

Year 9 Mathematics UNIT 3

Name:

Class:

CONTENTS PAGE

- 2 Pre-requisite skills Angle rules
- 12 Angles in polygons
- **45 Rotation and Translation**
- 69 Prerequisite skills for Pythagoras
- 75 Pythagoras' Theorem

Please see unit 3 course on drfrostmaths.com

PRE-REQUISITES

What you should know from previous years:

K103: Angles on a line.

K104: Angles about a point.

K107: Angles in a triangle.

K108: Angles in a triangle where one side is extended.

K307: Vertically opposite angles.

K301: Angles in an isosceles triangle.

K302: Find an angle in an isosceles triangle using angles on parallel lines.

K305: Alternate angles on parallel lines.

K306: Corresponding angles on parallel lines.

K308: Cointerior (allied) angles on parallel lines.

K309: Angles in a quadrilateral.

NEED TO KNOW

POLYGONS

Li ai a:	efinition terally translates to "many ngles". Generally recognised a 2D shape made up of 3 or ore connected straight lines.	 <u>Characteristics</u> Made of connected straigh lines (no gaps) Flat shape
E	kamples	Non Examples
	Triangle Quadrilateral Pe	entagon Hexagon
	Heptagon Octagon No	onagon Decagon

REGULAR POLYGONS

Examples Non Examples Image: Constraint of the second s	ght	Definition A polygon with all sides equal sized and all interior angles equal sized.	 <u>Characteristics</u> All connected straight sides All sides equal sized All angles equal sized
		Examples	Non Examples

Polygons – interior and Exterior Angle Rules			
ALL POLYGONS	REGULAR POLYGONS		
Interior angle + exterior angle = 180°	EACH exterior angle = $\frac{360^{\circ}}{n}$		
Sum of interior Angles = $(n - 2) \times 180^{\circ}$	EACH interior angle = $180^{\circ} - \frac{360^{\circ}}{n}$		
Sum of exterior Angles = 360°	n – number of sides		
n – number of sides	n – number oj sides		

Name	Number of angles	Sum of interior angles	Size of one interior angle in a regular polygon	Size of one exterior angle in a regular polygon
	3			
		360°	90°	
Octagon				45°
Hexadecagon		2520°		
Pentadecagon	15		156°	
				72°
		720°	120°	
	12			
		1620°		$\frac{360}{11}$

Fluency practice

Angles in Polygons Videos 32 on Corbettmaths

Question 1: Find the missing angle in each irregular polygon

Page 17

Polygons and angles				
Worked Example	Thinking	Your Turn		
These are regular polygons. Find <i>x</i>		These are regular polygons. Find <i>x</i>		

Polygons and angles			
Worked Example	Thinking	Your Turn	
Worked Example These are regular polygons. Find x	Thinking	Your Turn	

Polygons and angles			
Worked Example	Thinking	Your Turn	
A regular polygon has an exterior angle of 30°. How many sides does it have?		A regular polygon has an exterior angle of 60°. How many sides does it have?	
A regular polygon interior angles of size 135°. How many sides does it have?		A regular polygon has interior angles of size 120°. How many sides does it have?	

Polygons and angles				
Worked Example	Thinking	Your Turn		
In a quadrilateral, the four angles are listed from largest to smallest. Each angle is three times the previous angle. What are the angles?		In a quadrilateral, the four angles are listed from largest to smallest. Each angle is one third of the previous angle. What are the angles?		

Polygons and angles				
Worked Example	Thinking	Your Turn		
In a quadrilateral, the four angles are listed from largest to smallest. Each angle is three times the previous angle. What are the angles?		In a quadrilateral, the four angles are listed from largest to smallest. Each angle is one third of the previous angle. What are the angles?		

Angles in Polygons Videos 32 on Corbettmaths

(a) 15 sides	(D) to slues	(0) 20 sides	(u) 24 sides
(e) 30 sides	(f) 36 sides	(g) 40 sides	(h) 45 sides
(i) 60 sides	(j) 72 sides	(k) 90 sides	(l) 200 sides

(a) an gidag

(d) a sides

(b) 18 gidog

(a) 1 = gidog

Cilickhere

Scan here

Page 28

Problem Solving with Interior/Exterior Angles

There are variety of skills that harder questions involving interior/exterior angles might involve:

"The above repeating pattern consists of three regular polygons, A (hexagon), B (square) and C. Determine how many sides C has."

#2: Using isosceles triangles

"ABCD is a square and CDEFGH is a regular hexagon. Determine the angle CBH."

