

Year 9 Mathematics UNIT 4

Name:

Class:

Contents Page

- **1** PR Straight Line Graphs
- 2 Straight Line Graphs
- **3** Parallel and Perpendicular Lines
- 4 Linear Inequalities
- 5 Graphical Inequalities

Please see unit 4 course on drfrostmaths.com

Using percentages Maths and money Revision +Add Unit	Changing the Subject Functions Revision *Add Unit	Angles in Polygons PR Rotation and Translation Rotation and Translation PR Pythagoras' Theorem Pythagoras' Theorem
4. Reasoning with Algebra	5. Reasoning with Proportion	Revision +Add Unit 6. Representations
PR straight line graphs Straight line graphs PR Inequalities Inequalities Revision	Enlargement and similarity PR Enlargement and Similarity Right-angled Trigonometry PR rates Rates	Ratio and proportion problems Probability Algebraic representation Revision +Add Unit

Gradient and y-intercept

Worked Example	Your Turn
y = 2x - 1	y = 3x - 4
Gradient:	Gradient:
y-intercept:	y-intercept:
y = -2x + 6	y = -3x + 6
Gradient:	Gradient:
y-intercept:	y-intercept:
2x + 3y = 6	3x + 2y = 6
Gradient:	Gradient:
y-intercept:	y-intercept:

Workout Flu Click here Scan here ^a Question 1: Write down the gradient of each of these lines. (a) y = 3x + 1(b) y = 2x - 5 (c) y = 7x + 4 (d) y = 10x + 5(e) y = x - 2 (f) y = 6x (g) y = -4x + 3 (h) y = -3x - 7(i) $y = \frac{1}{2}x + 3$ (j) $y = -\frac{4}{5}x - 9$ Question 2: Write down where each of these lines cross the y-axis (y-intercept) (a) y = 2x + 3(b) y = 7x + 1 (c) y = 3x - 2 (d) y = x - 5(e) y = 2x (f) y = -4x + 6 (g) y = -5x - 3 (h) y = -3x(i) $y = \frac{4}{3}x + \frac{2}{5}$ (j) $y = -\frac{2}{3}x - \frac{1}{2}$ Question 12: Find the gradients and the y-intercepts of each of these lines (a) x + y = 10(b) x - y = 4(c) 2x + y = 6(e) 8x + 2y + 9 = 0 (f) 5x - 2y - 4 = 0(d) 3x - y = -1(g) 7x = 1 - 2y(h) 15y - 6x = 8 (i) $\frac{2}{3}x + 2y = 5$ (j) $\frac{1}{5}y - \frac{1}{2}x = 1$ (k) $\frac{2}{3}x + \frac{3}{4}y = \frac{11}{2}$

© CORBETTMATHS 2019

Worked Example	Your Turn
Write in the form $y = mx + c$ the line with:	Write in the form $y = mx + c$ the line with:
Gradient 2 and y-intercept 3	Gradient 3 and y-intercept 4
Gradient $\frac{2}{3}$ and y-intercept -3	Gradient $-\frac{5}{6}$ and y-intercept -1
Gradient $-\frac{3}{2}$ and y-intercept 0	Gradient $\frac{3}{4}$ and y-intercept 0
Gradient 0 and y-intercept 4	Gradient 0 and y-intercept -5

- Question 3: Write down the equation of the lines below
- (a) gradient of 3 and y-intercept of 6
- (c) gradient of -4 and y-intercept of 3
- (e) gradient of 1 and passing though (0, 4)
- (g) gradient of -5 and passing through the origin.

- (b) gradient of 2 and y-intercept of -1
- (d) gradient of 8 and y-intercept of 4
- (f) passing through (0, -2) with gradient 4

) (0, –9) and (9, 0)	(e) (0, −6) and (7, 8)	(f) $(-8, -10)$ and $(0, 14)$

(g) (0, 2) and (10, 7) (h) (-4, 1) and (0, 7) (i) (-4, 0) and (0, 18)

on of the line, given a point and
nt 4
с

- Question 8: Find the equation of the straight line that:
- (a) has a gradient of 4 and passes through the point (1, 10)
- (b) has a gradient of 2 and passes through the point (-3, 3)
- (c) has a gradient of 1 and passes through the point (5, 2)
- (d) has a gradient of -3 and passes through the point (-2, 8)
- (e) has a gradient of -5 and passes through the point (3, -1)
- (f) has a gradient of $\frac{1}{2}$ and passes through the point (4, 5)
- (g) has a gradient of $\frac{2}{5}$ and passes through the point (-5, -5)
- (h) has a gradient of $-\frac{2}{3}$ and passes through the point (9, 15)

