

## Year 9 <br> Mathematics UNIT 3



Name:

Class:

## CONTENTS PAGE

## 2 Pre-requisite skills Angle rules

12 Angles in polygons
45 Rotation and Translation
69 Prerequisite skills for Pythagoras
75 Pythagoras' Theorem

Please see unit 3 course on drfrostmaths.com


## PRE-REQUISITES

What you should know from previous years:

K103: Angles on a line.
K104: Angles about a point.
K107: Angles in a triangle.
K108: Angles in a triangle where one side is extended.
K307: Vertically opposite angles.
K301: Angles in an isosceles triangle.
K302: Find an angle in an isosceles triangle using angles on parallel lines.
K305: Alternate angles on parallel lines.
K306: Corresponding angles on parallel lines.
K308: Cointerior (allied) angles on parallel lines.
K309: Angles in a quadrilateral.

## NEED TO KNOW

## POLYGONS

## Definition <br> Literally translates to "many angles". Generally recognised as a 2D shape made up of 3 or more connected straight lines.

## Examples



Characteristics

- Made of connected straight lines (no gaps)
- Flat shape


## Non Examples




Quadrilatera



## REGULAR POLYGONS

| Definition <br> A polygon with all sides <br> equal sized and all interior <br> angles equal sized. | Characteristics <br> - All connected straight <br> sides <br> - All sides equal sized <br> - <br> All angles equal sized |
| :--- | :--- |
| Examples | Non Examples |

## Interior and Exterior Angles



- The interior angles of a polygon are on the inside.
- The exterior angles of a polygon are on the outside.
- The interior and exterior angles form a straight line.


Search: Keyword Topic: 5. Exerior angles Generate


## Polygons - interior and Exterior Angle Rules

## ALL POLYGONS

Interior angle + exterior angle $=180^{\circ}$

Sum of interior Angles $=(n-2) \times 180^{\circ}$

Sum of exterior Angles $=360^{\circ}$
n - number of sides

## REGULAR POLYGONS

$E A C H$ exterior angle $=\frac{360^{\circ}}{n}$
$E A C H$ interior angle $=180^{\circ}-\frac{360^{\circ}}{n}$
$n$ - number of sides

| Name | Number of <br> angles | Sum of <br> interior angles | Size of one <br> interior angle <br> in a regular <br> polygon | Size of one <br> exterior angle <br> in a regular <br> polygon |
| :---: | :---: | :---: | :---: | :---: |
| Octagon |  | 3 |  |  |
| Hexadecagon |  | $360^{\circ}$ | $90^{\circ}$ |  |
| Pentadecagon | 15 | $250^{\circ}$ |  | $45^{\circ}$ |
|  |  |  | $156^{\circ}$ |  |
|  | 12 | $720^{\circ}$ | $120^{\circ}$ |  |
|  |  | $1620^{\circ}$ |  | $72^{\circ}$ |

Page 15

## Fluency practice

The diagrams are not drawn accurately

1. Find the sum of the interior angles in each polygon
a - 12 sides
b. 15 sides
c. 18 sides
d. 22 sides
e. 25 sides
f. 30 sides g. 52 sides h. 120 sides

2 . Find the value of $x$
$a$.


c.


e.


3. Find the number of sides each polygons has, given the sum of the interior angles
a. $1800^{\circ}$
b. $1980^{\circ}$
c. $3060^{\circ}$ d. $3240^{\circ}$
e. $3780^{\circ}$
f. $5940^{\circ}$
g. $9720^{\circ}$
h. $14220^{\circ}$
4.

The polygon has one line of symmetry.
Find the value of $x$.

5. Find the value of $x$ (and $y$ )


Page 16

Angles in Polygons
Videos 32 on Corbettmaths

## Examples

## Workout

Question 1: Find the missing angle in each irregular polygon
(a)

(b)

(d)

(e)

(g)

(h)

(j)

(k)

(c)

(f)

(i)

(1)


Angles in Polygons Videos 32 on Corbettmaths
(n)


Question 2: Work out the sum of the interior angles for polygons with
(a) 10 sides
(b) 14 sides
(c) 20 sides
(d) 45 sides
(e) 50 sides
(f) 8osides
(g) 100 sides
(h) 200sides

Question 3: Work out the number of sides of polygons with these sum of interior angles
(a) $1260^{\circ}$
(b) $2880^{\circ}$
(c) $3960^{\circ}$
(d) $5040^{\circ}$
(e) $12240^{\circ}$
(f) $15840^{\circ}$
(g) $2340^{\circ}$
(h) $89640^{\circ}$

