Year 9
 Mathematics UNIT 5

Name:

Class:

Contents Page

1 PR Enlargement and Similarity
2 Enlargement and Similarity
3 PR Right-angled Trigonometry
4 Right-angled Trigonometry
5 PR Rates and Compound Measures
6 Rates and Compound Measures

Please see unit 5 course on drfrostmaths.com
5. Reasoning with Proportion

PR Enlargement and Similarity
Enlargement and similarity
Right-angled Trigonometry
PR rates
Rates
Revision
+Add Unit

PR Enlargement and Similarity

$$
\text { QU } 4 \text { - Enlargements }
$$

Enlarge by scale factor 1 :

QU 5 - Enlargements
QU 2 - Enlargements
Enlarge by scale factor 3 :

Enlarge by scale factor 1 :

QU 3 - Enlargements
Enlarge by scale factor 3 :

$$
\text { QU } 6 \text { - Enlargements }
$$

What is the scale factor to enlarge shape A ?:

PR Enlargement and Similarity

QU 7 - Enlargements
What is the scale factor to enlarge shape A ?:

QU 8 - Enlargements
What is the scale factor to enlarge shape A ?:

QU 9 - Enlargements
What is the scale factor to enlarge shape A ?:

QU 10 - Enlargements
What is the scale factor to enlarge shape A ?:

QU 11 - Enlargements
What is the scale factor to enlarge shape A ?:

Enlargement

A transformation that moves all points a distance away from a centre point by applying a scale factor.

- Shapes change size.
- The scale factor multiplies distances, including the distance from the centre.

To fully describe an enlargement, we need to give three pieces of information:

1. Type of Transformation: Enlargement
2. Scale Factor: Positive or Negative Number
3. Centre of Enlargement: Coordinate (x, y)

*There are templates for questions 1,2 and 3 at the end of this exercise
Question 1: Enlarge each shape by the scale factor given Use P as the centre of enlargement.
(a)

(b)
Enlarge by scale factor 2
(d)

(g)

(e)

(h)

Enlarge by scale factor 2 © CORBETTMATHS 2019
(c)

Enlarge by scale factor 2 (f)

Enlarge by scale factor 2

Enlargements: Centre of Enlargement Video 104a on www.corbettmaths.com

Question 2: Enlarge each shape by the scale factor given Use P as the centre of enlargement.

Enlarge by scale factor 2
(c)

Enlarge by scale factor 3
(b)

Enlarge by scale factor 3
(d)

Enlarge by scale factor 2

Enlargements: Centre of Enlargement Video 104a on www.corbettmaths.com

Question 3: Enlarge each shape by the scale factor given The coordinates for each centre of enlargement are given.
(a)

Enlarge by scale factor 2 using $(4,-3)$ as the centre of enlargement (c)

Enlarge by scale factor 2 using
$(0,-1)$ as the centre of enlargement
(b)

Enlarge by scale factor 3 using $(3,2)$ as the centre of enlargement

Enlarge by scale factor 2 using the origin as the centre of enlargement

Enlargements: Centre of Enlargement Video 104a on www.corbettmaths.com

Question 4: Describe fully the single transformation that takes shape A to shape B.
(a)

(c)

(b)

(d)

Answers

*There are templates for questions 3,4 and 5 at the end of this exercise
Question 1: Copy these shapes and then enlarge by the scale factor given.
(b)
(a)

Enlarge by scale factor

Enlarge by scale factor $\frac{1}{3}$
(c)

Enlarge by scale factor $\frac{2}{3}$

Question 2: Copy these shapes and then enlarge by the scale factor given.
(a)

Enlarge by scale factor $\frac{1}{4}$
(b)
(c)

Enlarge by scale factor $1 \frac{1}{3}$

Question 3: Enlarge each shape by the scale factor given Use P as the centre of enlargement
(a)

Enlarge by scale factor $\frac{1}{2}$ © CORBETTMATHS 2016
(b)

