

Year 9
 Mathematics Unit 15
 Tasks

Do Not Write Inside

Fluency Practice

Question 1: Copy these shapes and then enlarge by the scale factor given
(a)
(b)

Enlarge by scale factor 2
(d)
Enlarge by scale factor 4

(e)

Enlarge by scale factor 2

(c)

Enlarge by scale factor 3

Question 2: Copy these shapes and then enlarge by the scale factor given.
(a)

Enlarge by scale factor 2
(d)
(b)

Enlarge by scale factor 3

Enlarge by scale factor 3

Que

Enlarge by scale factor 4
(b)

Enlarge by scale factor 2
(c)

Enlarge by scale factor 3

Question 4: Shown below is an object and its enlargement. For each, write down the scale factor of enlargement.
(a)

(c)

(b)

(d)

Fluency Practice

Question 1: Shown is a rectangle drawn on a centimetre squared grid.
(a) Find the area of the rectangle.
(b) Enlarge the rectangle by scale factor 2 on centimetre squared paper.
(c) Find the area of the enlarged rectangle.

(d) How many times larger is the area of the enlarged rectangle than the original?

Question 2: Shown is a triangle drawn on a centimetre squared grid.
(a) Find the area of the triangle.
(b) Enlarge the triangle by scale factor 3 on centimetre squared paper.
(c) Find the area of the enlarged triangle.

(d) How many times larger is the area of the enlarged triangle than the original?

Question 3: Shown is a shape drawn on a centimetre squared grid.
Reg is going to enlarge the shape by scale factor 5 .
(a) Without enlarging the shape, can you predict what the area of the enlarged shape will be?
(b) Enlarge the shape by scale factor 5 and check your prediction.

Question 4: Charlie has enlarged the triangle by scale factor 2. Can you spot any mistakes?
His answer is in green.

Fluency Practice

Question 1: Enlarge each shape by the scale factor given Use P as the centre of enlargement

Question 2: Enlarge each shape by the scale factor given Use P as the centre of enlargement.
(a)
(b)

Enlarge by scale factor 2
(c)

Enlarge by scale factor 3

Enlarge by scale factor 3
(d)

Enlarge by scale factor 2

Fluency Practice

Question 3: Enlarge each shape by the scale factor given The coordinates for each centre of enlargement are given.

Enlarge by scale factor 2 using $(4,-3)$ as the centre of enlargement
(c)

Enlarge by scale factor 2 using

 $(0,-1)$ as the centre of enlargement(b)

Enlarge by scale factor 3 using $(3,2)$ as the centre of enlargement
(d)

Enlarge by scale factor 2 using the origin as the centre of enlargement

Question 4: Describe fully the single transformation that takes shape A to shape B.
(a)

(c)

(b)

(d)

Fluency Practice

Question 1: Copy these shapes and then enlarge by the scale factor given
(a)

Enlarge by scale factor $\frac{1}{2}$
(b)
(b)

Enlarge by scale factor
(c)

Question 2: Copy these shapes and then enlarge by the scale factor given
(a)

Enlarge by scale factor $\frac{1}{4}$
(b)

Enlarge by scale factor $\frac{1}{2}$
(c)

Enlarge by scale factor $1 \frac{1}{3}$
Question 3: Enlarge each shape by the scale factor given Use P as the centre of enlargement
(a)

Enlarge by scale factor $\frac{1}{2}$
(b)

Enlarge by scale factor $\frac{1}{3}$
(c)

Enlarge by scale factor $\frac{2}{3}$

Question 4: Enlarge each shape by the scale factor given Use P as the centre of enlargement.
(a)

Enlarge by scale factor $\frac{1}{4}$
(c)

(b)

(d)

Fluency Practice

Question 5: Enlarge each shape by the scale factor given The coordinates for each centre of enlargement are given.
(a)

Enlarge by scale factor $\frac{1}{2}$ using $(0,1)$ as the centre of enlargement
(b)

Enlarge by scale factor $\frac{1}{3}$ using $(-3,1)$ as the centre of enlargement
(d)

Enlarge by scale factor $2 \frac{1}{2}$ using $(-5,-3)$ as the centre of enlargement

Question 6: Describe fully the single transformation that takes shape A to shape B.
(a)

(c)

(b)

(d)

Fluency Practice

Question 1: Enlarge each shape by the scale factor given Use P as the centre of enlargement.
(a)
(c)

Enlarge by scale factor -2
(e)

Enlarge by scale factor -4
(f)

Question 2: Enlarge each shape by the scale factor given
a)

© col Enlarge by scale factor -3
(b)

Enlarge by scale factor -4
(c)

Enlarge by scale factor -2
(d)

Enlarge by scale factor $-\frac{1}{3}$

Question 3: Enlarge each shape by the scale factor given The coordinates for each centre of enlargement are given
(a)

Enlarge by scale factor -2 using
(c)

Enlarge by scale factor -4 using $(-3,-1)$ as the centre of enlargement
(b)

Enlarge by scale factor -2 using $(2,2)$ as the centre of enlargement

Enlarge by scale factor $-\frac{1}{2}$ using $(0,-2)$ as the centre of enlargement

Question 4: Describe fully the single transformation that takes shape A to shape B.

(a)

(c)

(b)

(d)

Fluency Practice

Page 21

Intelligent Practice - Find the length of every missing side
Triangles not drawn to scale

Intelligent Practice

Page 23

Intelligent Practice - Find the length of every missing side
Triangles not drawn to scale

Intelligent Practice

Intelligent Practice - Find the length of every missing side
Triangles not drawn to scale

Fluency Practice

i) Find the scale factor between triangle $A B E$ and triangle $A C D$
ii) Find the value of x
iii) Find the value of y

i) Find the scale factor between $A B E$ and $A C D$
ii) Find the value of x
iii) Find the value of y

Q3.

i) How can you tell that $A B E$ and BCD are mathematically similar?
ii) Find the value of x
iii) Find the value of y

Q4

i) Find the value of x
ii) Find the value of y
iii) Find the size of angle θ

i) Find the value of x
ii) Hence, find the perimeter of trapezium ABDE

Q6. Find the value of x

Q7. [non-calculator] Given that $\tan (x)=\tan (y)$, find the area of triangle $A B C$.

