

Year 9
 Mathematics Unit 14

Name:
Class:

Contents Page

```
1 Angles in Polygons
2 Drawing Straight Line Graphs
3 Basic Vectors
4 Reflections, Rotations and Translations
5 Invariant Points
6 2D Pythagoras' Theorem
```

See unit 14 course on drfrostmaths.com
Unit 14
PR Angles in Polygons
Angles in Polygons
PR Drawing Straight Line Graphs
Drawing Straight Line Graphs
Basic Vectors
PR Reflections, Rotations and
Translations
Reflections, Rotations and Translations
Invariant Points
PR 2D Pythagoras' Theorem
2D Pythagoras' Theorem
Revision
+Add Unit

1 Angles in Polygons

Frayer Model - Polygons

| Definition | Characteristics |
| :--- | :--- | :--- |
| Examples | Non-Examples |

Frayer Model - Regular Polygons

Definition	Characteristics
Examples	Non-Examples

Polygons - Example or Non-Example

In each of the following diagrams decide whether the shape is a polygon or not. Label them 'Example' or 'Non-example'. For those that ARE polygons, give the name of the polygon.

Polygons - Regular or Irregular
Which of the following are regular and which are irregular - how do you know?

Interior and Exterior Angles

- The interior angles of a polygon are on the inside.
- The exterior angles of a polygon are on the outside.
- The interior and exterior angles form a straight line.

Interior Angle + Exterior Angle $=\mathbf{1 8 0}^{\circ}$

Worked Example

Your Turn

Find the sum of the interior angles of a polygon with 30 sides.
Find the sum of the interior angles of a polygon with 60 sides.

Worked Example	Your Turn
The sum of the interior angles of a polygon is 3240°. How many sides does the polygon have?	The sum of the interior angles of a polygon is 6840°. How many sides does the polygon have?

Fill in the Gaps

Number of sides	Sum of interior angles	Size of one interior angle in a regular polygon
3	180°	
7	360°	
9	1800°	150°
10	1980°	
13		
14	2700°	

Exterior Angles

Sum of Exterior Angles

Note: The polygon can be regular or irregular.
Sum of exterior angles of a polygon $=360^{\circ}$

Why?
All the exterior angles can fit around a point, and angles around a point add up to 360°.

Worked Example	Your Turn
A regular polygon has 12 sides. Find the size of each exterior angle.	A regular polygon has 48 sides. Find the size of each exterior angle.

Worked Example	Your Turn
A regular polygon has 12 sides. Find the size of each interior angle.	A regular polygon has 48 sides. Find the size of each interior angle.

Fill in the Gaps

Name	Number of Angles	Sum of Interior Angles	Size of One Interior Angle in a Regular Polygon	Size of One Exterior Angle in a Regular Polygon
	3			
Octagon		360°	90°	
Hexadecagon		2520°		45°
Pentadecagon	15		156°	
		720°	120°	
				72°
	12	1620°		360°

Problem Solving with Interior and Exterior Angles

There are variety of skills that harder questions involving interior/exterior angles might involve:
\#1: Tessellation
Shapes 'tessellate' if they fit together, without overlap, to

"The above repeating pattern consists of three regular polygons, A (hexagon), B (square) and C. Determine how many sides C has."
\#2: Using isosceles triangles

" $A B C D$ is a square and CDEFGH is a regular hexagon. Determine the angle CBH."

Fluency Practice

KKS3 SATs 2004 L6-L8 Paper 2 Q19 Edited]A pupil has three tiles. One is regular octagon, one is a regular hexagon, and one is a quare. The side length of each tile is the same. The pupil says the hexagon will fit exactly like this. Is the pupil correct?

Edexcel IGCSE Nov2009-3H Q3a] The diagram shows a regular octagon, with centre O . Work out the value of x. centre O. Work out the valu
[Edexcel GCSE Nov2014-1H Q17] ABCDEFGH is a regular octagon. BCKFGJ is a hexagon. JK is a line of symmetry of the hexagon. Angle $B J G=$ angle $C K F=140^{\circ}$. Work out the size of angle KFE.
 The size of each interior angle of a regular polygon is 11 times the size of each exterior angle. Work out the

7
[IMC 2003 Q22] The diagram shows a regular dodecagon (a polygon with twelve equal sides polygon with twelve equal sides of the marked angle?