Question 4: Each of the polygons below are regular. Calculate the size of each interior angle, $x$.
(a)

(d)
(e)

(b)

(c)

(f)



## Polygons and angles

| Worked Example | Thinking | Your Turn |
| :--- | :--- | :--- |
| These are regular polygons. |  |  |
| Find $x$ |  |  |

Polygons and angles

| Worked Example | Thinking |  |
| :--- | :--- | :--- |
| These are regular polygons. |  |  |
| Find $x$ |  |  |

Polygons and angles

| Worked Example | Thinking | Your Turn |
| :--- | :--- | :--- |
| A regular polygon has an exterior <br> angle of $30^{\circ}$. How many sides does it <br> have? |  | A regular polygon has an exterior <br> angle of $60^{\circ}$. How many sides does it <br> have? |
| A regular polygon interior angles of <br> size $135^{\circ}$. How many sides does it <br> have? |  | A regular polygon has interior angles <br> of size $120^{\circ}$. How many sides does it <br> have? |
|  |  |  |
|  |  |  |
|  |  |  |

Polygons and angles

| Worked Example | Thinking | Your Turn |
| :--- | :--- | :--- |
| In a quadrilateral, the four angles are <br> listed from largest to smallest. Each <br> angle is three times the previous <br> angle. <br> What are the angles? |  | In a quadrilateral, the four <br> angles are listed from largest to <br> smallest. Each angle is one third <br> of the previous angle. <br> What are the angles? |
|  |  |  |

Polygons and angles

| Worked Example | Thinking | Your Turn |
| :---: | :---: | :---: |
| Calculate $x$ and $y$ |  | Calculate $x$ and $y$ |

Polygons and angles

| Worked Example | Thinking | Your Turn |
| :--- | :--- | :--- |
| In a quadrilateral, the four angles are <br> listed from largest to smallest. Each <br> angle is three times the previous <br> angle. <br> What are the angles? |  | In a quadrilateral, the four <br> angles are listed from largest to <br> smallest. Each angle is one third <br> of the previous angle. <br> What are the angles? |
|  |  |  |

## Angles in Polygons

Videos 32 on Corbettmaths

## Question 6: Each of the polygons below are regular.

 Calculate the size of each exterior angle, $y$(a)

(b)

(c)

(d)

(e)

(f)

Question 7: Calculate the size of each exterior angle in regular polygons with
(a) 15 sides
(b) 18 sides
(c) 20 sides
(d) 24 sides
(e) 30sides
(f) 36 sides
(g) 40sides
(h) 45 sides
(i) 60 sides
(j) 72 sides
(k) 90 sides
(l) 200sides

Question 8: Shown below is one interior angle from regular polygons. Calculate how many sides the polygons have.
(a)

(d)
(b)

(c) $\qquad$
(e)

(f)
$1725^{\circ}$

Question 1: In each diagram below, two regular polygons are shown. Calculate x .
(a)

(b)
(c)



Question 2: Shown is a regularpentagon. Find y


Question 3: A regular polygon has 18 sides.
Calculate the size of each interior angle

Question 4: A regular polygon has 30 sides. Calculate the size of each interior angle

Question 5: Explain why this cannot be an interior angle from regular polygons.

$$
173^{\circ}
$$

Question 6: A polygon has an interior angle that is Vivetimes larger than the exterior angle. How many sides does it have?

Question 7: Explain why regular hexagons tessellate.

Question 8: Explain why regular pentagons do nottessellate.

## Answers

## Problem Solving with Interior/Exterior Angles

There are variety of skills that harder questions involving interior/exterior angles might involve:
\#1: Tessellation
Shapes 'tessellate' if they fit together, without overlap, to

"The above repeating pattern consists of three regular polygons, A (hexagon), B (square) and C. Determine how many sides C has."
\#2: Using isosceles triangles

" $A B C D$ is a square and CDEFGH is a regular hexagon. Determine the angle CBH."

## Problem Solving with Interior/Exterior Angles

Your attempt

[IMC 2006 Q19] The diagram shows a
regular pentagon and a regular hexagon which overlap. What is the value of $x$ ?

## Corrections/notes:

## Problem Solving with Interior/Exterior Angles

[Edexcel GCSE Nov2012-1H Q18] The pattern is made from two types of tiles, tile A and tile B.
Both tile $A$ and tile $B$ are regular polygons.
Work out the number of sides tile $A$ has.

