decrease by
40\%			
50\%			
60\%			
6\%			
7\%			
8\%			
18\%			
28\%			
48\%			
88\%			
98\%			
108\%			
118\%			
218\%			

Percentage	To find	To increase by	To decrease by
21.8%			
2.18%			
2.08%			
0.08%			

Original Amount: $£ 120$
Percentage: 36\%

As a fraction:

Multiplier:

Percentage of...:

Increased by...:

Decreased by...:

Original Amount: $£ 350$
Percentage: 55\%

As a fraction:

Multiplier:

Percentage of...:

Increased by...:

Decreased by...:

碳					NّN		
碳					通		
				$\stackrel{\sim}{ }$		¢	$\stackrel{\text { ¢ }}{0}$
$\begin{aligned} & \frac{\dot{\rightharpoonup}}{\frac{2}{2}} \\ & \begin{array}{c} \frac{2}{2} \end{array} \end{aligned}$			N				N
		m｜웅			－19		
	ั̀			骨			
	8	8	8			앙	

		$\hat{\mathrm{y}}$					$\stackrel{\sim}{\sim}$
		$\stackrel{\sim}{\text { ® }}$				N O N	
			-		录		
				N్స్			
	F10		719				
	$\stackrel{\circ}{\circ}$	\&		8	\bigcirc	\bigcirc	\bigcirc

Page 91

Resources

Exercises

- Pearson Higher Student Book 4.4 pg 105 (Mixed Problems incl. FDP in section 4.5)
- https://corbettmaths.com/wp-content/uploads/2013/02/multipliers-pdf.pdf
- https://corbettmaths.com/wp-content/uploads/2013/02/percentage-of-an-amount-calculatorpdf.pdf
- CIMT: 11.1-11.5 of: https://handsworthgrammarmy.sharepoint.com/:b:/g/personal/gdhillow handsworth bham sch uk/EWINuTeVHq1GtzwPO4SIwq4BE2V87zmUxuTenVuPvKRIA? e=jHapCm (answers: https://www.cimt.org.uk/projects/mepres/allgcse/bs11pba.pdf)

Calculate the percentage increase from $£ 2500$ to $£ 3100$.

Jack used to get paid $£ 1770$ per month. Now he gets $£ 25,000$ per year. What is the percentage increase of his wage?

A rectangular field has been made smaller. The old dimensions were 50 m by 28 m . The new dimensions are 44 m by 25 m . Calculate the percentage change of the size of this field.

Sam and Luke share a flat. They split the bill into a ratio of 6:4.

Sam used to pay $£ 300$ per month. Luke's new monthly payment is £248.

Work out the percentage increase of the old price to the new.

Extension

$x \%$ of $x \%$ of y is 9 . Write x in terms of y.

$$
x=\theta
$$

[JMC 2012 Q24] After playing 500 games, my success rate in Spider
8. Solitaire is 49%. Assuming I win every game from now on, how many extra games do I need to play in order that my success rate increases to 50% ?

[JMO 2006 A5]

A balloon seller starts the day with a certain number of balloons. He then sells one third of his balloons to boys, 20% to girls, and three times the difference between these amounts to adults. At the end of the day, he has eight balloons left. How many balloons did the seller have at the start?

[SMC 2007 Q9] In a sale, a shopkeeper reduced the advertised selling price of a dress by 20%. This resulted in a profit of 4% over the cost price of the dress. What percentage profit would the shopkeeper have made if the dress had then been sold at the original selling price?

Reverse Percentages - Non Calculator

Reverse Percentages - Non Calculator

| Question | | Working | Answer |
| :---: | :---: | :---: | :---: | :---: |
| 70\% of a number is 490.
 What is the number? | | | |
| 70\% of a number is 245.
 What is the number? | | | |

Reverse Percentages - Calculator

Reverse Percentages

Find 100% when...

a)

b)

15 represents 50\%
d)

6 represents 5\%
e)
15% of an amount is 36
c)

8 represents 20\%
f)
35% of an amount is 21

Reverse Percentages - Calculator

g)

A coat is reduced by 15% to $£ 68$ j) John gets a raise of 10% to $£ 7.48 / \mathrm{hr}$
h)
i)

A top is reduced by A sofa is reduced by 6% to $£ 47$
k)