Enlarge by scale factor
(c)

Enlarge by scale factor $\frac{2}{3}$

Enlargement: Fractional Scale Factor Video 107 on www.corbettmaths.com

Question 4: Enlarge each shape by the scale factor given Use P as the centre of enlargement.
(a)

$$
\text { Enlarge by scale factor } \frac{1}{4}
$$

(b)

(c)

Enlarge by scale factor $\frac{2}{3}$
(d)

Enlarge by scale factor $1 \frac{1}{2}$ moths

Enlargement: Fractional Scale Factor Video 107 on www.corbettmaths.com

Question 5: Enlarge each shape by the scale factor given The coordinates for each centre of enlargement are given.
(a)

Enlarge by scale factor $\frac{1}{2}$ using
$(0,1)$ as the centre of enlargement
(b)

Enlarge by scale factor $\frac{1}{3}$ using $(-3,1)$ as the centre of enlargement
(d)

Enlarge by scale factor $2 \frac{1}{2}$ using $(-5,-3)$ as the centre of enlargement

Enlargement: Fractional Scale Factor Video 107 on www.corbettmaths.com

Question 6: Describe fully the single transformation that takes shape A to shape B.
(a)

(b)

(d)

Scan here

*There are templates for questions 1,2 and 3 at the end of this exercise
Question 1: Enlarge each shape by the scale factor given Use P as the centre of enlargement.

Enlarge by scale factor -2
(e)

(c)

Enlarge by scale factor - 4
(f)

Question 2: Enlarge each shape by the scale factor given
(a)
 Use P as the centre of enlargement
© col Enlarge by scale factor -3

Enlarge by scale factor - 4

Enlargement: Negative Scale Factor Video 108 on www.corbettmaths.com

Enlarge by scale factor -2
(d)

Enlarge by scale factor $-\frac{1}{3}$

Question 3: Enlarge each shape by the scale factor given The coordinates for each centre of enlargement are given
(a)

Enlarge by scale factor - 2 using
$(0,0)$ as the centre of enlargement
(c)

Enlarge by scale factor - 4 using $(-3,-1)$ as the centre of enlargement © CORBETTMATHS 2019
(b)

Enlarge by scale factor -2 using $(2,2)$ as the centre of enlargement

Enlarge by scale factor $-\frac{1}{2}$ using $(0,-2)$ as the centre of enlargement

Question 4: Describe fully the single transformation that takes shape A to shape B.
(a)

(b)

(c)

(d)

Similarity vs Congruence

They are the same shape and size
(flipping is allowed)

Two shapes are similar if:

They are the same shape
(flipping is again allowed)

Intelligent Practice - Find the length of every missing side
Triangles not drawn to scale

Intelligent Practice - Find the length of every missing side
Triangles not drawn to scale

Intelligent Practice - Find the length of every missing side
Triangles not drawn to scale

Worked Example	Your Turn
Calculate the length of PT	Calate the length of PT

Similar Triangles

i) Find the scale factor between triangle ABE and triangle ACD
ii) Find the value of x
iii) Find the value of y

i) Find the scale factor between $A B E$ and $A C D$
ii) Find the value of x
iii) Find the value of y

Q3.

i) How can you tell that $A B E$ and $B C D$ are mathematically similar?
ii) Find the value of x
iii) Find the value of y

Q4

i) Find the value of x
ii) Find the value of y
iii) Find the size of angle θ

i) Find the value of x
ii) Hence, find the perimeter of trapezium ABDE

Q6. Find the value of x

Q7. [non-calculator] Given that $\tan (x)=\tan (y)$, find the area of triangle $A B C$.

Trigonometry

https://youtu.be/1s7V7Ai3Eaw - story of trigonometry

We know that for any similar triangles:

- Corresponding angles are the same
- Corresponding lengths are enlargements of each other

We are going to look at the special case right-angled triangles and the relationship between the 3 sides and the 2 non-right angles.