© CORBETTMATHS 2019

Worked Example	Thinking	Your Turn
Worked ExampleWrite the equation of the line in the form $y = mx + c$ which passes through the points $(2, 3)$ and $(5, -9)$	Thinking	Your TurnWrite the equation of the line in the form $y = mx + c$ which passes through the points $(3, 10)$ and $(-5, 18)$

Worked Example	Thinking	Your Turn
Worked ExampleWrite the equation of the line in the form $y = mx + c$ which passes through the points $(2, -3)$ and $(7, -5)$	Thinking	Your TurnWrite the equation of the line in the form $y = mx + c$ which passes through the points $(3, -2)$ and $(-7, 5)$

(g) (-5, 4) and (5, 2) (h) (1, 6) and (5, 4) (i) (-10, -5) and (-7, 4)

Worked Example

Your Turn

Find where the line intercepts the axes:

Line	<i>x</i> -intercept	y-intercept
y = 2x + 3		
y = 3x + 2		
y = 3x - 2		
y = 2x - 3		

Find where the line intercepts the axes:

Line	x-intercept	y-intercept
y = 4x + 5		
y = 5x + 4		
y = 5x - 4		
y = 4x - 5		

Worked Example

Your Turn

Find where the line intercepts the axes:

Line	x-intercept	y-intercept
y = 3 - 2x		
y = 2 - 3x		
2x + 3y = 6		
3x + 2y = 6		

Find where the line intercepts the axes:

Line	x-intercept	y-intercept
y = 5 - 4x		
y = 4 - 5x		
4x + 5y = 20		
5x + 4y = 20		

Fluency Practice

Question 11: Find the coordinates where the following lines cross the x-axis

- (a) y = 2x + 6 (b) y = -x + 4 (c) y = 3x + 9
- (d) y = x 5 (e) y = 4x + 1 (f) y = -2x + 10
- (g) y = -4x 10 (h) y = 5x + 3 (i) $y = \frac{1}{2}x + 3$
- (j) x + y = 8 (k) 4x + 2y + 7 = 0 (l) 3x + 2y 8 = 0

Worked Example	Thinking	Your Turn
Does the point (2, 9) lie on the line $y = 4x + 1$?		Does the point $(2, 9)$ lie on the line $y = 9 - 2x$?

Question 4:

- (a) Does the point (2, 5) lie on the line y = 3x 1?
- (b) Does the point (4, 1) lie on the line y = 3x + 1?
- (c) Does the point (3, 1) lie on the line y = x 3?
- (d) Does the point (5, 7) lie on the line y = -3x + 22?
- (e) Does the point (-4, -8) lie on the line y = -2x?
- (f) Does the point (-1, 8) lie on the line y = 2x + 11?
- (g) Does the point (12, 60) lie on the line y = 7x 18? © CORBETTMATHS 2019

Worked Example	Thinking	Your Turn
y = 5x + 10		y = 4x + 12
ax + by = d		ax + by = d
Gradient:		Gradient:
<i>x</i> intercept:		<i>x</i> intercept:
<i>y</i> intercept:		<i>y</i> intercept:
Sketch:		Sketch:

			Fill in the Gap	DS		
	y = mx + c	ax + by = d	Gradient	$\pmb{\mathcal{X}}$ intercept	y intercept	Sketch
1.	y = 2x + 8					
2.		2x - y = -6				
3.			3	(-3,0)		
4.				(3,0)	(0,-9)	
5.			4		(0,-12)	
6.						12
7.				(12,0)	(0,3)	

			Fill in the Gap	DS		
	y = mx + c	ax + by = d	Gradient	$\pmb{\mathcal{X}}$ intercept	$oldsymbol{y}$ intercept	Sketch
8.	$y = -\frac{1}{3}x + 4$					
9.		4x + 3y = 12				
10.						3 4
11.			$\frac{3}{4}$	(4,0)		
12.		3x - 4y = 24				
13.			$1\frac{3}{4}$	(8,0)		
14.				No intercept	(0,-14)	