## Corrections/notes:



Your attempt

Diagram NOT
accurately drawn

| Worked Example | Your Turn |
| :--- | :--- | :--- |
| This repeating pattern consists of |  |
| three regular polygons, A (hexagon), B |  |
| (square) and C . Determine how many |  |
| sides C has. |  |


| Worked Example | Thinking | The diagram shows a regular pentagon and a <br> regular hexagon which overlap. What is the value <br> of $x$ ? |
| :--- | :--- | :--- |
| [Edexcel GCSE June2016-2H Q12] The diagram <br> shows a regular pentagon. $A B$ and $C D$ are two of <br> the lines of symmetry of the pentagon. Work out <br> the size of the angle marked $x$. |  |  |


| Worked Example | Thinking | Your Turn |
| :---: | :--- | :--- |
| $A B C D$ is a square and $C D E F G H$ is a regular |  |  |
| hexagon. Determine the angle $C B H . "$ |  |  |

## Exercise 3

1
[KS3 SATs 2004 L6-L8 Paper 2 Q19 Edited]
A pupil has three tiles. One is a regular octagon, one is a regular hexagon, and one is a square. The side length of each tile is the same. The pupil says the hexagon will fit exactly like this. Is the pupil correct?


[Edexcel IGCSE Nov2009-3H Q3a] The diagram shows a regular octagon, with centre O. Work out the value of $x$.


3 [Edexcel IGCSE Nov-2010-4H Q13] The size of each interior angle of a regular polygon is 11 times the size of each exterior angle. Work out the number of sides the polygon has.


[Edexcel GCSE Nov2014-1H Q17] ABCDEFGH is a regular octagon. BCKFGJ is a hexagon. $J K$ is a line of symmetry of the hexagon. Angle $B J G=$ angle $C K F=140^{\circ}$. Work out the size of angle KFE.

## Exercise 3

5


A regular polygon $A$ is surrounded by squares and equilateral triangles in an alternating pattern, as shown. Show that $A$ is a hexagon.


A regular polygon $B$ with $n$ sides is surrounded by squares and regular pentagons in an alternating pattern, as shown. Determine the value of $n$.

## Exercise 3

7 [IMC 2003 Q22] The diagram shows a regular dodecagon (a polygon with twelve equal sides and equal angles). What is the size of the marked angle?

[IMC 2005 Q14] Ten stones, of identical shape and size, are used to make an arch, as shown in the diagram. Each stone has a crosssection in the shape of a trapezium with three equal sides. What is the size of the smallest angles of the trapezium?


[IMC 2018 Q18] The diagram shows a regular pentagon and an equilateral triangle placed inside a square. What is the value of $x$ ?

## Exercise 3

11 Find all regular polygons which tessellate (when restricted only to one type of polygon).


By thinking about interior angles, prove that the regular polygons you identified above are the only regular polygons which tessellate.


## Exam Questions


$A B D E P$ is a regular pentagon.
$Q P E X$ is part of a regular octagon.
$P A R Q$ is a parallelogram.
Calculate the size of angle $P A R$.

## Exam Questions


$A B D E P$ is a regular pentagon.
$Q P E X$ is part of a regular octagon.
$P A R Q$ is a parallelogram.
Calculate the size of angle $P A R$.
(YCXI- AQA Higher: November 2017 Paper 3, Q8
$1 \quad A B C D$ is a parallelogram.
Not drawn accurately


Prove that $a=b$

[3 marks] 1 The diagram shows a triangle and a trapezium.
$\qquad$
$\qquad$
[4 marks]

## Rotations

A transformation that turns all points through a given angle, in a given direction, around a given centre.

- Shapes turn around a centre point.
- Produces a congruent shape.