Trigonometry
Using the idea of similar triangles complete the statements below:

How do we know what any of these ratios are?

C. Find the value of the following to 3 d.p..
1). $\sin 10^{\circ}$
2). $\cos 45^{\circ}$
3). $\tan 45^{\circ}$
4). $\tan 62^{\circ}$
6). $\sin 69^{\circ}$
7). $\tan 14^{\circ}$
8). $\quad \cos 32^{\circ}$
9). $\quad \cos 5^{\circ}$
13). $\tan 4^{\circ}$
14). $\sin 15^{\circ}$
11). $\tan 68^{\circ}$
12). $\sin 55^{\circ}$
18). $\cos 12^{\circ}$
19). $\tan 78^{\circ}$

D. Calculate the following to 2 d.p..
1). $5 \tan 45^{\circ}$
2). $4 \sin 30^{\circ}$
3). $8 \cos 60^{\circ}$
4). $6 \sin 43^{\circ}$
5). $9 \cos 18^{\circ}$
6). $15 \tan 83^{\circ}$
7). $14 \cos 25^{\circ}$
8). $24 \cos 72^{\circ}$
9). $31 \sin 45^{\circ}$
10). $20 \cos 34^{\circ}$
11). $5 \cos 60^{\circ}$
12). $56 \sin 15^{\circ}$
13). $30 \tan 45^{\circ}$
14). $19 \sin 82^{\circ}$
15). $14 \tan 45^{\circ}$
16). $17 \tan 60^{\circ}$ 17). $8 \cos 0^{\circ}$
18). $45 \tan 28^{\circ}$
19). $61 \sin 90^{\circ}$
20). $28 \tan 50^{\circ}$
E. Calculate the following to 2 d.p..
1). $\frac{6}{\sin 34^{\circ}}$
2). $\frac{12}{\cos 83^{\circ}}$
3). $\frac{4}{\tan 16^{\circ}}$
4). $\frac{23}{\tan 45^{\circ}}$
5). $\frac{31}{\sin 30^{\circ}}$
6). $\frac{38}{\cos 18^{\circ}}$
7). $\frac{48}{\tan 80^{\circ}}$
8). $\frac{8}{\sin 54^{\circ}}$
9). $\frac{18}{\sin 15^{\circ}}$
10). $\frac{5}{\cos 51^{\circ}}$
11). $\frac{25}{\tan 52^{\circ}}$
12). $\frac{62}{\cos 71^{\circ}}$
13). $\frac{82}{\sin 68^{\circ}}$
14). $\frac{16}{\cos 8^{\circ}}$
15). $\frac{2}{\sin 12^{\circ}}$
16). $\frac{6}{\sin 75^{\circ}}$
17). $\frac{18}{\tan 45^{\circ}}$
18). $\frac{48}{\cos 50^{\circ}}$
19). $\frac{37}{\tan 12^{\circ}}$
20). $\frac{52}{\tan 84^{\circ}}$

KEY SKILL - rearrangements and calculator use:

Q1. Rearrange to make \mathbf{c} the subject.
a. $\quad a=\frac{c}{b}$
b. $a=\frac{b}{c}$
c. $5=\frac{c}{b}$
d. $20=\frac{b}{c}$
e. $\sin A=\frac{c}{b}$
f. $\sin A=\frac{b}{c}$
g. $\sin 5=\frac{c}{b}$
h. $\sin 20=\frac{b}{c}$
i. $\cos A=\frac{c}{b}$
j. $\cos 28=\frac{b}{c}$
k. $\tan A=\frac{b}{c}$
I. $\tan A=\frac{10}{c}$

Q2. Calculate a to 2 dp .
a. $\sin 40=\frac{a}{6}$
b. $\sin 31=\frac{a}{8}$
c. $\cos 70=\frac{20}{a}$
d. $\cos 46=\frac{12 a}{7}$
e. $\tan 20=\frac{a}{27}$
f. $\tan 58=\frac{67}{a}$