Parallel Lines

a) Write down the equation of a line parallel to $y = 2x - 3$ a) Write down the equation of a line parallel to $y = -2x + 3$ b) Write down the equation of the line that is parallel to $y = 6x + 1$ and passes through $(0, 8)$ b) Write down the equation of the line th parallel to $y = -6x - 1$ and passes through $(0, -8)$	Worked Example	Your Turn	Thinking
b) Write down the equation of the line that is parallel to $y = 6x + 1$ and passes through $(0, 8)$ b) Write down the equation of the line the parallel to $y = -6x - 1$ and passes through $(0, -8)$	a) Write down the equation of a line parallel to $y = 2x - 3$	a) Write down the equation of a line paralle to $y = -2x + 3$	ć
	b) Write down the equation of the line that is parallel to $y = 6x + 1$ and passes through $(0, 8)$	b) Write down the equation of the line that parallel to $y = -6x - 1$ and passes through $(0, -8)$	

CHCK HELE	CHCK HELE

Workout	Fluency Practice				
Question 1: Write down the equation of a line parallel to ea	ich of the following				
(a) $y = 2x + 3$ (b) $y = 5x - 3$ (c) $y = -3x + 1$	(d) $y = x - 7$				
(e) $y = -7x - 10$ (f) $y = -x$ (g) $y = 10x$	(h) $y = 4$				
(i) $x + y = 5$ (j) $2x + y - 1 = 0$ (k) $x - 2y + 5 = 0$	(1) $3x - 4y - 9 = 0$				
Question 2: Write down the equation of each of the following	ng lines				
(a) Parallel to $y = 3x + 5$ and passing through (0, 2)					
(b) Parallel to $y = 4x - 1$ and passing through (0, 6)					
(c) Parallel to $y = 5x$ and passing through $(0, -3)$	(c) Parallel to $y = 5x$ and passing through $(0, -3)$				
(d) Parallel to $y = -2x + 10$ and passing through the origin					
(e) Parallel to $x + y = 8$ and passing through $(0, -4)$					
(f) Parallel to $x - 2y + 3 = 0$ and passing through (0, 5)					
Question 3: Write down the equation of the line parallel to Line 1 and passing through A.					
(a) (b)	(c) ,				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					

© CORBETTMATHS 2016

Worked Example	Thinking	Your Turn
Write down the equation parallel to y = 4x + 1 which passes through (2, 17)		Write down the equation parallel to y = 8x + 5 which passes through (2, 26)

Worked Example	Thinking	Your Turn
Find the equation of the line parallel to		Find the equation of the line parallel to
$y = -\frac{1}{3}x - 4$ that passes through (-2, 5)		$y = -\frac{1}{2}x - 3$ that passes through (-2, 5)

Intelligent Practice

Write down the equation:

Parallel to the line	Goes through the point	Answer
y = 3x + 2	(0,7)	
y = 3x + 2	(3,0)	
y = 3x + 2	(3,7)	
y = 3x + 10	(3,7)	
y = 2x - 2	(3,7)	
y = 2x - 2	(-3,7)	
y = 2x - 2	(0,0)	

Exam Questions

Line A passes through the points (2, 1) and (5, 10) Find the equation of the line parallel to A that passes through (2,5)

Line A passes through the points (2, 1) and (5, 10) Line B passes through the points (4, 7) and (2, 1) Show that Line A and Line B are parallel

Line A passes through the points (3, 6) and (5, -2) Line B passes through the points (2, 5) and (8, k) Line A and Line B are parallel. Find the value of k.