A house depreciates by 0.3% to $£ 249,250$
17% to $£ 1,162$ I)

Population increases
by 0.04% to 718,262

Worked Example

Calculate the original amount: Calculate the original amount:

Percentage change:10\% decrease New value: $£ 360$

Percentage change: 25\% decrease New value: $£ 150$

Percentage change:10\% increase New value: $£ 440$

Percentage change: 25% increase New value: $£ 250$

Questions

\% change: 10\% decrease
New value: $£ 36$
\% change: 20\% decrease
New value: $£ 32$
\% change: 10\% decrease
New value: $£ 18$
\% change: 10% decrease
New value: $£ 180$
\% change: 5\% decrease
New value: $£ 190$
\% change: 5\% decrease
New value: $£ 19$

Questions

\% change: 10% increase
New value: $£ 44$
\% change: 10\% increase
New value: $£ 88$
\% change: 20\% increase
New value: $£ 960$
\% change: 5\% increase
New value: $£ 84$
\% change: 1% increase
New value: $£ 808$
\% change: 5\% increase
New value: $£ 840$

How much would you pay for a pair of trainers priced at $£ 56.50$?

I payed $£ 48.80$ for my trainers. What was the original price?

Another shop is offering $1 / 4$ off the price. Which is the better offer? Convince me.

You have $£ 500$ to spend. How many pairs of trainers, costing $£ 96$ before the reduction can you buy?

A company announces a 2.41% pay rise. Arthur is currently paid $£ 23.74$ per hour. What is his new salary?

A company announces a 2.41% pay rise.
Merlin’s new salary is $£ 23.74$ per hour.
What was his salary before the increase?

A company announces a 2.41% pay rise.
Percival was paid $£ 23.74$ per hour. His new
salary is $£ 25$ per hour.
Did he get the same pay rise as everyone else?

Resources

Exercises

- https://corbettmaths.com/wp-content/uploads/2019/10/Reverse-Percentages.pdf
- https://corbettmaths.com/wp-content/uploads/2013/02/reverse-percentages-pdf.pdf
- Textbook pg 55 ex 8: https://handsworthgrammarmy.sharepoint.com/:b:/g/personal/gdhillow handsworth bham sch uk/Ec7Dr337dVRDuSVzVuldypUBeEosDbxsT 4oRnWkIWtm Ww?e=LMBQ1s
- CIMT pg 1666

Extensions

- https://diagnosticquestions.com/Quizzes/Go\#46411

PDF: https://handsworthgrammar-
my.sharepoint.com/:b:/g/personal/gdhillow handsworth bham sch uk/Ef1ELua1g pHouR vCJbyKUBuemI5kON9IsoXwZot2PC6 Q?e=qEROoj

Extra Notes

Extra Notes

Exam Question

The normal price of a television is reduced by 30% in a sale.
The sale price of the television is $£ 350$
Work out the normal price of the television.

3 marks

Repeated Change

$1^{\text {st }}$ percentage change	$1{ }^{\text {st }}$ percentage multiplier	$2^{\text {nd }}$ percentage change	$2^{\text {nd }}$ percentage multiplier	Overall percentage change	Overall percentage multiplier
30\% increase	$\times 1.3$	15\% increase	$\times 1.15$	49.5\% increase	$\times 1.495$
15\% increase		30\% increase			
20\% increase		25\% increase			
5\% increase		40\% increase			
7.5\% increase			$\times 1.375$		
	$\times 1.06$		$\times 1.39$		
	$\times 1.2$				$\times 1.68$
		50\% increase		68\% increase	
10\% decrease		10\% decrease			
20\% decrease		20\% decrease			
30\% decrease		30\% decrease			
30\% decrease		30\% increase			
30\% increase		10\% decrease			
	$\times 0.85$				$\times 1.19$
			$\times 0.92$	35.6\% decrease	

Questions

1) What is $£ 320$ after:
a) An increase of 21%
b) An increase of 21% followed by an increase of 18%
c) An increase of 21% followed by an increase of 23.2%
d) An increase of 21% followed by an increase of 21%
e) An increase of 21% followed by an decrease of 21%
2) What is 2.5 Kg after:
a) An increase of 35%
b) An increase of 35% followed by an increase of 62%
c) An increase of 35% followed by an increase of 6.2%
d) An increase of 35% followed by an increase of 35%
e) An increase of 35% followed by an decrease of 62%

Extension

1) If you increase a number of 10% then decrease by 10%, what is the overall percentage change?
2) If you increase by x \% twice what is the overall percentage increase?
3) What is you do the above but with decreasing?