Problem Solving with Interior/Exterior Angles

Your attempt

[IMC 2006 Q19] The diagram shows a regular pentagon and a regular hexagon which overlap. What is the value of x?

Corrections/notes:

Problem Solving with Interior/Exterior Angles

[Edexcel GCSE Nov2012-1H Q18] The pattern is made from two types of tiles, tile A and tile B.

- Both tile A and tile B are regular polygons.
- Work out the number of sides tile A has.

Your attempt

Corrections/notes:

Worked Example	Thinking	Your Turn
This repeating pattern consists of three regular polygons, A (hexagon), B (square) and C. Determine how many sides C has. $\overbrace{C}^{B} \xrightarrow{C} \xrightarrow{B} \xrightarrow{C} \xrightarrow{A} \xrightarrow{B} \xrightarrow{C} \xrightarrow{C} \xrightarrow{A} \xrightarrow{B} \xrightarrow{C} \xrightarrow{C} \xrightarrow{A} \xrightarrow{B} \xrightarrow{C} \xrightarrow{C} \xrightarrow{C} \xrightarrow{C} \xrightarrow{B} \xrightarrow{C} \xrightarrow{C} \xrightarrow{C} \xrightarrow{C} \xrightarrow{B} \xrightarrow{C} \xrightarrow{C} \xrightarrow{C} \xrightarrow{C} \xrightarrow{C} \xrightarrow{C} \xrightarrow{C} C$		The diagram shows 4 congruent regular pentagons that form the sides of an <i>n</i> -sided regular polygon. Determine the value of <i>n</i> .

Worked Example	Thinking	Your Turn
<i>[Edexcel GCSE June2016-2H Q12]</i> The diagram shows a regular pentagon. <i>AB</i> and <i>CD</i> are two of the lines of symmetry of the pentagon. Work out the size of the angle marked <i>x</i> .		The diagram shows a regular pentagon and a regular hexagon which overlap. What is the value of x?

Worked Example	Thinking	Your Turn
ABCD is a square and CDEFGH is a regular hexagon. Determine the angle CBH."		The diagram shows a square inside a regular hexagon. What is the size of the marked angle at X ?

[KS3 SATs 2004 L6-L8 Paper 2 Q19 Edited]

A pupil has three tiles. One is a regular octagon, one is a regular hexagon, and one is a square. The side length of each tile is the same. The pupil says the hexagon will fit exactly like this. Is the pupil correct?

Page 38

[Edexcel IGCSE Nov-2010-4H Q13] The size of each interior angle of a regular polygon is 11 times the size of each exterior angle. Work out the number of sides the polygon has.

[Edexcel GCSE Nov2014-1H Q17] ABCDEFGH is a regular octagon. BCKFGJ is a hexagon. JK is a line of symmetry of the hexagon. Angle BJG = angle $CKF = 140^{\circ}$. Work out the size of angle KFE.

= 140°. Work out the

[Edexcel IGCSE Nov2009-3H Q3a] The diagram shows a regular octagon, with centre O. Work out the value of x.

A regular polygon A is surrounded by squares and equilateral triangles in an alternating pattern, as shown. Show that A is a hexagon.

A regular polygon B with n sides is surrounded by squares and regular pentagons in an alternating pattern, as shown. Determine the value of n.

[IMC 2003 Q22] The diagram shows a regular dodecagon (a polygon with twelve equal sides and equal angles). What is the size of the marked angle?

8

[JMO 2014 B1]

The figure shows an equilateral triangle ABC, a square BCDE, and a regular pentagon BEFGH. What is the difference between the sizes of $\angle ADE$ and $\angle AHE$?

[IMC 2018 Q18] The diagram shows a regular pentagon and an equilateral triangle placed inside a square. What is the value of x?

Page 40

[IMC 2005 Q14] Ten stones, of identical shape and size, are used to make an arch, as shown in the diagram. Each stone has a crosssection in the shape of a trapezium with three equal sides. What is the size of the smallest angles of the trapezium?

?

Find all regular polygons which tessellate (when restricted only to one type of polygon).

By thinking about interior angles, prove that the regular polygons you identified above are the only regular polygons which tessellate.

Exam Questions

1

Edexcel (Linked Pair Pilot).

ABDEP is a regular pentagon. QPEX is part of a regular octagon. PARQ is a parallelogram.

D

A

R

P

X

E

Q

Calculate the size of angle PAR.

В

Exam Questions

1

Edexcel (Linked Pair Pilot).

ABDEP is a regular pentagon. QPEX is part of a regular octagon. PARQ is a parallelogram.