Q3. Calculate a to 3sf.
a. $\sin 36=\frac{a}{9}$
b. $\sin 71=\frac{a}{6}$
c. $\sin 29=\frac{6}{a}$
d. $\sin 81=\frac{75}{a}$
e. $\sin 205=\frac{a}{11}$
f. $\cos 53=\frac{29}{a}$
g. $\cos 101=\frac{a}{61}$
h. $\tan 44=\frac{a}{7}$
i. $\tan 18=\frac{50}{c}$

Worked Example		Your Turn
$\sin (30)=\frac{x}{5}$	$\cos (45)=\frac{x}{4}$	

Find ' x '. Give your solution to 2 decimal places.

1. $\tan (30)=\frac{x}{2}$
2. $\tan (45)=\frac{x}{2}$
3. $\sin (45)=\frac{x}{2}$
4. $\sin (45)=\frac{x}{4}$
5. $\frac{x}{4}=\sin (45)$
6. $x \times \sin (45)=4$
7. $x \times \sin (30)=4$
8. $x \times \cos (30)=4$
9. $x \times \cos (30)=8$
10. $x \times \cos (31)=8$

Worked Example	
$\sin (15)=\frac{5}{x}$	$\cos (45)=\frac{5}{x}$

Find ' x '. Give your solution to 2 decimal places.

1. $\cos (30)=\frac{2}{x}$
2. $\cos (45)=\frac{2}{x}$
3. $\sin (45)=\frac{2}{x}$
4. $\sin (45)=\frac{4}{x}$
5. $\sin (45)=\frac{8}{x}$
6. $\tan (45)=\frac{8}{x}$
7. $\tan (45)=\frac{x}{8}$
8. $\cos (45)=\frac{x}{8}$
9. $\cos (45)=\frac{8}{x}$
10. $\frac{8}{x}=\cos (45)$

Trigonometric Functions
A function $f(x)$ takes an input x and outputs a value y. A trigonometric function takes an angle x° and outputs a ratio of sides.

For any right-angled triangle we always label the longest side as the hypotenuse H. For the purposes of trigonometry we label the other two sides relative to one of the non-right angles.

One of these is opposite the angle and the other adjacent (meaning next to).

Labelling the sides exercise:

©
A. Name all the sides from the given angle, x°.
1).

2).

3).

4).

6).

8).

11).

12).

14).

15).

Trigonometric Functions
A function $f(x)$ takes an input x and outputs a value y. A trigonometric function takes an angle \boldsymbol{x}° and outputs a ratio of sides.

The three sides of right-angled triangles are:
O -Opposite
A - Adjacent
H - Hypotenuse
So the three ratios are: $\boldsymbol{O}: \boldsymbol{H}$ or $\frac{\boldsymbol{O}}{\boldsymbol{H}} \quad \mathrm{A}: \boldsymbol{H}$ or $\frac{\boldsymbol{A}}{\boldsymbol{H}} \quad \mathrm{O}: \boldsymbol{A}$ or $\frac{\boldsymbol{o}}{\boldsymbol{A}}$
And so there are three trigonometric functions which take any angles \boldsymbol{x}° and output one of these ratios:

$$
\begin{array}{ccc}
x^{0} \rightarrow \frac{0}{H} & x^{0} \longrightarrow \frac{A}{H} & x^{0} \longrightarrow \frac{0}{A} \\
\begin{array}{c}
\text { sine } \\
(\sin)
\end{array} & \operatorname{cosine} & (\cos)
\end{array}
$$

Trigonometric Functions

So altogether if we have:

Then: $\quad \sin \left(x^{\circ}\right)=\frac{o p p}{h y p} \quad \cos \left(x^{\circ}\right)=\frac{a d j}{h y p} \quad \tan \left(x^{\circ}\right)=\frac{o p p}{a d j}$

Choosing the correct trignometric ratio exercise:

B. For each of the following questions look at the information given and the information you have to find. Which of the trigometrical ratios would you use to solve it for x ?
Do not try to solve the questions.
1).

2).

3).

4).

5).

7).

10).

11).

12).
$P \sum_{R}^{50^{\circ}}{ }_{R}^{10 \mathrm{~cm}} \mathrm{Q}$

Label each of the triangles with opposite (O), adjacent (A) and hypotenuse (H). Use this to decide which ratio to use $-\sin (\mathrm{SOH})$, cos (CAH) or tan (TOA).

Q	Diagram (label sides)	Correct trigonometric ratio? (select sin / cos / tan)	Fill in formulae	rearrange	Answer (1 d.p)
1		\tan	$\tan (38)=\frac{y}{10}$	$y=10 \tan (38)$	7.8 cm
2		cos			
3	A				
4				$x=8 \cos (33)$	
5			$\sin (32)=\frac{y}{6}$		
6			$\sin (48)=\frac{z}{10}$		

Worked Example		Your Turn
Calculate x :		

F. Find the length of the side marked x, leave all answers to 1 decimal place.

Diagrams not to scale.
1).

5).

6).

$3)$.

4).

8).

9).

10).

11).

12).

Page 87

Worked Example	Your Turn
Calculate x :	Calculate x :

A. Find the length of the side marked x, leave all answers to 1 decimal place. Diagrams not to scale.

5).

$3)$.

$6)$.

10).

11).

12).

B. Find the length of the side marked x , leave all answers to 1 decimal place.
Diagrams not to scale.
1).

2).

4).

5).

6)

8).

10).

11).

12).

16).

Inverse Trigonometric functions
We have met the idea that: $f(x)=y \quad$ so $\quad f^{-1}(y)=x$
The e trigonometric functions sin, cos and tan are all functions where the input is an angle giving an output which is a ratio of sides. The inverse of these functions therefore does this in reverse. if $\sin \left(30^{\circ}\right)=0.5$ then $\sin ^{-1}(0.5)=30^{\circ}$ if $\cos \left(60^{\circ}\right)=0.5 \quad$ then $\cos ^{-1}(0.5)=60^{\circ}$ if $\tan \left(45^{\circ}\right)=1 \quad$ then $\tan ^{-1}(1)=45^{\circ}$

Worked Example		Your Turn
$\sin (x)=\frac{1}{2}$	$\sin (x)=\frac{2}{5}$	

Find ' x '. Give your solution to 2 decimal places.

1. $\sin (x)=0$
2. $\cos (x)=0$
3. $\sin (x)=\frac{1}{5}$
4. $\cos (x)=\frac{1}{5}$
5. $\sin (x)=\frac{2}{5}$
6. $\cos (x)=\frac{2}{5}$
7. $\sin (x)=\frac{3}{5}$
8. $\cos (x)=\frac{3}{5}$
9. $\sin (x)=\frac{4}{5}$
10. $\cos (x)=\frac{4}{5}$
11. $\sin (x)=1$
12. $\cos (x)=1$

Page 103

Worked Example	Your Turn
Calculate θ :	Calculate θ :
4 cm	4.5 cm

Worked Example		Calculate $\theta:$
Calculate $\theta:$		

Q	Diagram (label sides)	Correct trigonometric ratio? (select $\sin / \cos / \tan$)	Fill in formulae	Inverse function	Answer in degrees (1 d.p)
1		tan	$\tan y=\frac{5}{12}$	$y=\tan ^{-1}\left(\frac{5}{12}\right)$	22.6
2	$\underbrace{9 \mathrm{~cm}}_{(A)^{3} z^{\circ}}(\mathrm{M})$	cos	$\cos z=\frac{3}{9}$		
3	$7 \mathrm{~cm} \quad$$2 / \mathrm{cm}$ 10 cm				
4					
5			$\cos y=\frac{3}{10}$		
6				$z=\sin ^{-1}\left(\frac{3}{12}\right)$	

D). In the following triangles find all the missing angles and sides.