?
[JMO 2014 B1]
The figure shows an equilateral triangle $A B C$, a square $B C D E$, and a regular pentagon BEFGH. What is the difference between the sizes of $\angle A D E$ and $\angle A H E$?

[IMC 2005 Q14] Ten stones, of identical shape and size, are used to make an arch, as shown in the diagram. Each stone has a cross section in the shape of a trapezium with three equal sides. What is the size of the smallest angles of the trapezium?

10

[IMC 2018 Q18] The diagram shows a regular pentagon and an equilateral triangle placed inside a square. What is the value of x ?

Interior and Exterior Angle Rules

All Polygons	Regular Polygons
Interior Angle + Exterior Angle $=180^{\circ}$	Each Exterior Angle $=\frac{360^{\circ}}{n}$
Sum of Interior Angles $=(n-2) \times 180^{\circ}$	
Sum of Exterior Angles $=360^{\circ}$	Each Interior Angle $=180^{\circ}-\frac{360^{\circ}}{n}$

Fluency Practice

A1 Write down a formula that allows you to calculate the size of an exterior angle (E) of a regular polygon with n sides.	A2 Write down a formula that relates the size of an exterior angle (E) and the size of an interior angle (I) of a polygon.	A3 Write down a formula that allows you to calculate the sum (S) of the interior angles in a regular polygon with n sides.	A4 Work out the size of an exterior angle of a regular polygon with 5 sides
B1 Work out the size of an interior angle of a regular polygon with 9 sides	B2 Each exterior angle of a regular polygon is 15°. Work out the number of sides the polygon has.	B3 Each interior angle of a regular polygon is 156°. Work out the number of sides the polygon has.	B4 Find the sum of the interior angles of a polygon with 7 sides
C1 The size of each exterior angle of a regular polygon is 18°. Work out the sum of the interior angles of the polygon.	C2 The sum of the interior angles of a polygon is 2700°. Work out the number of sides the polygon has.	C3 The size of each interior angle of a regular polygon is 140° bigger than the size of each exterior angle. Work out the number of sides the polygon has.	C4 The size of each interior angle of a regular polygon is 11 times the size of each exterior angle. Work out the number of sides the polygon has.
D1 The size of each interior angle of a regular polygon with n sides is 144°. Work out the size of each interior angle of a regular polygon with $2 n$ sides.	D2 An exterior angle of regular polygon \mathbf{A} is 30° bigger than an exterior angle of regular polygon \mathbf{B}. Polygon \mathbf{A} has 9 sides. Find the number of sides of polygon \mathbf{B}.	D3 An interior angle of regular polygon C is 10° smaller than an interior angle of regular polygon \mathbf{D}. Polygon \mathbf{C} has 12 sides. Find the number of sides of polygon \mathbf{D}.	D4 The sum of the interior angles in polygon \mathbf{E} is 900° more than the sum of the interior angles in polygon \mathbf{F}. The total number of sides of the two polygons is 25 . How many sides in each polygon?

Extra Notes

Your Turn

Plot the graph of $y=2 x+1$ for the values $-2 \leq x \leq 2$

x					
y					

Plot the graph of $y=4 x+2$ for the values $-2 \leq x \leq 2$

Fluency Practice

$$
\text { 1) } y=2 x+3
$$

x	-2	-1	0	1	2
y					

3) $y=2 x+5$

x	-2	-1	0	1	2
y					

4) $y=3 x+5$
5) $y=3 x+1$

x	-2	-1	0	1	2
y					

x	-2	-1	0	1	2
y					

7) $y=3 x-2$
8) $y=3 x-3$

x	-2	-1	0	1	2
y					

x	-2	-1	0	1	2
y					

9) $y=3 x-5$
10) $y=4 x-5$

x	-2	-1	0	1	2
y					

x	-2	-1	0	1	2
y					

11) $y=-4 x-5$
12) $y=-2 x-5$

x	-2	-1	0	1	2
y					

x	-2	-1	0	1	2
y					

13) $y=-1 / 2 x-5$
14) $y=1 / 2 x+3 / 4$

x	-2	-1	0	1	2
y					

x	-2	-1	0	1	2
y					

Your Turn

Plot the graph of $2 x+y=8$ for the values $-2 \leq x \leq 2$

Plot the graph of $2 x-y=8$ for the values $-2 \leq x \leq 2$

Plot the graph of $x+2 y=8$ for the values $-2 \leq x \leq 2$

Plot the graph of $x-2 y=8$ for the values $-2 \leq x \leq 2$

Extra Notes

3 Basic Vectors

A vector has magnitude (how long it is) and direction.
Column Vector: $\binom{x}{y}$ where x is movement right or left and y is movement up or down. Right and up are taken to be positive.

Fluency Practice

Write down the column vector \mathbf{c}.

Write down the column vector $\overrightarrow{A B}$.

Write down the column vector $\overrightarrow{B A}$.

Write down the column vector \mathbf{d}.

Write down the column vector a.

On each grid, start at the dot, then draw each vector in turn.
b) $\binom{-3}{4},\binom{-3}{0},\binom{0}{-4}$,
$\binom{3}{0},\binom{0}{2},\binom{3}{-2}$
c) $\binom{-2}{0},\binom{0}{1},\binom{1}{0},\binom{0}{-1}$,
$\binom{2}{0},\binom{0}{1},\binom{1}{0},\binom{0}{-1}$,
$\binom{-2}{0},\binom{0}{-1},\binom{-2}{0},\binom{4}{0}$
d) $\binom{0}{-2},\binom{3}{2},\binom{-3}{-4},\binom{0}{6}$,
$\binom{0}{4},\binom{-1}{-2},\binom{-2}{0}$,
$\binom{0}{2},\binom{-3}{0}$

Write each vector in column form

1) 2a	2) -4a	3) $\frac{1}{2} a$	4) $\frac{3}{2} a$	5) $\mathbf{a c}$
6) -2c				

Worked Example	Your Turn
$\boldsymbol{a}=\binom{2}{3} \boldsymbol{b}=\binom{5}{7}$	$\boldsymbol{a}=\binom{2}{3} \boldsymbol{b}=\binom{5}{7}$
Find 2a-b	Find 3a $\mathbf{2}+\mathbf{2 b}$

Extra Notes

Reflections

A transformation that flips all points so that they are the same distance from a given mirror line as the original points, but in the opposite direction.

- Shapes flip over a mirror line.
- A shape and its reflection lie perfectly on top of each other if the page is folded in the mirror line.
- Produces a congruent shape.

To fully describe a reflection, you need to give two pieces of information:

1. Type of Transformation: Reflection
2. The Line of Reflection:

- x - axis or y - axis
- $y=$ 'a number' or $x=$ 'a number'
- $y=x$ or $y=-x$

(a)

(c)

(d)

(e)

Question 3: Find the mirror line for each of the reflections below
(a)

(i)

(b)

(e)

(c)

(f)

Fluency Practice

Question 4:
(a) Reflect

(d) Reflect shape D in the y-axis

Question 5:

(d)
(d) Reflect shape D in the line $y=2$

(b) Reflect triangle B in the y-axis

(e) Reflect shape E in the y-axis

(b) Reflect shape B in the line $x=-2$

(e)

(c) Reflect shape C in the x-axis

(c) Reflect shape C in the line $y=-1$

(b)
(c)
(a) (b)

Reflect shape B in the line $y=-x$
Reflect shape A in the line $y=x$

Reflect shape C in the line $y=x$

Question 7: Describe fully the single transformation that takes shape A to shape B.
(b)
(a)

(d)

(c)

(e)
(f)

Fluency Practice

Rotations

A transformation that turns all points through a given angle, in a given direction, around a given centre.

- Shapes turn around a centre point.
- Produces a congruent shape.

To fully describe a rotation, you need to give four pieces of information:

1. Type of Transformation: Rotation
2. Angle (in degrees): $90^{\circ}, 180^{\circ}, 270^{\circ}$
3. Direction: Clockwise or Anticlockwise
4. Centre of Rotation: Coordinate (x, y)

Fluency Practice

(a)

rotate 90° clockwise about P (d)

rotate 180° about P
(g)

(b)

rotate 90° anticlockwise about P (e)

rotate 90° anticlockwise about P
(h)

rotate 270° clockwise about P

Question 2: Rotate each of the shapes below as instructed, using the origin, $(0,0)$, as the

(d)

rotate 90° clockwise about $(0,0)$
(g)

(b)

rotate 90° clockwise about $(0,0)$
(e)

(h)

rotate 180° about $(0,0)$
(c)

(i)

Fluency Practice

Question 3: Rotate each of the shapes below as instructed.
(a)

rotate 90° anticlockwise about $(0,1)$
(b)

rotate 90° clockwise about ($-1,-2$)
(c)

(e)
(h)

(f)

(i)

rotate 90° anticlockwise about $(3,0)$
(g)

(d)

$$
\square-+\square-
$$

Question 4: Describe fully the single transformation that takes shape A to shape B.
(a)

(d)

(b)

(e)

(c)

(f)

Translations

A transformation that moves all points the same fixed distance.

- Shapes move or "slide" a distance horizontally and/or vertically.
- On a rectangular grid, often described using a column vector.

To fully describe a translation, you need to give two pieces of information:

1. Type of Transformation: Translation
2. Column Vector: $\binom{x}{y}$ where x is movement right or left and y is movement up or down. Right and up are taken to be positive.

Fluency Practice

Question 3: Translate each of the shapes below as instructed.
(a)

Translate A by $\binom{2}{-3}$
(d)

Translate D by $\binom{-3}{-2}$
(b)

Translate E by $\binom{4.5}{-4}$
(c)

Translate F by $\binom{-1}{1}$

Question 4: Describe fully the single transformation that takes shape A to shape B
(a)

(b)

Fluency Practice
(c)

(d)

Question 5: The translation vector to take shape C to shape D is $\binom{2}{-5}$
What translation vector takes shape D to shape C?
Question 6: Edward has been asked to translate shape E by $\binom{-4}{2}$
He has labelled his answer shape F
Can you spot any mistakes?

Extra Notes

5 Invariant Points

If something is invariant, then that means it does not change. In terms of transformations, an invariant point is any point on the shape that hasn't moved after the transformation has been done.

For example, when we rotated shape A, the bottom left corner of it did not move. As a result, the bottom left corner is an invariant point.

Fluency Practice

Question 1: $\quad \mathrm{ABCD}$ is a square.
(a) Translate ABCD using vector $\binom{-3}{-1}$
(b) Are there any invariant points? If so, which point(s) are invariant?

Question 2: $\quad A B C$ is an isosceles triangle.
(a) Reflect ABC in the x-axis
(b) Are there any invariant points? If so, which point(s) are invariant?

Question 6: $\quad \mathrm{ABC}$ is a triangle.
(a) Rotate $\mathrm{ABC} 90^{\circ}$ clockwise about $(1,0)$
(b) Are there any invariant points? If so, which point(s) are invariant?

Question 7: A sketch of triangle ABC is shown
For each transformation below, write down the letter(s) of any vertices that are invariant.
(a) Rotation 180° about the point A
(c) Reflection in the line $x=5$
(d) Reflection in the line $y=x$

(e) Reflection in the line $y=2$

Question 8: A sketch of quadrilateral $A B C D$ is shown.
For each transformation below, write down the letter(s) of any vertices that are invariant
(a) Reflection in the line $y=8$
(c) Reflection in the line $x=3$

Fluency Practice

Question 1: ABC is a triangle.
Describe fully a single transformation of ABC so that:
(a) None of the vertices are invariant.
(b) Exactly one vertex is invariant.
(c) Exactly two vertices are invariant.

Question 2: Here is triangle ABC
Olivia says "if ABC is reflected in the line $x=-3$ there is one invariant point."

Amelia says "if ABC is reflected in the line $y=-2$ there are two invariant points."

Isla says "if ABC is reflected in the line $x=1$ there are two vertices that are invariant."

Which student is incorrect? Explain your answer.

Question 3: Here is a sketch of triangle ABC.
Describe fully a single transformation of ABC so that all the points on $A C$ are invariant and the point B is not invariant.

Question 4: Here is shape ABCDEF
Describe fully single transformations so that from the six vertices:
(a) only vertices B and C are invariant.
(b) only vertex F is invariant.
(c) only vertices B, D and F are invariant.