Fluency Practice

Exam Questions around Similar shapes

 Question 1
$A B$ is parallel to $E D$.
$A C D$ and $B C E$ are straight lines.
$A B=8 \mathrm{~cm}$
$A C=4.8 \mathrm{~cm}$
$B C=6.4 \mathrm{~cm}$
$E D=20 \mathrm{~cm}$

Work out the length of $B E$.
Diagram NOT accurately drawn

Question 3

The diagram represents a metal frame

Diagram NOT accurately drawn

The frame is made from four metal bars, $A B, A C, B C$ and $B D$.
Angle $A B C=$ angle $A D B=90^{\circ}$
$A B=5 \mathrm{~m}$
$B C=3 \mathrm{~m}$
Work out the total length of the four metal bars of the frame.
Give your answer correct to 3 significant figures \qquad
.
The length of $D E$ is 15 cm .
Find the length of $E F$.

Extension

similarity questions

Extension

similar triangle questions
(1)

(2)

(4)

(6)

(7) $B C$ is parallel to $D E$
(a) the length $C E$
(b) the length $B C$

Fluency Practice

C. Find the value of the following to $3 \mathrm{~d} . \mathrm{p}$. .
1). $\sin 10^{\circ}$
2). $\cos 45^{\circ}$
3). $\tan 45^{\circ}$
4). $\tan 62^{\circ}$
5). $\sin 14^{\circ}$
6). $\quad \sin 69^{\circ}$
7). $\tan 14^{\circ}$
8). $\quad \cos 32^{\circ}$
9). $\quad \cos 5^{\circ}$
10). $\sin 85^{\circ}$
11). $\tan 68^{\circ}$
12). $\sin 55^{\circ}$
13). $\tan 4^{\circ}$
14). $\sin 15^{\circ}$
15). $\cos 75^{\circ}$
16). $\sin 90^{\circ}$
17). $\cos 90^{\circ}$
18). $\cos 12^{\circ}$
19). $\tan 78^{\circ}$
20). $\tan 9^{\circ}$
D. Calculate the following to 2 d.p..
1). $5 \tan 45^{\circ}$
2). $4 \sin 30^{\circ}$
3). $8 \cos 60^{\circ}$
4). $6 \sin 43^{\circ}$
5). $9 \cos 18^{\circ}$
6). $15 \tan 83^{\circ} 7$). $14 \cos 25^{\circ}$
8). $24 \cos 72^{\circ} 9$). $31 \sin 45^{\circ}$
10). $20 \cos 34^{\circ}$
11). $5 \cos 60^{\circ}$ 12). $56 \sin 15^{\circ}$
13). $30 \tan 45^{\circ}$ 14). $19 \sin 82^{\circ}$
15). $14 \tan 45^{\circ}$
16). $17 \tan 60^{\circ}$ 17). $8 \cos 0^{\circ}$
18). $45 \tan 28^{\circ}$ 19). $61 \sin 90^{\circ}$
20). $28 \tan 50^{\circ}$
E. Calculate the following to 2 d.p..
1). $\frac{6}{\sin 34^{\circ}}$
2). $\frac{12}{\cos 83^{\circ}}$
3). $\frac{4}{\tan 16^{\circ}}$
4). $\frac{23}{\tan 45^{\circ}}$
5). $\frac{31}{\sin 30^{\circ}}$
6). $\frac{38}{\cos 18^{\circ}}$
7). $\frac{48}{\tan 80^{\circ}}$
8). $\frac{8}{\sin 54^{\circ}}$
9). $\frac{18}{\sin 15^{\circ}}$
10). $\frac{5}{\cos 51^{\circ}}$.
11). $\frac{25}{\tan 52^{\circ}}$
12). $\frac{62}{\cos 71^{\circ}}$.
13). $\frac{82}{\sin 68^{\circ}}$
14). $\frac{16}{\cos 8^{\circ}}$
15). $\frac{2}{\sin 12}$.
16). $\frac{6}{\sin 75^{\circ}}$
17). $\frac{18}{\tan 45^{\circ}}$
18). $\frac{48}{\cos 50^{\circ}}$.
19). $\frac{37}{\tan 12^{\circ}}$
20). $\frac{52}{\tan 84^{\circ}}$

Intelligent Practice

Find ' x '. Give your solution to 2 decimal places.

1) $\tan (30)=\frac{x}{2}$
2) $\tan (45)=\frac{x}{2}$
3) $\sin (45)=\frac{x}{2}$
4) $\sin (45)=\frac{x}{4}$
5) $\frac{x}{4}=\sin (45)$
6) $x \times \sin (45)=4$
7) $x \times \sin (30)=4$
8) $x \times \cos (30)=4$
9) $x \times \cos (30)=8$
10) $x \times \cos (31)=8$

Find ' x '. Give your solution to 2 decimal places.