[4]

[3]

Negative Reciprocals
Worked Example	Thinking	Your Turn
Write the negative reciprocals of: a) 6		Write the negative reciprocals of: a) 7
b) $\frac{1}{6}$		b) $\frac{1}{7}$
c) $\frac{5}{6}$		c) $\frac{2}{7}$

Question 5: Write down the negative reciprocal of each number below. (a) 4 (b) $\frac{2}{3}$ (c) -6 (d) 8 (e) $\frac{1}{2}$ (f) 1 (g) $-\frac{1}{3}$ (h) $-\frac{2}{5}$ (i) $\frac{4}{7}$ (j) $1\frac{1}{2}$ (k) $-1\frac{3}{4}$ $y = \frac{1}{2}x + 3$ $y = \frac{3}{4}x - 2$ $y = -\frac{1}{5}x + 1$ $y = -\frac{2}{3}x - 5$

Perpendicular Lines

Worked Example	Thinking	Your Turn
a) Write down the equation of a line perpendicular to $y = 2x - 3$		a) Write down the equation of a line perpendicular to $y = -2x + 3$
b) Write down the equation of the line that is perpendicular to $y = \frac{1}{2}x + 3$ and passes through $(0, -1)$		b) Write down the equation of the line that is perpendicular to $y = -\frac{1}{2}x + 3$ and passes through (0, 1)

$-\frac{1}{3}$ $-\frac{2}{5}$ $1\frac{1}{2}$ $-1\frac{3}{4}$ $\frac{4}{7}$ **Fluency Practice** -1Question 6: Write down the equation of a line perpendicular to each of the following (a) y = 4x + 2 (b) y = 2x - 7(c) y = -5x + 2 (d) y = x - 3(e) y = -x + 1 (f) $y = \frac{1}{2}x + 3$ (g) $y = \frac{3}{4}x - 2$ (h) $y = -\frac{1}{5}x + 1$ (i) $y = -\frac{2}{3}x - 5$ (j) x + y = 12 (k) x - 2y + 8 = 0 (l) 5x - 3y - 3 = 0Question 7: Write down the equation of each of the following lines (a) Perpendicular to y = 2x + 4 and passing through (0, 3)pendicul/ Parallel and Perpendicular Lines Corbett endicul maths Videos 196 and 197 on www.corbettmaths.com

- (d) Perpendicular to $y = \frac{1}{3}x 2$ and passing through the origin
- (e) Perpendicular to $y = -\frac{1}{5}x + 8$ and passing through (0, -2)

(f) Perpendicular to
$$y = -\frac{2}{9}x - 10$$
 and passing through (0, 6)

Question 8: Write down the equation of the line perpendicular to Line 1 & passing through A.

Worked Example	Thinking	Your Turn
Write down the equation perpendicular to y = 4x + 1 which passes through (8, 17)		Write down the equation perpendicular to y = 8x + 5 which passes through (16, 26)

Worked Example	Thinking	Your Turn
Find the equation of the line perpendicular to		Find the equation of the line perpendicular to
$y = \frac{1}{2}x - 4$ that passes through (-2, 5)		$y = -\frac{4}{3}x + 3$ that passes through $(-12, -5)$

Intelligent Practice

Write down the equation:

Perpendicular to the line	Goes through the point	Answer
y = -x + 2	(0,7)	
y = 2x + 2	(0,7)	
y = 2x + 2	(12,7)	
y = 3x + 2	(12,7)	
y = 3x + 2	(10,7)	
y = 3x + 2	(-12,7)	
y = 2x + 2	(0,0)	

Worked Example	Thinking	Your Turn
Worked Example Find the equation of the line perpendicular to $3x + 2y = 5$ which passes through the point (3, 7)	Thinking	Your TurnFind the equation of the line perpendicular to $2x + 3y = 5$ which passes through the point $(4, 7)$

Page 87

nnlv

Worked Example	Thinking	Your Turn
A is the point (3,8)		A is the point (3,8)
B is the point $(1, -2)$		B is the point $(1, 4)$
C is the midpoint of AB		C is the midpoint of AB
Find the equation of the line perpendicular to		Find the equation of the line perpendicular to
AB which passes through C		AB which passes through C

Worked Example	Thinking	Your Turn
ABCD is a rhombus.		ABCD is a rhombus.
A has coordinates (5, 10)		A has coordinates (5, 11)
The equation of <i>DB</i> is		The equation of <i>DB</i> is
$y = \frac{1}{2}x + 5$		$y = \frac{1}{2}x + 6$
Find an equation of diagonal AC		Find an equation of diagonal AC

Inequalities

Where in real life might we use phrases like "at least", "more than", "less than" and "at most"?