To fully describe a rotation you need to give four pieces of information:

1. Type of Transformation: Rotation
2. Angle (in degrees): $90^{\circ}, 180^{\circ}, 270^{\circ}$
3. Direction: Clockwise or Anticlockwise
4. Centre of Rotation: Coordinate $(x, y)$

## Worked Example

Rotate $90^{\circ}$ clockwise about the origin


Rotate $90^{\circ}$ anticlockwise about the origin


## Your Turn

Rotate $90^{\circ}$ clockwise about the origin


Rotate $90^{\circ}$ anticlockwise about the origin





## Rotations

Video 275 onwww．corbettmaths．com

## 回的品 <br> 

## Scan here

Question 1：Rotate each of the shapes below as instructed，using $P$ as the centre of rotation．
（a）

rotate $90^{\circ}$ clockwise about $P$ （d）

rotate $180^{\circ}$ about $P$
（g）

rotate $90^{\circ}$ clockwise about $P$
（b）

rotate $90^{\circ}$ anticlockwise about $P$
（e）

（h）

rotate $270^{\circ}$ clockwise about P
（c）

otate $90^{\circ}$ clockwise about $P$ （f）

rotate $180^{\circ}$ about $P$
（i）

rotate $270^{\circ}$ anticlockwise about $P$ Corbett
moths

Rotations
Video 275 onwww．corbettmaths．com

Question 2：Rotate each of the shapes below as instructed，using the origin，（ 0,0 ），as the centre of rotation．

rotate $90^{\circ}$ clockwise about $(0,0)$
（e）

（h）

（c）


rotate $180^{\circ}$ about $(0,0)$
（i）


Rotations
Video 275 onwww．corbettmaths．com

Question3：

rotate $90^{\circ}$ anticlockwise about $(0,1)$
（d）

rotate $90^{\circ}$ anticlockwise about（ $-4,0$ ）
（g）

rotate $90^{\circ}$ clockwise about $(5,0)$
（b）

rotate $90^{\circ}$ clockwise about（ $-1,-2$ ）
（e）

（h）

（c）

（f）

（i）

rotate $180^{\circ}$ about（ 1,1 ） Corbett
maths

Rotations
Video 275 onwww．corbettmaths．com

Question4：Describe fully the single transformation that takes shape A to shape B．
（a）

（d）
（b）

（e）

（c）

（f）


Answers
回配酸回


Scan here



## EXAM QUESTIONS



Rotate triangle A $90^{\circ}$ clockwise about $(4,3)$.
(Total for question 1 is $\mathbf{2}$ marks)


Describe fully the single transformation that maps triangle A on triangle B.


Rotate shape A $180^{\circ}$ about $(1,0)$
(Total for question 3 is $\mathbf{2}$ marks)
4


Describe fully the single transformation that maps triangle A on triangle B.

5

(Total for question 5 is $\mathbf{2}$ marks)

6


Rotate shape A $90^{\circ}$ clockwise about centre $O$.

7


Describe fully the single transformation that maps triangle A on triangle B.


Describe fully the single transformation that maps triangle $\mathbf{P}$ on triangle $\mathbf{Q}$.

## A transformation that moves all points the same fixed distance.

- Shapes move or "slide" a distance horizontally and/or vertically.
- On a rectangular grid, often described using a column vector.

To fully describe a translation, you need to give two pieces of information:

1. Type of Transformation: Translation
2. Column Vector: $\binom{x}{y}$ where $x$ is movement right or left and $y$ is movement up or down. Right and up are taken to be positive.




| Worked Example | Your Turn |
| :--- | :--- |
| A point $(2,-5)$ is translated by the vector $(-3,7)$. <br> What is the image of the point after the <br> transformation? | A point $(-2,5)$ is translated by the vector $(7,-3)$. <br> What is the image of the point after the <br> transformation? |
|  |  |
| A point $(11,-13)$ is translated by the vector |  |
| $(0,-5)$. What is the image of the point after the |  |
| transformation? |  |

## Translations

Video 325, 326 on www.corbettmaths.com


Question 1: Translate each of the shapes below as instructed.
(a)
(b)

Translate B by $\binom{2}{-2}$

(e)

Translate E by $\binom{-2}{-4}$
(c)

Translate $\boldsymbol{C}$ by $\binom{0}{-5}$
(f)


Question 2: Describe fully each translation that takes shape A to shape
(a)

(b)



Corbett
maths

## Translations

Video 325, 326 on www.corbettmaths.com

Question 3: Translate each of the shapes below as instructed
(a)


Translate B by $\binom{6}{1}$
(c)

Translate $C$ by $\binom{-1}{5}$


Translate D by $\binom{-3}{-2}$
(e)


Translate E by $\binom{4.5}{-4}$


Translate F by $\binom{-1}{1}$

Question 4: Describe fully the single transformation that takes shape A to shape $B$
(a)

(b)


## Translations

Video 325， 326 on www．corbettmaths．com
（c）

（d）


Question 5：The translation vector to take shape $C$ to shape $D$ is $\quad\binom{2}{-5}$
What translation vector takes shape $D$ to shape $C$ ？
Question 6：Edward has been asked to translate shape E by $\binom{-4}{2}$
He has labelled his answer shape $F$
Can you spot any mistakes？

(YCND
1

(a) Rotate trapezium $\mathbf{F} 180^{\circ}$ about the origin. Label the new trapezium $\mathbf{A}$.