3).

4).

5).

6).

7).

11).

14).

perPLeXing perimeters?

Work out the perimeter of each triangle to 2 d.p. Cross of your answers from those on the right as you go.

A				
				$\begin{aligned} & 19.31 \\ & 20.49 \\ & 21.60 \end{aligned}$
				$\begin{gathered} 24 \\ 24.05 \\ 30.81 \end{gathered}$
M ${ }^{8}$				$\begin{gathered} 31.94 \\ 36 \\ 40.97 \\ 45.73 \end{gathered}$

Compound Measures

Compound measures are measures that rely on other measures:

- Speed
- Density
- Pressure

Speed

$$
\begin{aligned}
\text { Speed } & =\frac{\text { Distance }}{\text { Time }} \\
\text { Distance } & =\text { Speed } \times \text { Time } \\
\text { Time } & =\frac{\text { Distance }}{\text { Speed }}
\end{aligned}
$$

Worked Example	Your Turn
An object travels 40 miles in 2 hours. Calculate its speed in mph?	An object travels 40 miles in 30 minutes. Calculate its speed in mph?

Worked Example	Your Turn
An object travels at 40 mph for 2 hours. How far has it travelled in miles?	An object travels at 40 mph for 30 minutes. How far has it travelled in miles?

Worked Example	Your Turn
An object travels 80 miles at 40 mph. How long does the journey take in hours?	An object travels 20 miles at 40 mph. How long does the journey take in hours?

	Oヤ		w 0000て
s / u	$G^{\prime} 8$	วтทи！${ }^{\text {G．1 }}$	
Y／w	88	ąnsu？${ }^{\text {a }}$ OG	
s / u	$G^{\prime} \mathrm{C}$		wo OGLL
s / u		จұпит¢	${ }^{u} 0 \mathcal{L}$
$\varphi / w x$	G9	a nsu！u00し	
Y／wx	08		шฯ $0 \downarrow 9$
s / u	乙 L		uてE1
s / u			us 006
Y／wy	G G	s n．oY \＆	
s / u	OL	s upoas 0乙	
Y／$/ 4 y$		วาnsu！${ }^{\text {a }} 08$ L	แヵ0Gt
¢／wx		s noч 乙 ィ	u 0008
s / u		s иолas G p	$u^{\prime} \mathrm{S}$
Y／$/ 4 y$		s noч \quad ィ	ひヶ0てし
peods to stıun	peeds	Ou！】	Oวue7sIa

Density

$$
\begin{gathered}
\text { Density }=\frac{\text { Mass }}{\text { Volume }} \\
\text { Mass }=\text { Density } \times \text { Volume } \\
\text { Volume }=\frac{\text { Mass }}{\text { Density }}
\end{gathered}
$$

Worked Example	Your Turn
Work out the density of copper. 150 g of a copper block has a volume of $17 \mathrm{~cm}^{3}$. Round your answer to 2 decimal places.	Work out the density of gold. 97 g of gold has a volume of $5 \mathrm{~cm}^{3}$. Round your answer to 2 decimal places.

Pressure

$$
\text { Pressure }=\frac{\text { Force }}{\text { Area }}
$$

Force $=$ Pressure \times Area

$$
\text { Area }=\frac{\text { Force }}{\text { Pressure }}
$$

Worked Example	Your Turn
An object with an area of $5 \mathrm{~m}^{2}$ exerts a force of 10 N. Find the pressure.	An object with an area of $2 \mathrm{~m}^{2}$ exerts a force of 10 N. Find the pressure.

Worked Example

Your Turn

An object with a cross-sectional area of $2 \mathrm{~m}^{2}$ exerts a pressure of $40 \mathrm{~N} / \mathrm{m}^{2}$.
Find the force.

An object with a cross-sectional area of $2 \mathrm{~m}^{2}$ exerts a pressure of $10 \mathrm{~N} / \mathrm{m}^{2}$.
Find the force.