1) $\cos (30)=\frac{2}{x}$
2) $\cos (45)=\frac{2}{x}$
3) $\quad \sin (45)=\frac{2}{x}$
4) $\sin (45)=\frac{4}{x}$
5) $\quad \sin (45)=\frac{8}{x}$
6) $\tan (45)=\frac{8}{x}$
7) $\tan (45)=\frac{x}{8}$
8) $\cos (45)=\frac{x}{8}$
9) $\cos (45)=\frac{8}{x}$
10) $\frac{8}{x}=\cos (45)$

Fluency Practice

Q1. Rearrange to make \mathbf{c} the subject.
a. $\quad a=\frac{c}{b}$
b. $a=\frac{b}{c}$
c. $5=\frac{c}{b}$
d. $20=\frac{b}{c}$
e. $\sin A=\frac{c}{b}$
f. $\sin A=\frac{b}{c}$
g. $\sin 5=\frac{c}{b}$
h. $\sin 20=\frac{b}{c}$
i. $\cos A=\frac{c}{b}$
j. $\cos 28=\frac{b}{c}$
k. $\tan A=\frac{b}{c}$
I. $\tan A=\frac{10}{c}$

Q2. Calculate a to 2 dp .
a. $\quad \sin 40=\frac{a}{6}$
b. $\sin 31=\frac{a}{8}$
c. $\cos 70=\frac{20}{a}$
d. $\cos 46=\frac{12 a}{7}$
e. $\tan 20=\frac{a}{27}$
f. $\tan 58=\frac{67}{a}$

Q3. Calculate a to 3sf.
a. $\sin 36=\frac{a}{9}$
b. $\sin 71=\frac{a}{6}$
c. $\sin 29=\frac{6}{a}$
d. $\sin 81=\frac{75}{a}$
e. $\sin 205=\frac{a}{11}$
f. $\cos 53=\frac{29}{a}$
g. $\cos 101=\frac{a}{61}$
h. $\tan 44=\frac{a}{7}$
i. $\tan 18=\frac{50}{c}$

Fluency Practice

A. Name all the sides from the given angle, x°.
1).

2).

3).

4).

6). $P \sqrt{x} \square^{Q}$ 7).

8).

9).

10).

11).

12).

14).

Fluency Practice

B. For each of the following questions look at the information given and the information you have to find. Which of the trigometrical ratios would you use to solve it for x ?

Do not try to solve the questions.

1).

2).

$6)$.

9).

10).

$3)$.

7).

4)

11) 12).

Fluency Practice

F. Find the length of the side marked x , leave all answers to 1 decimal place.

Diagrams not to scale.
1).
5).

6).

7).

3).

12).

Fluency Practice

A. Find the length of the side marked x, leave all answers to 1 decimal place. Diagrams not to scale.
1).

2).

3).

5).

$6)$.

10).

7).

8).

11).

12).

Bronze
Find $f^{-1}(x)$:
Q1) $f(x)=\frac{5 x+4}{2}$
Q2) $f(x)=\frac{7 x+6}{8}$
Q3) $f(x)=\frac{8 x+3}{7}$
Q4) $f(x)=\frac{7 x+6}{9}$
Q5) $f(x)=5 x-7$
Q6) $f(x)=\frac{x}{4}+9$
Q7) $f(x)=\frac{x}{4}-7$
Q8) $f(x)=\frac{3 x+5}{3}$

Silver
Find $f^{-1}(x)$
Q1) $f(x)=\frac{\sqrt{x+8}}{6}$
Q2) $f(x)=(x-7)^{3}$
Q3) $f(x)=(x+4)^{3}$
Q4) $f(x)=(x-8)^{2}$
Q5) $f(x)=(x+4)^{2}$
Q6) $f(x)=(x+3)^{3}$
Q7) $f(x)=(x-6)^{3}$
Q8) $f(x)=(x+5)^{2}$

Gold
Find $f^{-1}(x)$
Q1) $f(x)=\frac{-7 x-1}{-3 x-8}$
Q2) $f(x)=\frac{4 x+3}{6 x+4}$
Q3) $f(x)=\frac{5 x-4}{4 x-8}$
Q4) $f(x)=\frac{3 x+6}{5 x+8}$
Q5) $f(x)=\frac{-x+6}{4 x+7}$
Q6) $f(x)=\frac{-x-3}{6 x+6}$
Q7) $f(x)=\frac{7 x-3}{-5 x+7}$
Q8) $f(x)=\frac{3 x+6}{7 x+7}$

Intelligent Practice

Find ' x '. Give your solution to 2 decimal places.

1) $\sin (x)=0$
2) $\sin (x)=\frac{1}{5}$
3) $\sin (x)=\frac{2}{5}$
4) $\sin (x)=\frac{3}{5}$
5) $\sin (x)=\frac{4}{5}$
6) $\sin (x)=1$
7) $\cos (x)=0$
8) $\cos (x)=\frac{1}{5}$
9) $\quad \cos (x)=\frac{2}{5}$
10) $\cos (x)=\frac{3}{5}$
11) $\cos (x)=\frac{4}{5}$
12) $\cos (x)=1$

Fluency Practice

C). Find the angles marked x.

$3)$.

4).

5).

9).
6).

10).
7).

8).

13).
14).
11).

16).

Fluency Practice

D). In the following triangles find all the missing angles and sides.

2).

$3)$.

4).

5).

$6)$.

7).

14).

15).

8).

12).

Each calculation has been created from a diagram.
Draw each diagram.

$$
x=\frac{9}{\cos \left(38^{\circ}\right)} \quad x=9 \times \cos \left(38^{\circ}\right) \quad y=\frac{9}{\sin \left(38^{\circ}\right)}
$$

Thinker: $h=12 \times \tan \left(45^{\circ}\right)+6$

Extension

In the table a line of working has been given.
Draw the corresponding triangle that would produce that line of working.

$x=10 \sin 12^{\circ}$	$y=\frac{16}{\cos 34^{\circ}}$	$x=\sin ^{-1}\left(\frac{5}{6}\right)$
$x=\frac{4.3}{\tan 35^{\circ}}$	$\theta=\cos ^{-1}\left(\frac{16}{34}\right)$	$x=\frac{10}{\sin 12^{\circ}}$
$y=\tan ^{-1}\left(\frac{10}{9}\right)$	$x=34 \cos 16^{\circ}$	$x=\tan ^{\circ} 67^{\circ} \times 6$

Extension

Given this ...

... complete these:

Page 64

Fluency Practice
A1 Find length $A B$

DeviPLeXIIG periMeteris?