(a) Rotate shape $\mathbf{G} 90^{\circ}$ anticlockwise about centre $O$.

(b) Describe fully the single transformation that maps shape $\mathbf{C}$ onto shape $\mathbf{D}$.

1


Describe fully the single transformation that maps triangle A on triangle B
$\qquad$
(Total for question 1 is 2 marks)

2


Translate triangle $\mathbf{A}$ by the vector $\binom{5}{-3}$

## EXAM QUESTIONS

5


Describe fully the single transformation that maps shape A onto shape B.
(Total for question 5 is $\mathbf{2}$ marks)
6

Translate shape A by the vector
()

7


Describe fully the single transformation that maps triangle A on triangle B
$\qquad$

8



## Invariance activity



Amber
Match the transformation to the invariant points for the triangle ABC
(a) Reflection in the line $y=7$
(b) Reflection in the line $\mathrm{y}=\mathrm{x}-5$
(c) Rotation around the centre $(7,7)$
(d) Reflection in the line $x+y=4$
(e) Reflection in the line $\mathrm{y}=\mathrm{x}$
(f) Reflection in the line $x=7$
(g) Reflection in the line $y=2 x-2$
(h) Reflection in the line $y=1 / 2 x+1$

## Red

Complete these sentences:
a) When triangle $A B C$ is reflected in the line $y=2$ the invariant points are $\qquad$ \& $\qquad$
b) When triangle $A B C$ is rotated using centre $(7,2)$, the invariant point is $\qquad$
$\qquad$
c) When triangle $A B C$ is reflected in the line $y=x$, the invariant points are $\qquad$ \& $\qquad$
d) When triangle $A B C$ is reflected in the line $x+y=9$, the invariant point is
e) When triangle $A B C$ is.
the invariant points are $A$ and $B$.
f) When triangle $A B C$ reflected in the line the only invariant point is $C$.


## Green

Write a transformation that would leave the correct points in the triangle $A B C$ invariant for each region of the Venn diagram. Try and put at least one transformation in each region.

I


| Worked Example | Thinking | Your Turn |
| :---: | :---: | :---: |
| Solve the following leaving your answer to 3s.f. <br> a) $10+b^{2}=15$ <br> b) $a^{2}+15=35$ <br> c) $5^{2}+b^{2}=60$ |  | Solve the following leaving your answer to 3s.f. <br> a) $5+b^{2}=15$ <br> b) $a^{2}+15=50$ <br> c) $8^{2}+b^{2}=60$ |

## KEY WORD: HYPOTENSUE - HY-POT-EN-USE



From the Greek derived hypo meaning 'under' and teinein meaning 'to stretch'.


The two sides that aren't the hypotenuse are known as legs.


The hypotenuse is the side that stretches from one leg to another.



Page 73

Possible and impossible triangles - can you explain why you know why the triangles drawn are possible or impossible? Can you add more examples?


## Pythagoras' Theorem



In any right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

In other words:

$$
a^{2}+b^{2}=c^{2}
$$

Note: $a$ and $b$ can be labelled in any order but $c$ has to be the hypotenuse i.e the triangle could be labelled like this:

a

Can you think of triangles where the three lengths DO NOT obey Pythagoras's theorem?


| Worked Example | Thinking | Your Turn |
| :---: | :---: | :---: |
| Calculate the unknown side in <br> this triangle. Give your answer to <br> 2 decimal places. |  | Calculate the unknown side in <br> this triangle. Give your answer to <br> 2 decimal places. |

Use Pythagoras' theorem to find the length of the hypotenuse marked? in each of these right-angled triangles.






12


## Extension

equilateral triangle or not?


| Worked Example | Thinking | Your Turn |
| :--- | :--- | :--- |
| Work out if this triangle is right- <br> angled or not. | Converse of Pythagoras' <br> Theorem If Pythagoras' <br> theorem holds true, then <br> the triangle must be right- <br> angled. | Work out if this triangle is right- <br> angled or not. |
| 8 cm | 8 cm |  |

## EXERCISE:

Use Pythagoras' theorem to decide whether each of these triangles is right-angled or not.


5


13


14



15


Page 80

## Extension

Cristiano Ronaldo is jealous of Paul Pogba's dab, so Pogba tries to demonstrate that his dab is perfect.
According to the book 'the Universal Declaration of the
Rights of the Dab', a dab is only perfect if both triangles represented in the figure below are right angled.

## Is Paul Pogba's dab perfect?



| Worked Example |  | Thinking | Your Turn |
| :---: | :---: | :---: | :---: |
| Calculate the unknown side in <br> this triangle. |  | NON-CALC |  |


| Worked Example | Thinking | Your Turn |
| :---: | :---: | :---: |
| Calculate the unknown side in this triangle. Give your answer to 2 decimal places. |  | Calculate the unknown side in this triangle. Give your answer to 2 decimal places. |

## EXERCISE:

## Use Pythagoras' theorem to find the length of the edge marked ?, OR decide whether the triangle is right-angled or not

Drawings are NOT to scale.

6



| Worked Example | Thinking | Your Turn |
| :---: | :---: | :---: |
| Find the length of AB where |  | Find the length of AB where <br> $A(-1,-4)$ and $B(4,3)$. <br> $A(-2,-3)$ and $B(8,11)$. |
|  |  |  |

## Questions

Give each answer to 2 decimal places.
Question 1: Calculate the length of the line joining the points $A$ and $B$.
(a)

(b)

(c)


Question 2: Calculate the length of the line joining the points $A$ and $B$.
(a)

(b)

(c)


Question 5: Calculate the distance between the following pairs of coordinates
(a) $(5,1)$ and $(9,6)$
(b) $(1,4)$ and $(10,10)$
(c) $(0,0)$ and $(6,8)$
(d) $(2.5,3)$ and $(8,0)$
(e) $(-6,2)$ and $(8,3)$
(f) $(-5,-9)$ and $(-3,8)$
(g) $(-5,7)$ and $(-3,-2)$
(h) $(-9,-9)$ and $(3,-20)$
(i) $(-4,0)$ and $(0,-4)$

| Worked Example | Thinking | Your Turn |
| :---: | :---: | :---: |
| Calculate x . |  | Calculate y. |


| Worked Example | Thinking | Your Turn |
| :---: | :---: | :---: |
| Find the area of this triangle. |  | Find the area of this triangle. |
| 10 cm |  |  |


| Worked Example | Thinking | Your Turn |
| :---: | :---: | :---: |
| Calculate x. | Calculate x . |  |
| 13 cm |  |  |

Maths4EVEY'IONe.com

## PYTHAGORAS

## MIXED QUESTIONS

Ref: G451.
A1 Find length $B C$

## Surds and Pythagoras

generalising pythagoras surd families (i)
(1)


- .

(3)

-••
generalising pythagoras surd families (ii)
(1)

. . .

Calculate the perimeter


Calculate the exact area, giving your answer in simplified form

The Equilateral Triangle


$$
2 x-10
$$

The perimeter is 21 m , what is the value of $x$ ?


A square has the same perimeter as the triangle. Find the area of the square.

Calculate the perimeter of the rectangle.

$$
\begin{array}{lll}\text { D } & \sqrt{27} & \text { B } \\ \text { A } & \sqrt{12}\end{array}
$$

Calculate the length $A C$.


Calculate the area of the rectangle.


Write the ratio of $A B: B C$ in its simplest form.


## GCSE

(ICSIE - Edexcel Higher: June 2017 Paper 2, Q21
1 The diagram shows 3 identical circles inside a rectangle.
Each circle touches the other two circles and the sides of the rectangle, as shown in the diagram.


The radius of each circle is 16 mm .
Work out the area of the rectangle.
Give your answer correct to 3 significant figures.

1 This rectangular frame is made from 5 straight pieces of wood.


The weight of the wood is 2.5 kg per metre.
Work out the total weight of the wood in the frame.

The point A is shown on the unit grid below.
The point $B$ is $2 \sqrt{5}$ units from $A$ and lies on the intersection of two grid lines. Mark one possible position for $B$.


The diagram shows a line joining O to P .

The gradient of the line is 2
The length of the line is $\sqrt{2645}$
Work out the coordinates of $P$.


The area of a right-angled, isosceles triangle is $4 \mathrm{~cm}^{2}$
Work out the perimeter of the triangle in centimetres. Give your answer in the form $a+b \sqrt{c}$, where $a, b$ and $c$ are integers.