D

A

R

P

X

E

Q

Calculate the size of angle PAR.

В

Rotations

A transformation that turns all points through a given angle, in a given direction, around a given centre.

- Shapes turn around a centre point.
- Produces a congruent shape.

To fully describe a rotation you need to give four pieces of information:

- 1. Type of Transformation: Rotation
- 2. Angle (in degrees): 90°, 180°, 270°
- 3. Direction: Clockwise or Anticlockwise
- 4. Centre of Rotation: Coordinate (x, y)

Worked Example	Thinking	Your Turn
Describe the single transformation of the red object onto the green image		Describe the single transformation of the red object onto the green image
-5 0 5		
-5 0 5		-5 0 5
5	Page 49	-5

Rotations Video 275 on www.corbettmaths.com

Scan here

Question 1: Rotate each of the shapes below as instructed, using P as the centre of rotation.

rotate 90° clockwise about P

(i)

Rotations Video 275 on www.corbettmaths.com

4 5 6 3

Rotate each of the shapes below as instructed, using the origin, (0,0), as the centre of rotation.

B

Rotations Video 275 on www.corbettmaths.com

Question 3: Rotate each of the shapes below as instructed.

rotate 90° anticlockwise about (3, 0)

Rotations Video 275 on www.corbettmaths.com

Describe fully the single transformation that takes shape A to shape B. Question 4:

(f) 2 3 4 5 6 x -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 × B

6.2

rotate 180° about (1, 1)

Scan here

EXAM QUESTIONS

(Total for question 6 is 2 marks)

(Total for question 8 is 2 marks)

Translations

A transformation that moves all points the same fixed distance.

- Shapes move or "slide" a distance horizontally and/or vertically.
- On a rectangular grid, often described using a column vector.

To fully describe a translation, you need to give two pieces of information:

- 1. Type of Transformation: Translation
- 2. Column Vector: $\begin{pmatrix} x \\ y \end{pmatrix}$ where x is movement right or left and y is movement up or down. Right and up are taken to be positive.

Worked Example	Your Turn
A point (2, −5) is translated by the vector (−3, 7). What is the image of the point after the transformation?	A point $(-2, 5)$ is translated by the vector $(7, -3)$. What is the image of the point after the transformation?
A point $(11, -13)$ is translated by the vector $(0, -5)$. What is the image of the point after the transformation?	

Translations Video 325, 326 on <u>www.corbettmaths.com</u>

Scan here

Question 1: Translate each of the shapes below as instructed.

Translations Video 325, 326 on <u>www.corbettmaths.com</u>

Question 3: Translate each of the shapes below as instructed.

Question 4: Describe fully the single transformation that takes shape A to shape B

© CORBETTMATHS 2017

Translations Video 325, 326 on <u>www.corbettmaths.com</u>

© CORBETTMATHS 2017

Scan here

(Total for Question 1 is 2 marks)

(Total for Question 1 is 4 marks)

Describe fully the single transformation that maps triangle A on triangle B.

1

Describe fully the single transformation that maps shape A onto shape B.

3

EXAM QUESTIONS

Describe fully the single transformation that maps triangle A on triangle B.

Invariance activity

<u>Amber</u>

Match the transformation to the invariant points for the triangle ABC

(a) Reflection in the line y = 7	
(b) Reflection in the line $y = x - 5$	А
(c) Rotation around the centre (7, 7)	
(d) Reflection in the line $x + y = 4$	В
(e) Reflection in the line y = x	
(f) Reflection in the line x = 7	С
(g) Reflection in the line y = 2x - 2	
(h) Reflection in the line $y = \frac{1}{2}x + 1$	

<u>Red</u>

Complete these sentences:

a) When triangle ABC is reflected in the line y = 2 the invariant p	ooints are &	
b) When triangle ABC is rotated using centre (7, 2), the invariant point is		
c) When triangle ABC is reflected in the line y = x, the invariant points are		
d) When triangle ABC is reflected in the line x + y = 9, the invariant point is		
e) When triangle ABC is	the invariant points are A and B.	
f) When triangle ABC reflected in the line	the only invariant point is C.	

<u>Green</u>

Write a transformation that would leave the correct points in the triangle ABC invariant for each region of the Venn diagram. Try and put at least one transformation in each region.

Work	ed Example	Thinking		Your Turn
Solve the follow answer to 3s.f.			Solve the to 3s.f.	following leaving your answer a) 5 + $b^2 = 15$ b) $a^2 + 15 = 50$ c) $g^2 + b^2 = 60$

KEY WORD: HYPOTENSUE - HY-POT-EN-USE

From the Greek derived *hypo* meaning 'under' and *teinein* meaning 'to stretch'.

