

Year 9 Mathematics Unit 15

Name:

Class:

Contents Page

- 1 <u>Enlargements</u>
- 2 <u>Similarity with Length</u>
- 3 <u>Right-Angled Trigonometry</u>
- 4 <u>Compound Measures</u>

See unit 15 course on drfrostmaths.com

Unit 15

PR Enlargements Enlargements PR Similarity with Length Similarity with Length PR Right-Angled Trigonometry Right-Angled Trigonometry PR Compound Measures Compound Measures Revision

+Add Unit

1 Enlargements

A transformation that moves all points a distance away from a centre point by applying a scale factor.

- Shapes change size.
- The scale factor multiplies distances, including the distance from the centre.

To fully describe an enlargement, we need to give three pieces of information:

- 1. Type of Transformation: Enlargement
- 2. Scale Factor: Positive or Negative Number
- 3. Centre of Enlargement: Coordinate (x, y)

Enlargements: Centre of Enlargement Video 104a on www.corbettmaths.com

Fluency Pract Corbett

Enlargements: Centre of Enlargement Video 104a on <u>www.corbettmaths.com</u>

Question 3: Enlarge each shape by the scale factor given The coordinates for each centre of enlargement are given.

Corbett maths

Enlarge by scale factor 2 using (4, -3) as the centre of enlargement

Enlarge by scale factor 2 using (0, -1) as the centre of enlargement

Enlarge by scale factor 3 using (3, 2) as the centre of enlargement

Enlarge by scale factor 2 using the origin as the centre of enlargement

Enlargement: Fractional Scale Factor Video 107 on <u>www.corbettmaths.com</u>

Question 4: Enlarge each shape by the scale factor given Use P as the centre of enlargement.

Corbett maths

Enlargement: Fractional Scale Factor Video 107 on <u>www.corbettmaths.com</u>

À

6

Question 6: Describe fully the single transformation that takes shape A to shape B.

Question 5: Enlarge each shape by the scale factor given The coordinates for each centre of enlargement are given.

Corbett mαths

Enlarge by scale factor $\frac{1}{3}$ using (-3, 1) as the centre of enlargement

Click here

Fluency Pract Corbett moths

Enlargement: Negative Scale Factor Video 108 on <u>www.corbettmaths.com</u>

Page 25

(c)

(c)

 $\frac{1}{6x}$

5

Answers

______.

Corbett maths

Extra Notes

2 Similarity with Length

Extra Notes

3 Right-Angled Trigonometry

Trigonometric Functions

A function f(x) takes an input x and outputs a value y. A trigonometric function takes an angle x° and outputs a ratio of sides.

For any **right-angled triangle** we <u>always</u> label the longest side as the hypotenuse *H*. For the purposes of trigonometry we label the other two sides **relative** to <u>one</u> of the non-right angles.

One of these is **opposite** the angle and the other **adjacent** (meaning next to).

Fluency Practice

Trigonometric Functions

A function f(x) takes an input x and outputs a value y. A trigonometric function takes an angle x° and outputs a ratio of sides.

The three sides of right-angled triangles are:

- O Opposite
- A Adjacent
- H Hypotenuse

So the three ratios are: $\boldsymbol{O} : \boldsymbol{H} \text{ or } \frac{\boldsymbol{O}}{\boldsymbol{H}}$ $\boldsymbol{A} : \boldsymbol{H} \text{ or } \frac{\boldsymbol{A}}{\boldsymbol{H}}$ $\boldsymbol{O} : \boldsymbol{A} \text{ or } \frac{\boldsymbol{O}}{\boldsymbol{A}}$

And so there are three trigonometric functions which <u>take any angles x° and output one of these ratios</u>:

Trigonometric Functions

So altogether if we have:

Then:
$$sin(x^{\circ}) = \frac{opp}{hyp}$$
 $cos(x^{\circ}) = \frac{adj}{hyp}$ $tan(x^{\circ}) = \frac{opp}{adj}$

This is commonly given the acronym: SOHCAHTOA

Labelled	Choose	Substitute	Rearrange	Answer
diagram	ratio	into formula	formula	(1dp)
11 cm 38° 0 (A)	sin	$\sin 38 = \frac{x}{11}$	$x = 11 \times \sin 38$	
	tan			
37 mm				
0 (28°) 8 cm (A)	cos	$\cos 28 = \frac{8}{x}$	$x = \frac{8}{\cos 28}$	
@ 2.5m (A) × 713 (H)	tan			
× 49° 13 cm				
5.7 cm 35°				
		$\tan 68 = \frac{7}{x}$		

Labelled diagram	Sine Ratio	Cosine Ratio	Tangent Ratio	Labelled diagram	Sine Ratio	Cosine Ratio	Tangent Ratio
$ \begin{array}{c} H\\ 5 \text{ cm}\\ 4 \text{ cm}\\ \end{array} $	$\sin x = \frac{3}{5}$	$\cos x = \frac{4}{5}$	$\tan x =$	7.3 m 5.5 m	$\sin x =$	$\cos x = \Box$	$\tan x =$
A m 4 cm	$\sin x =$	$\cos x = \bigcirc$	$\tan x =$	v29 cm v29 cm v5 cm	$\sin x =$	$\cos x = \Box$	$\tan x =$
	$\sin x =$	$\cos x = \Box$	$\tan x =$		$\sin x =$	$\cos x = \Box$	$\tan x = \frac{9.9}{2}$
17 mm	$\sin x =$	$\cos x = \bigcirc$	$\tan x =$		$\sin x = \frac{4}{7}$	$\cos x = \Box$	$\tan x =$

Inverse Trigonometric Functions

We have met the idea that: f(x) = y 50 f'(y) = x

The trigonometric functions sin, cos and tan are all functions where the input is an angle giving an output which is a ratio of sides.