Questions

Section 2: Reasoning and Problem Solving

1) Tarquin says "the order of percent change matters" do you agree? Explain your answer.
2) The sum of the percentage increases on the first five row is 45%. If you increase an amount by two percentages which add 45%, what is the biggest possible amount the original value it can be increase by?
3) Two percentages sum to 45%, one of the is a decrease and one is an increase. What is the biggest possible amount the original value can be increase by.
4) Rows 9, 10 and 11 all have a pattern cane you explain what is going on here?

Section 3: Worded Problems

1) A shop decreases all its prices by 15%. A week later the shop increases all prices by 17.5%. What is the overall change?
2) Amy is given a 7\% pay rise. The next year Amy is given another 4.5\% pay rise. Her manager says that Amy's pay has increased by 11.5% overall. Explain why Amy's manager is wrong.
3) Paul is building a wardrobe. The wood costs 30% more than he had estimated. He needs 40% more than he had estimated. How much more than his original estimate does the material for the wardrobe cost?
4) Create two word problems involving repeated percentage change of your own. Make one very difficult.

Questions

Section 4: Shapes
The sides lengths of this shape increase by 25%, what happens to the:
a) Perimeter
b) Area

12 cm

The sides lengths of this shape increase by 20%, what happens to the:
a) Surface area
b) Volume

10 cm

15 cm

Compound Interest

Question	Starting amount	Compound interest rate	Years	Calculation	End amount (from calculator, round to 2 dp)
Example	$£ 800$	$\mathbf{3 7 \%}$	$\mathbf{2}$	$\mathbf{8 0 0} \times \mathbf{1 . 3 7} \mathbf{m}^{\mathbf{2}}$	$\mathbf{£ 1 5 0 1 . 5 2}$
A	$£ 900$	18%	5		
B	$£ 4000$	25%	6		
C	$£ 350$	10%	10		
D	$£ 148$	2%	10		
E	$£ 100,000$	2.5%	50		
F	$£ 500$				

2. Challenge:
b) If the compound interest rate is 4%, the money is invested for 2 years, and the end amount is $£ 2163.20$, what was the starting amount?

Example 1

You deposit $£ 400$ in to a bank account paying 5\% simple interest per year. How much interest would you have earned after 3 years?

Example 2

You deposit $£ 345$ in to a bank account paying 7% simple interest per year. How much would interest would you earn after 5 years?

Example 3

You take out a loan of $£ 800$ and the bank charges you 15\% compound interest per year. If you don't pay off any of the loan in 4 years, how much would you owe the bank?

Example 4

You invest $£ 4000$ in a fund which earns an 11% compound return per year. How much would the fund be worth after 10 years?

Best Buys

which is the best buy? (better value)

£1.25
500 g

$£ 2.48$
1 kg

$£ 4.98$ 2 kg
which is the best buy? (better value)

which is the best buy? (better value)

500 g
£2.21

300 g
£1.32

200 g
87p

Which is the Best Buy?

(1)

(2)

(4)
(3)

Which is the Best Buy?

£2.00
80 tea bags

£3.55
150 tea bags

$£ 5.30$
220 tea bags

Resources

Exercises

- Unitary Method https://corbettmaths.com/wp-
content/uploads/2018/11/Unitary-Method-pdf.pdf
- Compound Interest: https://corbettmaths.com/wp-content/uploads/2019/09/Compound-Interest-pdf-1.pdf and https://corbettmaths.com/wp-
content/uploads/2013/02/compound-interest-pdf1.pdf
- Textbook pg 56 ex9
- CIMT pg 1662

Extensions

- https://handsworthgrammar-
my.sharepoint.com/:f:/g/personal/gdhillow handsworth bham sch uk/EIRWAVN8sgVFnbjKUAgEhcUBCOr552yy4epOZSicAlbqH g?e=I3VqeB

Extra Notes

Extra Notes

Percentage Mixed Problems

A1	
A bank pays 2.5% interest on its current account.	Rosie took a science test and scored 41 marks out of 45 .
Write 2.5% as a decimal.	Express 41 out of 45 as a percentage.
B1	B2
Ayesha plays hockey.	Between 2001 and 2011, the
Last year Ayesha scored 8 goals. This year Ayesha scored 13 goals.	population of a town increased by 8%
Calculate the percentage increase in for the number of goals scored.	In 2001 the population was 34342 . Calculate the population in 2011.
C1	C2
Rohan invested $£ 3000$ for 4 years in a savings account. He was paid 2.5% per annum compound interest.	Susanna invested $£ 2000$ for 3 years at 4% interest per annum compound interest.
How much did Rohan have in his savings account after 4 years?	Work out the amount of interest Susanna had earned after 3 years.
D1	D2
In a sale, normal prices were reduced by 25%. The sale price of a computer was $£ 442$.	In a sale, all prices are reduced by 15%. The sale price of a shirt is $£ 22.40$.
Work out the normal price of the computer.	Work out the original price of the shirt.

Percentage Mixed Problems

A3	A4

A school has 80 staff. 15% of the staff wear glasses.
Calculate the number of staff that wear glasses.

B3

In a sale, normal prices were reduced by 20%. The normal price of a camera was $£ 180$.

Work out the sale price of the camera.

C3

Anya bought a car for $£ 12500$.
The car depreciates at a rate of 12% per year.
Work out the value of the car after five years.

D3

The price of a new TV is $£ 540$, which includes 20% VAT.

Find the cost of the TV excluding VAT.

A4

56% of students in a school are girls. There are 420 girls in the school.
Work out the total number of students in the school.

B4

Justin bought some clothes. The clothes should have cost $£ 84.00$ but he got a discount of 15%.
Work out how much money Justin saved.

C4

The price of shoes was increased by 15%. However, customers were given a 20% discount if they bought two pairs at the same time.
Work out the cost of two pairs of shoes that originally cost $£ 68$ each.

D4

Natasha invested some money at 4\% per annum compound interest.
At the end of two years, the value of her investment was $£ 3380$.
Find the amount of money that Natasha invested.
https://handsworthgrammar-
my.sharepoint.com/:b:/g/personal/gdhillow handsworth bham sch uk/E QAXUROzN7NNghNKIoKmpmMBLCORtE-82enL6iAPbiMgiQ?e=ma4iYb

Simple, Compound Interest, Depreciation, Growth \& Decay (H)

A collection of 9-1 Maths GCSE Sample and Specimen questions from AQA, OCR, Pearson-Edexcel and WJEC Eduqas.

Name:	
Total Marks:	

1. (a) During an experiment, a scientist notices that the number of bacteria halves every second.

There were 2.3×10^{30} bacteria at the start of the experiment.
Calculate how many bacteria were left after 5 seconds.
Give your answer in standard form correct to two significant figures.
(b) In a different experiment the number of bacteria is reduced by a quarter each second. On this occasion the number of bacteria initially was x.
Write a formula to calculate the number of bacteria, r, remaining after t seconds.
2. The value of a car $£ \mathrm{~V}$ is given by

$$
V=20000 \times 0.9^{t}
$$

where t is the age of the car in complete years.
(a) Write down the value of V when $\mathrm{t}=0$.
(a) $£$
(b) What is the value of V when $\mathrm{t}=3$?
(b) $£$
(c) After how many complete years will the car's value drop below $£ 10000$?
(c)
[2]
3. Katy invests $£ 2000$ in a savings account for 3 years.

The account pays compound interest at an annual rate of
2.5\% for the first year
$x \%$ for the second year
$x \%$ for the third year
There is a total amount of $£ 2124.46$ in the savings account at the end of 3 years.
Work out the rate of interest in the second year.
4. Louis and Robert are investigating the growth in the population of a type of bacteria. They have two flasks A and B.

At the start of day 1, there are 1000 bacteria in flask A.
The population of bacteria grows exponentially at the rate of 50% per day.
(a) Show that the population of bacteria in flask A at the start of each day forms a geometric progression.

The population of bacteria in flask A at the start of the 10 th day is k times the population of bacteria in flask A at the start of the 6th day.
(b) Find the value of k.

At the start of day 1 there are 1000 bacteria in flask B.
The population of bacteria in flask B grows exponentially at the rate of 30% per day.
(c) Sketch a graph to compare the size of the population of bacteria in flask A and in flask B.
5. Here are the interest rates for two accounts.

Account A
Interest:
3\% per year compound
interest.
:---
end of three years.

Account B
Interest:
4% for the first year,
3% for the second year
and
2% for the third year,
Withdrawals allowed at
any time.

Derrick has $£ 10000$ he wants to invest.
a) Calculate which account would give him most money if he invests his money for 3 years.

Give the difference in the interest to the nearest penny.
a) Account \qquad by
(b) Explain why he might not want to use Account A.
6. The population, P, of an island t years after January 1 st 2016 is given by this formula.

$$
P=4200 \times 1.04^{t}
$$

a) What was the population of the island on January 1st 2016?
(a)
b) Explain how you know that the population is increasing.
c) What is the annual percentage increase in the population?
c)
d) Work out the population of the island on January 1st 2021.
d)
7. Toby invested $£ 7500$ for 2 years in a savings account.

He was paid 4\% per annum compound interest.
How much money did Toby have in his savings account at the end of 2 years?
$£$
[2]
8. Ibrar bought a house for $£ 145000$

The value of the house depreciated by 4% in the first year.
The value of the house depreciated by 2.5% in the second year.
Ibrar says,
" $4+2.5=6.5$ so in two years the value of my house depreciated by 6.5% "
a) Is Ibrar right?

You must give a reason for your answer.

The value of Ibrar's house increases by $\mathrm{x} \%$ in the third year. At the end of the third year the value of Ibrar's house is $£ 140000$
b) Work out the value of x.

Give your answer correct to 3 significant figures.
9. Ian invested an amount of money at 3\% per annum compound interest. At the end of 2 years the value of the investment was $£ 2652.25$
a) Work out the amount of money Ian invested.
\qquad

Noah has an amount of money to invest for five years.

| Saver Account |
| :--- | :--- |
| 4% per annum
 compound interest.\quadInvestment Account
 21% interest paid at the
 end of 5 years. |

Noah wants to get the most interest possible.
b) Which account is best?

You must show how you got your answer.
10. A virus on a computer is causing errors.

An antivirus program is run to remove these errors.
An estimate for the number of errors at the end of t hours is $10^{6} \times 2^{-t}$
a) Work out an estimate for the number of errors on the computer at the end of 8 hours.
b) Explain whether the number of errors on this computer ever reaches zero.
11. The population of a city increased by 5.2% for the year 2014

At the beginning of 2015 the population of the city was 1560000
Lin assumes that the population will continue to increase at a constant rate of 5.2% each year.
a) Use Lin's assumption to estimate the population of the city at the beginning of 2017 Give your answer correct to 3 significant figures.
b) (i) Use Lin's assumption to work out the year in which the population of the city will reach 2000000
ii) If Lin's assumption about the rate of increase of the population is too low, how might this affect your answer to (b)(i)?

12 The number of slugs in a garden t days from now is p_{t} where

$$
\begin{aligned}
& p_{0}=100 \\
& p_{t+1}=1.06 p_{t}
\end{aligned}
$$

Work out the number of slugs in the garden 3 days from now.
13. The number of bees in a beehive at the start of year n is P_{n}.

The number of bees in the beehive at the start of the following year is given by

$$
P_{n+1}=1.05\left(P_{n}-250\right)
$$

At the start of 2015 there were 9500 bees in the beehive.
How many bees will there be in the beehive at the start of 2018 ?
14. An amount of money was invested for 8 years.

It earned compound interest at 2.5% per year.
After 8 years the total value of the investment was $£ 11696.67$
a) Tom is trying to work out the total interest earned.

Tom

Interest for 8 years $=£ 11696.67 \times 0.025 \times 8$

State what is wrong with Tom's method.
b) Work out the total interest earned.
15. On 1st January 2012 Beth invested some money in a bank account.

The account pays 2.5% compound interest per year.
On 1st January 2013 Beth withdrew $£ 1000$ from the account.
On 1st January 2014 she had $£ 17466$ in the account.
Work out how much money Beth originally invested in the account.