Work out the perimeter of each triangle to $2 \mathrm{~d} . \mathrm{p}$. Cross of your answers from those on the right as you go

A				$\begin{aligned} & 13.83 \\ & 17.08 \\ & 17.50 \end{aligned}$
	F	G		$\begin{aligned} & 19.31 \\ & 20.49 \\ & 21.60 \end{aligned}$
				$\begin{gathered} 24 \\ 24.05 \\ 30.81 \end{gathered}$
м				$\begin{gathered} 31.94 \\ 36 \\ 40.97 \\ 45.73 \end{gathered}$

Pythagoras, Trigonometry or Angles? Interleaved Practice

These resources have been used as AO1 practice for revision of right-angled triangles, but primarily as interleaved practice with simple figures leading students to making decisions about whether or not we need Pythagoras, trigonometry or angle sums to 180°

Prior knowledge needed:

- Sum of interior angles in a triangle is 180°
- Using Pythagoras' theorem to find hypotenuse and catheti
- Using the three main trigonometric ratios to calculate side lengths and angles
- Basic notation conventions that demonstrate equal length sides

Sheet 1: Mixture of different right-angled triangles with
Sheet 2: Some of the triangles are the same but asking about a different aspect of it to alter the maths applied to find the answer
[All solutions have been provided to 2 decimal places]

Fluency Practice

Page 71

Fluency Practice

Page 72

Fluency Practice

Question 1: Convert the times from hours/minutes into hours, without a calculator. e.g. $1 \quad 45$ minutes $=0.75$ hours
e.g. $2 \quad 1$ hour 30 minutes $=1.5$ hours
a) 15 minutes
(b) 30 minutes
(c) 45 minutes
(d) 20 minutes
(e) 40 minutes
(f) 2 hours 30 minutes
(g) 1 hour 15 minutes
(h) 3 hours 45 minutes
(i) 2 hours 40 minutes
(j) 5 hours 30 minutes
(k) 7 hours 20 minutes
(l) 4 hours 15 minutes

Question 2: Convert the times from hours/minutes into hours.
You may use a calculator if needed.
(a) 18 minutes
b) 54 minutes
(d) 1 hour 36 minutes
(e) 2 hours 48 minutes
(c) 1 hour 3 minutes
(g) 8 hours 51 minutes
(h) 3 hours 21 minutes
(f) 2 hours 33 minutes

Question 3: Convert the times from hours/minutes into hours. Give each answer to 3 decimal places.
(a) 44 minutes
(b) 8 minutes
(c) 1 hour 50 minutes
d) 2 hours 10 minutes
(e) 4 hours 26 minutes
(f) 3 hours 29 minutes
g) 5 hours 2 minutes
(h) 2 hours 55 minutes
(i) 59 minutes

Question 4: Convert the times from hours into hours/minutes, without a calculator.
(a) 0.75 hours
b) 1.25 hours
(e) 2.6666... hours
(c) 5.5 hours
(d) 1.3333... hours
(h) 0.5 hours
(f) 10.75 hours
(g) 3.25 hours
(i) $22.3333 \ldots$ hours

Question 5: Convert the times from hours into hours/minutes.
You may use a calculator if needed
(a) 0.7 hours
(b) 0.1 hours
(c) 0.9 hours
(d) 1.3 hours
(e) 3.6 hours
(f) 6.7 hours
(g) 0.85 hours
(h) 1.15 hours
(i) 3.45 hours

Question 6: Convert the times from hours into hours/minutes
a) 0.93333... hours
(b) 0.48333... hours
(c) 1.06666... hours
(d) 2.73333... hours
(e) 3.68333... hours
(f) 2.18333... hours
(g) 8.01666... hours
(h) 4.46666... hours
(i) 1.76666... hours

Fluency Practice

Question 11: Change the following speeds into metres per second.
(a) $360 \mathrm{~km} / \mathrm{h}$
(b) $18 \mathrm{~km} / \mathrm{h}$
(c) $36 \mathrm{~km} / \mathrm{h}$
(d) $72 \mathrm{~km} / \mathrm{h}$
(e) $10 \mathrm{~km} / \mathrm{h}$
(f) $40 \mathrm{~km} / \mathrm{h}$
(g) $2 \mathrm{~km} / \mathrm{h}$
(h) $4.5 \mathrm{~km} / \mathrm{h}$

Question 12: Change the following speeds into kilometres per hour.
(a) $45 \mathrm{~m} / \mathrm{s}$
(b) $15 \mathrm{~m} / \mathrm{s}$
(c) $20 \mathrm{~m} / \mathrm{s}$
(d) $4 \mathrm{~m} / \mathrm{s}$
(e) $1 \mathrm{~m} / \mathrm{s}$
(f) $0.5 \mathrm{~m} / \mathrm{s}$
(g) $0.2 \mathrm{~m} / \mathrm{s}$
(h) $300 \mathrm{~m} / \mathrm{s}$

Question 13: Change these speed into kilometres per hour
(a) 10 mph
(b) 40 mph
(c) 25 mph
(d) 200 mph
(e) 8 mph
(f) 2 mph
(g) 10.5 mph
(h) 24.6 mph

Question 14: Change these speed into miles per hour
(a) $32 \mathrm{~km} / \mathrm{h}$
(b) $48 \mathrm{~km} / \mathrm{h}$
(c) $24 \mathrm{~km} / \mathrm{h}$
(d) $800 \mathrm{~km} / \mathrm{h}$
(e) $16 \mathrm{~km} / \mathrm{h}$
(f) $0.64 \mathrm{~km} / \mathrm{h}$
(g) $16000 \mathrm{~km} / \mathrm{h}$
(h) $2400000 \mathrm{~km} / \mathrm{h}$

Fluency Practice

Question 1: Calculate the average speeds for each of the following, without using a calculator.
(a) A car travels 60 miles in 2 hours
(c) A cyclist travels 45 miles in 5 hours
(e) A runner runs 100 metres in 10 seconds
(g) A helicopter travels 425 miles in 5 hours
(i) A dog runs 216 metres in 12 seconds
(k) A bird flies 19 miles in 2 hours
(b) A lorry travels 120 miles in 3 hours
(d) A jogger travels 30 km in 4 hours
(f) A car travels 195 miles in 3 hours
(h) A helicopter flies 840 miles in 7 hours
(j) An airplane travels 984 miles in 6 hours
(1) A car travels 600 km in 8 hours