The inverse of these functions therefore does this in reverse.

then Sin (0.5) = 30° 5'1~ (30°) = 0.5 if then $\cos^{-1}(0.5) = 60^{\circ}$ Cos (60°) = 0.5 if (then tan" (1) = 45° tan(45)=1

Worked Example	Your Turn
Worked Example Find 'x'. Give your solution to 2 decimal places. $sin(x) = \frac{1}{2}$	Your Turn Find 'x'. Give your solution to 2 decimal places. $sin(x) = \frac{2}{5}$

Extra Notes

4 Compound Measures

Compound measures are measures that rely on other measures:

- Speed
- Density
- Pressure

Speed
Speed = $\frac{\text{Distance}}{\text{Time}}$

Worked Example	Your Turn
A car travels 50 miles in 2 hours. What speed does it travel at?	A car travels 60 miles in 2 hours. What speed does it travel at?
A car travels at 50 <i>mph</i> (miles per hour) for 2 hours. How far does it travel?	A car travels at 60 <i>mph</i> (miles per hour) for 2 hours. How far does it travel?
A car travels 50 miles at 25 <i>mph</i> (miles per hour). How long does it take?	A car travels 30 miles at 60 <i>mph</i> (miles per hour). How long does it take?

Worked Example	Your Turn
The distance from A to B is 5 miles. The distance from B to C is 9 miles. Person X drives from A to B then B to C. X leaves A at 10 : 00. X drives from A to B at an average speed of 40 miles per hour. X wants to get to C at 10: 35. Work out the average speed X must drive from B to C.	The distance from A to B is 10 miles. The distance from B to C is 18 miles. Person X drives from A to B then B to C. X leaves A at 10 : 00. X drives from A to B at an average speed of 40 miles per hour. X wants to get to C at 10: 35. Work out the average speed X must drive from B to C.

Distance	Time	Speed	Units of Speed
120 km	4 hours		km/h
55 m	5 seconds		m/s
8000 m	2 hours		km/h
450 km	180 minutes		km/h
	20 seconds	10	m/s
	3 hours	25	km/h
900 cm	3 seconds		m/s
132 m		12	m/s
640 km		80	km/h
	120 minutes	65	km/h
30 m	1 minute		m/s
1750 cm		2.5	m/s
	150 minutes	88	km/h
	1.5 minutes	8.5	m/s
20000 m	30 minutes	40	

Density
$Density = \frac{Mass}{Volume}$

Worked Example	Your Turn
The mass of an object is 50 g . The volume is $10 \ cm^3$. What is the density of the object?	The mass of an object is $100 \ g$. The volume is $25 \ cm^3$. What is the density of the object?
The density of an object is $10 \ g/cm^3$. The volume is $5 \ cm^3$. What is the mass?	The density of an object is $10 \ g/cm^3$. The volume is $25 \ cm^3$. What is the mass?
The density of an object is $10 \ g/cm^3$. The mass is $50 \ g$. What is the volume?	The density of an object is $10 \ g/cm^3$. The mass is $25 \ g$. What is the volume?

Worked Example	Your Turn
Worked Example A drink is made from: 100 g of liquid A. 150 g of liquid B. Liquid A has density 1.05 g/cm ³ . Liquid B has density 0.8 g/cm ³ . Work out the density of the drink.	Your Turn A drink is made from: 200 g of liquid A. 150 g of liquid B. Liquid A has density 2.1 g/cm ³ . Liquid B has density 0.4 g/cm ³ . Work out the density of the drink.

Worked Example	Your Turn
Worked Example A drink is made from: 100 cm³ of liquid A. 150 cm³ of liquid B. Liquid A has density 1.05 g/cm³. Liquid B has density 0.8 g/cm³. Work out the density of the drink.	Your Turn A drink is made from: 200 cm ³ of liquid A. 150 cm ³ of liquid B. Liquid A has density 2.1 g/cm ³ . Liquid B has density 0.4 g/cm ³ . Work out the density of the drink.

Pressure	
$Pressure = \frac{Force}{Area}$	

Worked Example	Your Turn
The force exerted by an object on a surface is $50N$. The surface area in contact with the object is $10cm^2$. What is the pressure exerted by the object?	The force exerted by an object on a surface is $100N$. The surface area in contact with the object is $25cm^2$. What is the pressure exerted by the object?
The pressure exerted on a surface by an object is $50N/cm^2$. The surface area in contact with the object is $10cm^2$. What is the force exerted?	The pressure exerted on a surface by an object is $100N/cm^2$. The surface area in contact with the object is $25cm^2$. What is the force exerted?
The pressure exerted on a surface by an object is $50N/cm^2$. The force exerted on the surface is $10N$. What is the surface area in contact with the object?	The pressure exerted on a surface by an object is $100N/cm^2$. The force exerted on the surface is $25N$. What is the surface area in contact with the object?

Extra Notes