Real-life scenario	How we could represent mathematically
"You can have at most 20 people	$x \le 20$
at your party."	(where x is number of people)
"I was chased by at least 10	$z \ge 10$
zombies!"	(where z is number of zombies)
I'll visit next in less than a month."	d < 31 (where d is number of days)
"My cat's IQ is between 120 and	$120 \le x \le 140$
140."	(where x is my cat's IQ)

Definition	Characteristics
Relationship between two expressions that are not exactly equal.	 Expressions can be connected with the following signs: > Greater than ≥ Greater than or equal to < Less than ≤ Less than or equal to ≠ Not equal to
Examples	Non Examples
• $5 > -2$ • $x \le 12$ • $-3 < y \le 5$ • $x < -1, x \ge 8$ • $a \ne b$ • $2x - 7 < x + 6$	• $x = 5$ • $4x = 2x + 5$ • $-5 > -1$

Why we need Inequalities?

Inequalities are needed in mathematics when we need to represent a range of values.

Equation	Number of Solutions
<i>x</i> + 5 = 7	1 solution ($x = 2$)
$x^2 = 9$	2 solutions ($x = 3, -3$)
x + 3 = x	0 solutions
<i>x</i> > 4	∞ solutions ($x = 4.01, 5, 2000,$

A 'range' of values often involves infinitely possible many values. So we need inequalities to be able to represent them, as it's not possible to list all the values.

Reading Inequalities

Notice the symbol is taller on the side which is larger.

X-

Inequality	What It Means
<i>x</i> > 7	"x is greater than 7" This doesn't include 7 Examples: 7.2, 10
$x \ge 7$	"x is greater than or equal to 7" or "x is at least 7" This does include 7 Examples: 7, 8, 100.5
x < 10	"x is less than 10" Examples: -3 , 4, 9.2
$x \le 8$	"x is less than or equal to 8" or "x is at most 8" Examples: 8, -3 , 4, 9.2

$-1 \leq x < 3$

What does this mean in words? "x is greater or equal to -1, and less than 3"

Or we could more simply say: "x is between -1 and 3, inclusive of -1"

Question 4: Write down the inequalities shown below

Plot the following on a number line:

1) 5 < n < 10

- Question 1: The cost, c, of a TV is less than £300. Write this as an inequality.
- Question 2: To go on a rollercoaster, a person's height, h, must be over 140cm. Write this as an inequality.
- Question 3: The value of a house, v, is £100,000 or more. Write this as an inequality.

- Question 4: There are 20 students in a class. The number of students present on a particular day is 20 or less. Write this as an inequality.
- Question 5: Write down any integers (whole numbers) that satisfies **both** x > 4 and $x \le 8$
- Question 6: Write down any integers (whole numbers) that satisfies **both** $2 < x \le 9$ and x > 5

$1 \int S \leq R \leq 10$	7) $-3 \le n < 3$	12) $-\frac{7}{5} < n < \frac{11}{5}$
2) $5 \le n < 7$	8) $-2 < n \leq \frac{1}{2}$	12) 25 < n < 45
3) $0 < n \le 5$	1	$13) 5.5 \leq h \leq 4.5$
4) $10 < n \le 15$	9) $\frac{1}{2} \le n < 3$	14) $-3.5 \le n \le 4.5$
5) $-5 \le n \le -2$	10) $\frac{1}{2} \le n < \frac{3}{2}$	15) $-9.1 < n \le 1.1$
6) $-5 < n < -2$	11) $\frac{7}{5} \le n \le \frac{13}{5}$	16) $-3.5 < n < -1.5$

Set Notation

Complete the table

Solving Linear Inequalities

Inequalities behave in a similar way to equations: whatever we do to one side of the equation, we have to do the same to the other.

'Solving an inequality' means to get x on its own on one side of the equation. This is so that the range is then clear.

When you divide or multiply both sides of an inequality by a negative number, reverse the direction of the inequality.

Why? Consider the inequality 2 < 4This is clearly true as 2 is less than 4 But, if we multiple/divide by both sides by -1, we get -2 < -4, which is false. However, if we reverse the inequality sign, we get -2 > -4, which is true as -2 is more than -4.

But it is probably easiest to avoid needing to divide by a negative number in the first place...