Question 2: Calculate the average speeds for each of the following, without using a calculator.
(a) A car travels 20 miles in 30 minutes
(c) A bird flies 17 kilometres in 30 minutes
(e) A helicopter flies 18 miles in 15 minutes
(g) A dog runs 3 kilometres in 10 minutes
(b) A lorry travels 32 miles in 30 minutes
(d) A man jogs 2 kilometres in 15 minutes.
(f) An F1 car travels 32 miles in 15 minutes.
(h) A jet travels 23 miles in 6 minutes.
(i) A car travels 12 miles in 20 minutes
(j) A car travels 9 miles in 12 minutes
(k) A motorcycle travels 36 miles in 40 minute

Question 3: Calculate the average speeds for each of the following.
(a) A car travels 63 miles in 1 hour 30 minutes
(b) A man runs 15 miles in 2 hours 30 minutes
(c) A helicopter flies 238 miles in 3 hours 30 minutes
(d) A car travels 85.5 miles 2 hours 15 minutes
(e) An airplane flies 315 kilometres in 1 hour 45 minutes
(f) A lorry travels 351 miles in 6 hours 45 minutes
(g) A car drives 154 miles in 2 hours 20 minutes
(h) A helicopter flies 160 kilometres in 1 hour 40 minutes

Question 4: Calculate the average speeds for each of the following.
(a) A man jogs 6 miles in 1 hour 12 minutes
(b) A motorcycle drives 130 miles in 2 hours 36 minutes
(c) A helicopter flies 152 miles in 1 hour 54 minutes
(d) A plane travels 1272 kilometres in 5 hours 18 minutes
(e) A car travels 98 miles in 2 hours 27 minutes
(f) A rocket travels 750 miles in 3 minutes
(g) A car travels 6.4 miles in 7 minutes. Give your answer to 2 decimal places.
(h) A ship sails 105 miles in 4 hours 28 minutes. Give your answer to 2 decimal places.
(i) A plane travels 400 miles in 1 hour 55 minutes. Give your answer to 2 decimal places.
(j) A car drives 500 kilometres in 7 hours 13 minutes. Give your answer to 2 decimal places.

Fluency Practice

Question 5: Calculate how far each of the following travels.
(a) A car travels at a speed of 50 mph for 3 hours.
(b) A plane flies at a speed of 230 kilometres per hour for 2 hours
(c) A lorry drives for 4 hours at a speed of 45 miles per hour.
(d) A man runs at a speed of 8 metres per second for 15 seconds.
(e) A helicopter flies for 8 hours at a speed of 80 miles per hour.
(f) A dog runs at a speed of $15 \mathrm{~m} / \mathrm{s}$ for 20 seconds
(g) A car travels at a speed of 48 mph for 3 hours.
(h) A truck travels at a speed of 29 mph for 5 hours.

Question 6: Calculate the distance travelled by each of the following.
(a) A car drives at a speed of 60 mph for 30 minutes.
(b) A taxi travels for 30 minutes at a speed of 28 mph
(c) A car travels at a speed of 44 mph for 15 minutes.
(d) A lorry drives at a speed of 51 mph for 20 minutes.
(e) An airplane travels at a speed of 441 mph for 20 minutes
(f) A car drives at a speed of 48 mph for 45 minutes.
(g) A helicopter flies at a speed of 72 miles per hour for 10 minutes
(h) A bird flies for 40 minutes at a speed of 60 kilometres per hour.

Question 7: Work out the distance travelled by each of the following.
(a) A car drives at a speed of 40 mph for 1 hour 30 minutes
(b) A bird flies at a speed of 32 kilometres per hour for 1 hour 30 minutes
(c) A lorry travels for 2 hours 30 minutes at a speed of 52 mph
(d) A F1 race car drives for 1 hour 15 minutes at a speed of 124 mph
(e) A helicopter flies at a speed of 104 mph for 1 hour 45 minutes
(f) A car drives at a speed of 58 mph for 3 hours 15 minutes
g) A man runs at 6 mph for 1 hour 24 minutes
(h) A car drives for 2 hours 54 minutes at a speed of 50 mph
(i) A plane flies at a speed of 306 kilometres per hour for 3 hours 20 minutes
(j) A hot air balloon flies at a speed of 18 mph for 1 hour 40 minutes
(k) A bird flies for 4 hours 36 minutes at a speed of 40 kilometres per hour.
(l) A helicopter travels at 98 mph for 5 hours 6 minutes.
(m) A car travels at 40 mph for 1 hour 7 minutes. Give your answer to 2 decimal places.
(n) A lorry drives at 65 mph for 2 hours 19 minutes. Give your answer to 2 decimal places.
(o) A car drives at 70 mph for 44 minutes. Give your answer to 2 decimal places.
(p) A car drives at 32 mph for 1 minute. Give your answer to 2 decimal places.

Question 8: Work out the distance travelled by each of the following.
(a) A runner runs at a speed of $8 \mathrm{~m} / \mathrm{s}$ for 2 minutes
(b) A jog runs at a speed of $4 \mathrm{~m} / \mathrm{s}$ for 10 minutes.
(c) A car drives at 60 mph for 90 seconds.
(d) A lorry drives at 30 mph for 150 seconds.

Question 9: Work out how long each of the journeys take.
(a) A car drives 120 miles at a speed of 40 mph .
(b) A lorry drives 250 miles at a speed of 50 mph .
(c) A bird flies 330 kilometres at a speed of 55 kilometres per hour.
(d) An object travels 48 miles at speed of 16 mph .
(e) A man runs 240 metres at a speed of $6 \mathrm{~m} / \mathrm{s}$
(f) A dog runs 168 metres at a speed of $12 \mathrm{~m} / \mathrm{s}$
(g) A lorry travels 240 miles at a speed of 60 mph .
(h) A helicopter travels 345 miles at a speed of 115 mph
(i) A plane travels at a speed of 250 mph and covers a distance of 2250 miles.

Question 10: Calculate how long each journey lasts. Give each answer in hours and minutes.
(a) A car travels 100 miles at a speed of 40 mph .
(b) A lorry travels 90 miles at a speed of 60 mph .
(c) A bus drives at a speed of 48 mph and covers a distance of 60 miles.
(d) A helicopter flies 105 kilometres at a speed of $140 \mathrm{~km} / \mathrm{h}$
(e) A bird covers a distance of 95 miles at a speed of 20 miles per hour.
(f) A car travels at 50 mph and covers a distance of 110 miles.
(g) A lorry drives a distance of 452.4 kilometres at a speed of $52 \mathrm{~km} / \mathrm{h}$.
(h) A bird flies 80 miles at a speed of 15 miles per hour
(i) A ship sails 208 miles a speed of 24 miles per hour
(j) A jet flies at a speed of $480 \mathrm{~km} / \mathrm{h}$ and covers a distance of 2088 kilometres
(k) A racing car drives 256 miles at a speed of 120 mph
(l) A helicopter flies 764 kilometres at a speed of $80 \mathrm{~km} / \mathrm{h}$

Question 11: Change the following speeds into metres per second.
(a) $360 \mathrm{~km} / \mathrm{h}$
(b) $18 \mathrm{~km} / \mathrm{h}$
(c) $36 \mathrm{~km} / \mathrm{h}$
(d) $72 \mathrm{~km} / \mathrm{h}$
(e) $10 \mathrm{~km} / \mathrm{h}$
(f) $40 \mathrm{~km} / \mathrm{h}$
(g) $2 \mathrm{~km} / \mathrm{h}$
(h) $4.5 \mathrm{~km} / \mathrm{h}$

Question 12: Change the following speeds into kilometres per hour.
(a) $45 \mathrm{~m} / \mathrm{s}$
(b) $15 \mathrm{~m} / \mathrm{s}$
(c) $20 \mathrm{~m} / \mathrm{s}$
(e) $1 \mathrm{~m} / \mathrm{s}$
(f) $0.5 \mathrm{~m} / \mathrm{s}$
(g) $0.2 \mathrm{~m} / \mathrm{s}$
(d) $4 \mathrm{~m} / \mathrm{s}$

Question 13: Change these speed into kilometres per hour
(a) 10 mph
(b) 40 mph
(c) 25 mph
(d) 200 mph
(e) 8 mph
(f) 2 mph
(g) 10.5 mph
(h) 24.6 mph

Question 14: Change these speed into miles per hour
(a) $32 \mathrm{~km} / \mathrm{h}$
(b) $48 \mathrm{~km} / \mathrm{h}$
(c) $24 \mathrm{~km} / \mathrm{h}$
(d) $800 \mathrm{~km} / \mathrm{h}$
(e) $16 \mathrm{~km} / \mathrm{h}$
(f) $0.64 \mathrm{~km} / \mathrm{h}$
(g) $16000 \mathrm{~km} / \mathrm{h}$
(h) $2400000 \mathrm{~km} / \mathrm{h}$

Extension

1. A bus travels 222 miles in 6 hours.

What was the average speed of the bus?

2. Thomas drives 130 miles at an average speed of 40 mph . How long does the journey take Thomas?
3. A jumbo jet flies at 484 mph for 4 hours 30 minutes. How far does the jet travel?

4. Greg and Kevin both travel between two towns that are 90 miles apart.

Greg drives and it takes him 1 hour 30 minutes.
Kevin cycles and it takes him 7 hours 30 minutes.
Work out the difference between their average speeds?
5. Harry catches the train from Belfast to Dublin at 4 pm .

The average speed of the train is 70 mph and the distance from Belfast to Dublin is 105 miles.
What time does Harry arrive in Dublin?
6. The distance from Sunderland to Wigan is 150 miles. Mollie leaves Sunderland in her car at 07:50.
Her average speed on the journey is 60 mph .
What time does she arrive in Wigan?
7. Jenny drives from Paris to Rochefort, a distance of 483 km Her average speed on the journey is $84 \mathrm{~km} / \mathrm{h}$.
She leaves at 9:50pm.
What time does she arrive in Rochefort?
8. Philip runs at an average speed of $4 \mathrm{~m} / \mathrm{s}$. How long will it take Philip to complete a 10 kilometre race?
 Give your answer in minutes and seconds.
9. A car travels for 4 hours at an average speed of 45 mph and then 6 hours at an average speed of 35 mph .
(a) Work out the total distance travelled.
(b) Work out the average speed for the entire journey.
10. David cycles at 20 mph for $1 \frac{1}{4}$ hours, then at 16 mph for 2 hours and then 12 mph for 45 minutes.
(a) Work out the total distance travelled.
(b) Work out the average speed for the entire journey.
11. Mr Jenkins catches the 11:45am bus from London to Glasgow. The distance between the two cities is 407 miles.
The bus travels at an average speed of 55 mph .
What time should he arrive in Glasgow?
12. Michael drives 143 miles from town A to town B in 2 hours 36 minutes. He then drives from town B to town C at the same speed and it takes 21 minutes.
(a) Work out Michael's average speed from town A to town B.
(b) How far did Michael travel, in total, from town A to town C?
13. The distance from Junction 19 to Junction 20 on a motorway is 14 miles. Bethany drove the distance in 15 minutes. Max drove the distance at a speed of 52 mph . Who was faster?
14. The distance from Swindon to a village is 40 miles. Vicky drives from the village to Swindon at 60 mph . Charlie drives from the village to Swindon at 50 mph . Work out how much longer the journey takes Charlie. Give your answer in minutes.
15. Miss Black completes a journey in 3 stages. In stage 1 , she drives at a speed of $40 \mathrm{~km} / \mathrm{h}$ for 45 minutes. In stage 2 , she drives at $60 \mathrm{~km} / \mathrm{h}$ for 2 hours 9 minutes Altogether, over the 3 stages, Miss Black drives 171.6 km in 3 hours 15 minutes What is her average speed, in km / h, in stage 3 ?
16. The speed limit on a road is 40 mph .