Question 5: Here is quadrilateral ABCD
ABCD is reflected in the line $x=-1$
followed by a reflection in the line $y=-x$ followed by a rotation of 180° about $(-1,-1)$

Which of the vertices are invariant?

Question 6: Shown is triangle ABC
ABC is rotated 180° about $(-1,2)$ and then
translated by the vector $\binom{2}{-4}$
Write down the coordinate of the invariant point

Fluency Practice

Red
Complete these sentences:
a) When triangle $A B C$ is reflected in the line $y=2$ the invariant points are \&
b) When triangle ABC is rotated using centre $(7,2)$, the invariant point is
\qquad
c) When triangle $A B C$ is reflected in the line $y=x$, the invariant points are . .. \& ...
d) When triangle $A B C$ is reflected in the line $x+y=9$, the invariant point is.
e) When triangle $A B C$ is.. \qquad the invariant points are A and B.
f) When triangle $A B C$ reflected in the line the only invariant point is C .

Amber

Match the transformation to the invariant points for the triangle $A B C$
a) Reflection in the line $y=7$
(b) Reflection in the line $\mathrm{y}=\mathrm{x}-5$

A
(c) Rotation around the centre $(7,7)$
(d) Reflection in the line $x+y=4$

B
(e) Reflection in the line $y=x$
(f) Reflection in the line $x=7$
(g) Reflection in the line $y=2 x-2$
(h) Reflection in the line $y=1 / 2 x+1$

Green
Write a transformation that would leave the correct points in the triangle ABC invariant for each region of the Venn diagram. Try and put at least one transformation in each region.

Extra Notes

Hypotenuse

From the Greek derived hypo meaning 'under' and teinein meaning 'to stretch'.

The two sides that aren't the hypotenuse are known as legs.

The hypotenuse is the side that stretches from one leg to another.

Fluency Practice

Page 187
a) Cross out all shapes which Pythagoras' Theorem won't apply to.
b) In each remaining shape, label the hypotenuse h and the legs a and b.

Pythagoras' Theorem

In any right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

In other words:

$a^{2}+b^{2}=c^{2}$

Note: a and b can be labelled in any order but c has to be the hypotenuse i.e the triangle could be labelled like this:

Use Pythagoras' theorem to find the length of the hypotenuse marked $?$ in each of these right-angled triangles.

equilateral triangle or not?

Converse of Pythagoras' Theorem

If Pythagoras' theorem holds true (i.e. if $a^{2}+b^{2}=c^{2}$) then the triangle must be right-angled.

Fluency Practice

Use Pythagoras' theorem to find the length of the edge marked ?,OR decide whether the triangle is right-angled or not
Drawings are NOT to scale

2

6

13

Worked Example	Your Turn
Find the length of $A B$ where $A(-1,-4)$ and $B(4,3)$.	Find the length of $A B$ where $A(-2,-3)$ and $B(8,11)$.

Round answers to 2dp

Question 1: Calculate the length of the line joining the points A and B.
(a)
(b)

(c)

Question 2: Calculate the length of the line joining the points A and B.
(a)

(b)

(c)

Question 4: Calculate the length of the line joining the points A and B
(a)

(b)

(c)

Question 5: Calculate the distance between the following pairs of coordinates
(a) $(5,1)$ and $(9,6)$
(b) $(1,4)$ and $(10,10)$
(c) $(0,0)$ and $(6,8)$
(d) $(2.5,3)$ and $(8,0)$
(e) $(-6,2)$ and $(8,3)$
(f) $(-5,-9)$ and $(-3,8)$
(g) $(-5,7)$ and $(-3,-2)$
(h) $(-9,-9)$ and $(3,-20)$
(i) $(-4,0)$ and $(0,-4)$

Apply

Question 1: Calculate the perimeter of triangle ABC.

Question 2: The distance between the points $(1,2)$ and $(16, p)$ is 17 . Find the possible values of p.

Question 3: The distance between the points $(-3,-4)$ and $(q, 5)$ is 15 . Find the possible values of q.
(a)
(b)
(c)

Question 3: Calculate the length of the line joining the point A and B.

Fluency Practice
A1 Find length $B C$ F

Extra Notes