IF THERE IS A NEGATIVE COEFFICIENT OF THE VARIABLE THEN ADD TO BOTH SIDES TO GET A POSITIVE ONE.

Worked Example	Thinking	Your Turn
Solve: a) $2x - 8 < 16$ b) $2(4 - x) < 16$		Solve: a) $3x - 9 > 27$ b) $3(3 - x) > 27$

Worked Example	Thinking	Your Turn
Solve: 10(x + 3) + 3(2x + 6) < 144		Solve: $5(x+3) + 2(2x-6) \le 111$

Worked Example	Thinking	Your Turn
Solve: 7(x+3) - 3(2x-6) > 84		Solve: $5(x-3) - 2(2x-6) \ge 111$

Solve the following inequalities:

- 1) $5x 40 \le 80$ 7) -2x + 5 < -3513) 4(x + 3) + 8(x + 1) < 44
- 2) 5x 40 < 408) 5 - 2x < -3514) $7(x - 3) + 5(x + 2) \le 37$
- 3) $40 5x \ge 40$ 9) $-5 - 2x \le -35$ 15) 3(x - 2) + 2(x - 5) > 24
- 4) 5(8-x) < -40 10) $-7 2x \le -35$ 16) 2(2x-1) 4(3x-1) > 26
- 5) 5(8-2x) > -40 11) -7 4x > -35 17) 5(2x+3) 6(x-1) < 29
- 6) -5(8-2x) > -40 12) -7 7x > -35 18) $2(5x-2) 3(3x-1) \ge 6$

Que	Question 1: Solve each of the inequalities below						
(a)	x + 4 > 9	(b)	x - 3 < 2	(c)	$2x \le 14$	(d)	8x < 16
(e)	$5x \ge 15$	(f)	$\frac{x}{3} > 4$	(g)	$\frac{x}{5} \le 2$	(h)	$x+6 \ge 4$
Que	stion 2: Solve	each	of the inequaliti	es bel	ow		
(a)	$2x + 1 \le 9$	(b)	3x - 5 > 16	(c)	4x + 8 < 32	(d)	$5x-2 \geq 68$
(e)	$\frac{x}{2} + 1 \le 5$	(f)	$\frac{x}{9} - 6 > 4$	(g)	$\frac{x+3}{2} \ge 5$	(h)	$\frac{x-5}{4} > 2$
Que	stion 3: Solve	each	inequality below	v and	represent the s	olutio	on on a number line.
(a)	4x + 7 < 11	(b)	$3x-2 \ge 10$	(c)	$\frac{x}{2} - 3 > 0$	(d)	$\frac{x+18}{4} \le 5$
Question 4: Solve each of the inequalities below							
(a)	$5(x-3) \geq 40$		(b) $6(x+2)$	$(2) < 4^{2}$	2 (c) 2	e(5x -	$+1) \leq 36$
(d)	4(x-2) < 18		(e) $2(2x - $	$9) \geq 2$	22 (f) 3	(2x -	$+7) \leq 9$

Worked Example	Thinking	Your Turn
Solve: a) $9x + 4 < 2x + 60$ b) $3x - 23 \le 7 - 2x$		Solve: a) $5x + 7 > 2x + 22$ b) $2x - 23 \ge 9 - 2x$

Worked Example	Thinking	Your Turn
Solve: a) $3(x+2) < 2(x+3)$ b) $3(x+8) > 3(2-x)$		Solve: a) $7(x-3) \le 2(x+7)$ b) $3(x-5) \ge 5(5-x)$

Intelligent Practice			
Solve the following inequaliti	es:	Solve the following inequalities:	
1) $5x + 3 < 3x + 13$		1) $3(x-5) \le 3(2x+1)$	
2) $5x + 2 \le 3x + 44$		2) 2(m - 5) < -2(2m + 1)	
3) $11x + 2 \ge 5x + 44$		2) $5(x-5) < -5(2x+1)$	
4) $11x + 44 \ge 5x + 2$		3) $-3(x+5) \ge -3(2x+1)$	
5) $11x + 39 > 5x + 21$		4) $-3(x-5) < -3(2x+1)$	
6) $8x + 39 > 5x + 21$		5) $-3(x-5) > -3(2x-1)$	
7) $8x + 39 < 2x + 21$		6) $-3(2x-1) > -3(x-5)$	
8) $8x - 39 < 21 - 2x$			
9) $8x - 39 \le 21 - 17x$			
10) $8x - 39 \ge 6 - 7x$			
11) $39 - 8x \ge 6 - 7x$		Extension 2	
12) $39 - 10x \ge 6 - 7x$	Extension 1 Why is it not possible to solve the	Explain your thinking process to solve	
13) $6 - 10x \le 39 - 7x$	following? Explain your answer.	the inequality	
14) $6 - 18x \le 39 - 7x$	3x + 3 < 15 + 3x	$\frac{x}{4} - 2 < 3(2x - 7)$	