The hypotenuse is the side that stretches from one leg to another.

In each triangle that has a hypotenuse, label the hypotenuse with a letter h.

8

Possible and impossible triangles – can you explain why you know why the triangles drawn are possible or impossible? Can you add more examples?

POSSIBLE TRIANGLES

IMPOSSIBLE TRIANGLES

Worked Example	Thinking	Your Turn	
Calculate the unknown side in NON-CALC this triangle.		Calculate the unknown side in this triangle.	NON-CALC
8cm		7cm 24cm	

Worked Example	Thinking	Your Turn
Calculate the unknown side in this triangle. Give your answer to 2 decimal places.		Calculate the unknown side in this triangle. Give your answer to 2 decimal places.

Questions

Trigonometry

T/2

Worked Example	Thinking	Your Turn
Work out if this triangle is rightagled or not.	Converse of Pythagoras' Theorem If Pythagoras' theorem holds true, then the triangle must be right- angled.	Work out if this triangle is rightagled or not.

EXERCISE:

Extension

Cristiano Ronaldo is jealous of Paul Pogba's dab, so Pogba tries to demonstrate that his dab is perfect. According to the book 'the Universal Declaration of the Rights of the Dab', a dab is only perfect if both triangles represented in the figure below are right angled.

Is Paul Pogba's dab perfect?

Worked Example	Thinking	Your Turn	
Calculate the unknown side in this triangle.		Calculate the unknown side in this triangle.	NON-CALC
8cm		20cm x 29cm	

Worked Example	Thinking	Your Turn
Calculate the unknown side in this triangle. Give your answer to 2 decimal places.		Calculate the unknown side in this triangle. Give your answer to 2 decimal places.
6cm 2cm x		9cm x 5cm

EXERCISE:

Use Pythagoras' theorem to find the length of the edge marked **?, OR** decide whether the triangle is right-angled or not Drawings are NOT to scale.

© Frank Tapson 2004 [trolPT:9]

Page 83

Worke	d Example	Thinking	Your Turn
	h of AB where and B(4, 3).		Find the length of AB where A(-2, -3) and B(8, 11).

Questions

Give each answer to 2 decimal places.

Question 1: Calculate the length of the line joining the points A and B.

Question 2: Calculate the length of the line joining the points A and B.

Question 5: Calculate the distance between the following pairs of coordinates

Page 85		
(g) (−5, 7) and (−3, −2)	(h) (−9, −9) and (3, −20)	(i) (-4, 0) and (0, -4)
(d) (2.5, 3) and (8, 0)	(e) (-6, 2) and (8, 3)	(f) $(-5, -9)$ and $(-3, 8)$
(a) (5, 1) and (9, 6)	(b) (1, 4) and (10, 10)	(c) (0, 0) and (6, 8)

PYTHAGORAS MIXED QUESTIONS

Ref: G451. **1R1**

Maths 4 Everyone.com

© 2017 Maths4Everyone.com

Worksheets, Videos, Interactive Quizzes and Exam Solutions

Surds and Pythagoras

Calculate the perimeter

Calculate the exact area, giving your answer in simplified form

Edexcel Higher: June 2017 Paper 3, Q8

A square with sides of length x cm, is inside a circle. Each vertex of the square is on the circumference of the circle.

The area of the circle is 36 cm^2 .

GCSE

1

Work out the value of x. Give your answer correct to 3 significant figures.

GCSE — Edexcel Higher: June 2017 Paper 2, Q21

1 The diagram shows 3 identical circles inside a rectangle. Each circle touches the other two circles and the sides of the rectangle, as shown in the diagram.

The radius of each circle is 16 mm.

Work out the area of the rectangle. Give your answer correct to 3 significant figures.

(Total for Question 1 is 4 marks)

 mm^2

GCSE— Edexcel Higher: May 2017 Paper 1, Q5

1

This rectangular frame is made from 5 straight pieces of wood.

The weight of the wood is 2.5 kg per metre. Work out the total weight of the wood in the frame. The point A is shown on the unit grid below. The point B is $2\sqrt{5}$ units from A and lies on the intersection of two grid lines. Mark one possible position for B.

The area of a right-angled, isosceles triangle is 4 cm² Work out the perimeter of the triangle in centimetres. Give your answer in the form $a + b\sqrt{c}$, where *a*, *b* and *c* are integers.