A scooter drives 9 miles in 13 minutes. Is the scooter breaking the speed limit?

Extension

speed 1
(1) A Peregrine Falcon flies 14 miles horizontally in 15 minutes. What is the average speed in miles per hour?
(2) When it is diving the Peregrine Falcon goes much faster, at 4.5 miles in 1 minute.

How fast is this in miles per hour?
(3) A Cheetah runs at an average speed of 72 mph for 20 minutes.

How far did it travel?
(4) A Mako Shark takes 10 minutes to travel 10 miles.

What is the average speed?
(5) A Sea Horse travels at 0.01 mph

How long (in days and hours) will it take to travel a mile?
(6) A Sailfish, the fastest fish, travels 22.73 miles in 20 minutes. How fast does it travel in mph?
(7) A snail works hard to travel 0.01 miles in 1 minute.

How fast does it go in mph?
(8) Sound travels at nearly 1200 mph .

How far does it travel in 5 minutes?
(9) A jet aircraft travels 36.5 miles every minute.

How fast is this in mph?
(10) A car runs at an average speed of 42 mph on a fairly built up motorway. How far will it go at this speed in 1 hour 10 minutes?

Extension

speed 2

Shrewsbury in Shropshire

(1) How far is Stoke on Trent away if an escaped horse, travelling at an average speed of 13 mph takes 3 hours to get there?
(2) How far is it to London if it takes 3 hours at an average speed of 54 mph ?
(3) A runner goes to Chester, 40 miles away, at an average speed of 8 mph . How long does it take them?
(4) How long does it take a cyclist riding at an average speed of 12 mph to travel to Aberystwyth, 72 miles away?
(5) How long does it take to travel to Telford, 15 miles away at an average speed of 45 mph ?
(6) How long does it take to get to Hereford, 54 miles away at an average speed of 36 mph ?
(7) How long does it take to get to Wolverhampton, 32 miles away, travelling at an average speed of 48 miles per hour?
(8) What is the average speed of a truck that goes to Birmingham, 48 miles away, in 1 hr 30 mins ?
(9) What is the average speed of a lorry which travels to Gloucester, 80 miles away, in 2.5 hours?
(10) A very old car takes 3hours 18 mins to get to Liverpool, 66 miles away. What is the average speed of the car? How long would it take at this speed to get to Manchester, 74 miles away?

Extension

speed 3

speed $=$ distance \div time
$1.6 \mathrm{~km} / \mathrm{h}=1 \mathrm{mph}$ $1 \mathrm{~km} / \mathrm{h}=0.62 \mathrm{mph}$ $1 \mathrm{~km} / \mathrm{min}=37.2 \mathrm{mph}$ $50 \mathrm{~km} / \mathrm{h}=31 \mathrm{mph}$
$\mathrm{m} / \mathrm{sec} \times 60=\mathrm{m} / \mathrm{min}$ $\mathrm{m} / \mathrm{min} \times 60=\mathrm{m} / \mathrm{hr}$ $\mathrm{m} / \mathrm{hr} \div 1000=\mathrm{km} / \mathrm{hr}$ $\mathrm{km} / \mathrm{hr} \times 0.62=\mathrm{mph}$
use a calculator to work out the speeds, in mph, of the world records for:
(1) Women's 2000 m of 325.36 seconds.
(2) Men's 100 m of 9.58 seconds.
(3) Men's 100 metres freestyle swimming competition of 46.91 seconds.
(4) Women's 100 metre Breaststroke competition of 64.45 seconds.
(5) Men's $20,000 \mathrm{~m}$ walk of 4645.6 seconds.
(6) Women's 100 metres hurdles of 12.21 seconds.
(7) Men's 200 metres butterfly of 111.51 seconds.
(8) Men's 10,000 metres of 26 minutes and 17.53 seconds.
(9) Men's 50 km walk of 3 hours, 34 mins and 14 seconds.
(10) Women's 20 km walk of 1 hour, 2 mins and 36 seconds.

Fluency Practice

Question 1: Work out the density of each of the following. State the units of each answer.
(a) A piece of wood has a mass of 7 g and a volume of $10 \mathrm{~cm}^{3}$
(b) A rod of aluminium has a mass of 575.4 g and a volume of $210 \mathrm{~cm}^{3}$
(c) A piece of nickel has a mass of 3.48 kg and a volume of $400 \mathrm{~cm}^{3}$
(d) An iron statue with volume of $0.05 \mathrm{~m}^{3}$ and a mass of 394 kg
(e) $2.1 \mathrm{~m}^{3}$ of oil with a mass of 1775 kg

Question 2: Work out the mass of each of the following. State the units of each answer.
(a) A statue with a volume of $120 \mathrm{~cm}^{3}$ made from ceramic which has a density of $2 \mathrm{~g} / \mathrm{cm}^{3}$.
(b) A rod with a volume of $50 \mathrm{~cm}^{3}$ made from copper which has a density of $8.9 \mathrm{~g} / \mathrm{cm}^{3}$.
(c) A block with a volume of $1.8 \mathrm{~m}^{3}$ made from silver which has a density of $10490 \mathrm{~kg} / \mathrm{m}^{3}$
(d) A statue with a volume of $3 \mathrm{~m}^{3}$ made from zinc which as a density of $7.14 \mathrm{~g} / \mathrm{cm}^{3}$
(e) $2800 \mathrm{~cm}^{3}$ of butter which has a density of $911 \mathrm{~kg} / \mathrm{m}^{3}$

Question 3: Work out the volume of each of the following. State the units of each answer.
(a) A 50 g piece of wood which has a density of $0.4 \mathrm{~g} / \mathrm{cm}^{3}$
(b) A 770 g block made of brass which has a density of $8.67 \mathrm{~g} / \mathrm{cm}^{3}$
(c) A 4 kg sheet of glass which has a density of $2.42 \mathrm{~g} / \mathrm{cm}^{3}$
(d) 80 kg of rye which has a density of $720 \mathrm{~kg} / \mathrm{m}^{3}$
(e) 5 tonnes of gold which has a density of $19300 \mathrm{~kg} / \mathrm{m}^{3}$

Extension

Question 1: A cube of ice has side length of 5 cm .
The mass of the cube of ice is 114.5 g .
Find the density of ice.
Give your answer in $\mathrm{g} / \mathrm{cm}^{3}$
Question 2: Shown is a solid cylinder made from carbon.
The density of carbon is $1.95 \mathrm{~g} / \mathrm{cm}$
Find the mass of the cylinder.

8 cm
Question 3: The mass of $4 \mathrm{~m}^{3}$ of silver is 41960 kg . The density of gold is $19300 \mathrm{~kg} / \mathrm{m}^{3}$.
Calculate the difference in mass between $5 \mathrm{~m}^{3}$ of silver and $5 \mathrm{~m}^{3}$ of gold.
Question 4: Beverley is building a toy boat.
If wood has a density under $1 \mathrm{~g} / \mathrm{cm}^{3}$, it will float.
She has a choice of three different pieces of wood.
Piece 1: \quad volume $=400 \mathrm{~cm}^{3}$ and mass $=450 \mathrm{~g}$.
Piece 2: \quad volume $=0.02 \mathrm{~m}^{3} \quad$ and mass $=8 \mathrm{~kg}$
Piece 3: \quad volume $=1000 \mathrm{~cm}^{3}$ and mass $=1.03 \mathrm{~kg}$
Which piece of wood is the most suitable?
Question 5: Material A has a density of $4.5 \mathrm{~g} / \mathrm{cm}^{3}$.
Material B has a density of $14 \mathrm{~g} / \mathrm{cm}^{3}$.
5 kg of Material A and 200 g of Material B form Material C.
Work out the density of Material C.

Could these two cuboids be made of the same material?

Mass $=\mathbf{6 0} \mathbf{g}$

Mass $=120 \mathrm{~g}$

Maths Venns

Fluency Practice

Question 1: Work out the pressure for each of the following. Give suitable units for each answer.
(a) A box is placed on a table and exerts a force of 250 N on an area of $20 \mathrm{~cm}^{2}$
(b) An object is placed on the ground and exerts a force of 3000 N on an area of $4 \mathrm{~m}^{2}$
(c) An object is placed on the ground and exerts a force of 54 N on an area of $0.5 \mathrm{~cm}^{2}$
(d) A box is placed on a table and exerts a force of 124 newtons on an area of $10.5 \mathrm{~cm}^{2}$
(e) An object is placed on the ground and exerts a force of 25958 N on an area of $1.4 \mathrm{~m}^{2}$

Question 2: Work out the force for each of the following.

In each case a box has been placed on the floor.
(a) The area of contact is $16 \mathrm{~cm}^{2}$ and the pressure exerted is $10 \mathrm{~N} / \mathrm{cm}^{2}$
(b) The area of contact is $1.5 \mathrm{~m}^{2}$ and the pressure exerted is $5000 \mathrm{~N} / \mathrm{m}^{2}$
(c) The area of contact is $660 \mathrm{~cm}^{2}$ and the pressure exerted is $8.2 \mathrm{~N} / \mathrm{cm}^{2}$
(d) The area of contact is $0.2 \mathrm{~m}^{2}$ and the pressure exerted is $1.2 \mathrm{~N} / \mathrm{cm}^{2}$
(e) The area of contact is $500 \mathrm{~cm}^{2}$ and the pressure exerted is $450000 \mathrm{~N} / \mathrm{m}^{2}$

Question 3: Work out the area of contact for each of the following.
In each case an object has been placed on the floor.
Give suitable units for each answer.
(a) The object exerts a force of 420 N on the floor and the pressure on the floor is $20 \mathrm{~N} / \mathrm{cm}^{2}$
(b) The object exerts a force of 8590 N on the floor and the pressure on the floor is $900 \mathrm{~N} / \mathrm{m}^{2}$
(c) The object exerts a force of 30 N on the floor and the pressure on the floor is $600 \mathrm{~N} / \mathrm{m}^{2}$
(d) The object exerts a force of 3945 N on the floor and the pressure on the floor is $200 \mathrm{~N} / \mathrm{cm}^{2}$

Extension

Question 1: Find the pressure exerted by a force of 180 newtons on an area of $50 \mathrm{~cm}^{2}$.
Give your answer in newtons $/ \mathrm{m}^{2}$

Question 2: A cylinder is placed on a table.
The cylinder has a weight of 400 N and has a diameter of 10 cm .
Work out the pressure on the table in newtons $/ \mathrm{cm}^{2}$

Question 3: Two cubes are placed on a table.
One cube has a side length of 4 cm and the other cube has a cube length of 10 cm .
The weight of the smaller cube is 50 N and the weight of the large cube is 250 N
Which cube exerts a greater pressure on the table?

Question 4: A microwave is placed on a worktop.
The area of the microwave in contact with the table is $600 \mathrm{~cm}^{2}$.
The pressure of the microwave is 2450 Newtons $/ \mathrm{m}^{2}$.
Work out the force exerted by the microwave on the worktop.

Question 5: The pressure of a tyre is 32 pounds per square inch.
$\begin{array}{ll}\text { Given } & 1 \text { pound }=0.4536 \text { kilograms } \\ & 1 \text { inch }=2.54 \text { centimetres }\end{array}$
Work out the pressure in grams per square centimetre.

