

Year 9
 Mathematics CATCH UP

Name:

Class:

1 Properties of 3D Shapes

2 Plans and Elevations
3 Volume and Surface Area of Prisms
4 Area and Volume Unit Conversions
5 Basic Vectors
6 Reflections

Please see catch up course on drfrostmaths.com

1 Properties of 3D Shapes

Sphere

Cylinder

Square-based pyramid

Cone

Edges, Faces and Vertices

Faces

A face is a flat or curved surface on a 3D shape.

Edges

An edge is where two faces meet.

Vertices

A vertex is a corner where edges meet. The plural is vertices.

Nets

A net shows what a 3D solid could look like if 'unfolded' and laid out flat

Fluency Practice

2. The net is folded to make a cube.

Two other vertices meet at P.

1. Match the 3D solids with their net

Mark each of these vertices with the letter P.

3. The net shown is folded to make a dodecahedron. Label the face which is opposite the shaded one

4. Using the grid provided with 1 square $=1 \mathrm{~cm}$, draw an accurate net of these solids

2 Plans and Elevations

The plan is the view from the top of a 3D solid.

Elevations are horizontal views of a 3D object:

- Front elevation: The view from the front of an object.
- Back elevation: The view from behind the object.
- Side elevation: The view from the side of an object.

front
elevation

side
elevation

back elevation

side
elevation

Fluency Practice

Cutting	Plan \downarrow
Cubes	Front
$3 \times 3 \times 3$	Fide

Draw the plan and elevations for each cube.

Solid line $=$ a visible edge Dashed line = a hidden edge

a)	Plan	Side Elevation	Front Elevation
		-	-
,			
\sqrt{V}			

Fluency Practice

Draw the plan and elevations for each cube.

Solid line = a visible edge
Dashed line = a hidden edge

Fluency Practice

3 Volume and Surface Area of Prisms

Volume is the amount of space an object takes up.

Surface Area is the total area across the surface.

Volume of Cuboids

Volume of Cuboid $=$ Length \times Width \times Height
Volume of Cuboid $=\mathrm{l} \times \mathrm{w} \times \mathrm{h}$

Surface Area of Cuboids

Surface Area of Cuboid $=2 \times$ Length \times Width $+2 \times$ Length \times Height $+2 \times$ Width \times Height Surface Area of Cuboid $=2 \mathrm{lw}+2 \mathrm{lh}+2 \mathrm{wh}$

Prisms

A prism is a 3D shape which has the same cross-section along its length.

Cross-Section

It is the shape made when a solid is cut through parallel to the base.

What is a Prism?

Fluency Practice

Fluency Practice

Volume of Prisms

Volume of Prism $=$ Area of Cross Section \times Length
Volume of Prism $=\mathrm{A} \times \mathrm{l}$

Tubes

Here are 7 prism "tubes"
Calculate the area of the net that makes each of the 7 tubes Is there are quick way the find the areas?

Surface Area of Prism $=2 \times$ Area of Cross Section + Length \times Perimeter of Cross Section
Surface Area of Prism $=2 A+L P$

Volume of Cylinder $=$ Area of circle \times height
Volume of Cylinder $=\pi \times$ radius $^{2} \times$ height
Volume of Cylinder $=\pi r^{2} h$

Surface Area of Cylinders

Curved Surface Area of Cylinder $=2 \times \pi \times$ radius \times height
Curved Surface Area of Cylinder $=2 \pi r h$

Total Surface Area of Cylinder $=2 \times \pi \times$ radius \times height $+2 \times \pi \times$ radius 2

Total Surface Area of Cylinder $=2 \pi r h+2 \pi r^{2}$

Surface area of cylinder $=2 \pi r^{2}+2 \pi r h$

nder

$1 \mathrm{~km}=1,000 \mathrm{~m}$
$1 \mathrm{~m}=100 \mathrm{~cm}$
$1 \mathrm{~cm}=10 \mathrm{~mm}$

Fill in the Gaps

\mathbf{Q}	$\mathbf{k m}$	\mathbf{m}	$\mathbf{c m}$	$\mathbf{m m}$
$\mathbf{1}$	1			
$\mathbf{2}$		1		
$\mathbf{3}$			1	
$\mathbf{4}$				17
$\mathbf{5}$				10
$\mathbf{6}$				
$\mathbf{7}$				
$\mathbf{8}$	1.07			
$\mathbf{9}$	0.07			
$\mathbf{1 0}$				
$\mathbf{1 1}$				
$\mathbf{1 2}$				
$\mathbf{1 3}$				

Let's consider this square.

$$
\text { Area }=4 \times 4=16 \mathrm{~m}^{2}
$$

Imagine we want to convert the area of this shape into cm^{2}. What scale factor would we use?

$$
\begin{gathered}
\text { Area }=400 \times 400 \\
\text { Area }=160,000 \mathrm{~cm}^{2}
\end{gathered}
$$

Is this what we expected?
Our scale factor is not 100 , but 10,000. 100²

Worked Example	Your Turn
Convert: a) $7 \mathrm{~cm}^{2}$ to mm^{2} b) $\quad 2500 \mathrm{~cm}^{2}$ to m^{2}	Convert: a) $7 \mathrm{~km}^{2}$ to m^{2} b) $2500 \mathrm{~mm}^{2}$ to cm^{2}

Units of Volume

Let's now consider a cube of side 4 m .

$$
\text { Volume }=4 \times 4 \times 4=64 \mathrm{~m}^{3}
$$

Imagine we want to convert the area of this shape into cm^{3}. What scale factor would we use?

$$
\text { Volume }=400 \times 400 \times 400=64,000,0000 \mathrm{~cm}^{3}
$$

Our scale factor is not 100, but $1,000,000.100^{3}$

Worked Example	
Convert:	Your Turn
a) $7 \mathrm{~cm}^{3}$ to mm^{3}	Convert:
b) $5 \mathrm{~mm}^{3}$ to cm^{3}	a) $7 \mathrm{~m}^{3}$ to cm^{3}

5 Basic Vectors

A vector has magnitude (how long it is) and direction.
Column Vector: $\binom{x}{y}$ where x is movement right or left and y is movement up or down. Right and up are taken to be positive.

On each grid, start at the dot, then draw each vector in turn.
b) $\binom{-3}{4},\binom{-3}{0},\binom{0}{-4}$,
$\binom{3}{0},\binom{0}{2},\binom{3}{-2}$
c) $\binom{-2}{0},\binom{0}{1},\binom{1}{0},\binom{0}{-1}$,
$\binom{2}{0},\binom{0}{1},\binom{1}{0},\binom{0}{-1}$,
$\binom{-2}{0},\binom{0}{-1},\binom{-2}{0},\binom{4}{0}$
d) $\binom{0}{-2},\binom{3}{2},\binom{-3}{-4},\binom{0}{6}$,
$\binom{0}{4},\binom{-1}{-2},\binom{-2}{0}$,
$\binom{0}{2},\binom{-3}{0}$

Write each vector in column form

1) 2a	2) -4a	3) $\frac{1}{2} a$	4) $\frac{3}{2} a$	5) 2c
6) -2c				

Worked Example	Your Turn
$\boldsymbol{a}=\binom{2}{3} \boldsymbol{b}=\binom{5}{7}$	$\boldsymbol{a}=\binom{2}{3} \boldsymbol{b}=\binom{5}{7}$
Find 2a-b	Find 3a $\mathbf{2}+\mathbf{2 b}$

Fluency Practice

Write these vectors in column form. Can you spot any links between questions?

$$
a=\binom{1}{2} \quad b=\binom{-2}{1} \quad c=\binom{9}{-5} \quad d=\binom{-6}{4}
$$

1) $a+b$	2) $\mathbf{a - b}$	3) $\mathbf{b - a}$	4) c-d	5) d-c
6) $a-a$	7) $\mathbf{b}-\mathrm{b}$	8) $a+b+c$	9) $\mathbf{a}+\mathbf{b - c}$	10) $\mathbf{a}-\mathbf{b}+\mathbf{c}$
11) $2 a+2 b$	12) $2 \mathrm{a}-2 \mathrm{~b}$	13) $2 \mathrm{c}-3 \mathrm{~d}$	14) $4 \mathrm{c}-6 \mathrm{~d}$	15) $20 \mathrm{c}-30 \mathrm{~d}$

6 Reflections

A transformation that flips all points so that they are the same distance from a given mirror line as the original points, but in the opposite direction.

- Shapes flip over a mirror line.
- A shape and its reflection lie perfectly on top of each other if the page is folded in the mirror line.
- Produces a congruent shape.

To fully describe a reflection, you need to give two pieces of information:

1. Type of Transformation: Reflection
2. The Line of Reflection:

- x-axis or y-axis
- $y=$ 'a number' or $x=$ 'a number'
- $y=x$ or $y=-x$

(a)

(i)

(d)

(c)

(f)
(h)

(b)

(e)

(a)

(d)

(g)

(a)

(c)

(d)

(e)

Question 3: Find the mirror line for each of the reflections below.
(b)

(e)

(c)

(f)

Fluency Practice

Question 4:
(a) Reflect

(d) Reflect shape D in the y-axis

Question 5:

(d)
(d) Reflect shape D in the line $y=2$

(b) Reflect triangle B in the y-axis

(e) Reflect shape E in the y-axis

(b) Reflect shape B in the line $x=-2$

(e)

(c) Reflect shape C in the x-axis

(c) Reflect shape C in the line $y=-1$

(b)
(c)
(a) (b)

Reflect shape B in the line $y=-x$
Reflect shape A in the line $y=x$

Reflect shape C in the line $y=x$

Question 7: Describe fully the single transformation that takes shape A to shape B.
(b)
(a)

(c)

(d)

(e)

(f)

Fluency Practice