Exam (Questions
--------	-----------

1. (a) (i) Solve the inequality

$$5x - 7 < 28$$

(ii) On the number line, represent the solution set to part (i). (3)

2. (a) Solve
$$5x + 12 < 17$$
 (2)

(b) Solve the inequality
$$3(2y+1) > 10$$
 (2)

Fill in the Gaps

Q	Inequality	Represent on a number line	Integer solutions
1	<i>x</i> > 3		
2			x = 3, 4, 5
3			x = -3, -4, -5
4	$-3 \le x$		
5	x - 1 > 2		
6		-5 -4 -3 -2 -1 0 	
7	$x + 5 \le 2$		
8		$\xrightarrow{-1 0 1 2 3 4}$	
9			$x = 4, 5, 6 \dots or$ $x = -1, -2, -3 \dots$
10	< <i>x</i> ≤		x = -2, -1, 0, 1, 2, 3
11	$x \ge 1$ and $x < 3$		
12	3x > 9		

Worked Example	Thinking	Your Turn
Solve: a) $-1 < 2x + 3 < 9$ b) $-1 \le 2x + 6 < 9$		Solve: a) $-9 < 2x + 3 < 1$ b) $-9 \le 2x + 6 \le 1$

Solve:	
1) 4 < <i>x</i> + 1 < 10	10) $-20 < 4x - 2 \le 8$
2) 4 < x − 1 < 10	11) $-20 < 4x \le 8$
3) $4 < 2x - 1 \le 10$	12) $-20 < \frac{1}{4}x \le 8$
4) $-4 \le 2x - 1 \le 10$	13) $-20 < \frac{1}{2}x \le 8$
5) $-10 \le 2x - 1 \le -4$	14) $-20 < \frac{1}{2}x - 8 \le 8$
6) $-10 \le 4x - 2 \le -4$	2
7) $-10 \le 4x - 2 \le 4$	15) $-20 < \frac{x-8}{2} \le 8$
8) $-10 \le 4x - 2 \le 8$	16) $-20 < \frac{8-x}{2} < 8$
9) $-20 \le 4x - 2 \le 8$	

Question 8:	Solve each of the inequalities below
-------------	--------------------------------------

(a)	6 < x + 3 < 10	(b)	$4 \le 2x \le 7$	(c)	$1 \le 3x < 9$
(d)	$4 < \frac{x}{5} < 6$	(e)	$9 \le 2x + 3 \le 25$	(f)	$-3 \leq \frac{x}{4} - 1 < 0$

Question 9: Find the integers that satisfy each of the inequalities below

(a) 5 < x < 9 (b) $-3 < x \le 1$ (c) $4 \le 2x \le 8$

(d)
$$16 \le 5x + 1 < 31$$
 (e) $0 \le \frac{x-6}{2} < 2$ (f) $-9 < \frac{x}{4} - 1 < -8$

Combining Inequalities

We have already seen examples where we have combined inequalities together:

Worked Example	Thinking	Your Turn
Solve:		Solve:
$3-x \le 2 < 10 - 2x$		$1 + x < 5 \le 7 + 5x$

Fluency Practice

By drawing suitable number lines or otherwise, combine the following 1. inequalities.

⇒

Graphical Inequalities

Worked Example	Thinking	Your Turn
Write the inequality that defines the red region:		Write the inequality that defines the red region:
-5 0 5		-5 0 5
-5		-5
-5 0 5		

Worked Example	Thinking	Your Turn
Write the inequalities that define the unshaded region:		Write the inequalities that define the unshaded region:

