

Year 9 2023 Mathematics 2024 Unit 11 Booklet

HGS Maths

Tasks

Dr Frost Course

Name:

Class:

Contents

- 1 <u>Fraction Arithmetic</u>
- 2 <u>Highest Common Factor and Lowest Common Multiple</u>
- 3 <u>Standard Form</u>
- 4 <u>Types of Numbers</u>
- 5 <u>Simplifying Surds</u>
- 6 Angles in Polygons

1 Fraction Arithmetic

Extra Notes

2 Highest Common Factor and Lowest Common Multiple

- The HCF is the largest integer which is a factor of two or more given positive integers.
- The HCF will be less than or equal to the smallest of the given numbers.
- The LCM is the smallest integer which is a multiple of two or more positive integers.
- The LCM will be greater than or equal to the largest of the numbers.

Your Turn	
Find the HCF and LCM of $2 \times 3^3 \times 5 \times 7^2$ $2^2 \times 3^2 \times 7^2 \times 11$	
	Find the HCF and LCM of $2 \times 3^3 \times 5 \times 7^2$

Your Turn	
Find the HCF and LCM of 321 and 654	
	Find the HCF and LCM of

Worked Example	Your Turn
The HCF of two numbers is 6. The LCM of two numbers is 60. Write down two possible numbers.	The HCF of two numbers is 3. The LCM of two numbers is 36. Write down two possible numbers.

Worked Example	Your Turn
Worked Example The HCF of two numbers is 5. The LCM of two numbers is a multiple of 12. Write down two possible numbers.	Your Turn The HCF of two numbers is 8. The LCM of two numbers is a multiple of 5. Write down two possible numbers.

Worked Example	Your Turn
Worked Example Two strings of different lengths, 240 cm and 318 cm are to be cut into equal integer lengths. What is the greatest possible length of each piece?	Your Turn Two strings of different lengths, 212 cm and 360 cm are to be cut into equal integer lengths. What is the greatest possible length of each piece?

Worked Example	Your Turn
Worked Example Two lighthouses flash their lights every 240 s and 318 s respectively. They both flash at the same time. After how many seconds will they next both flash at the same time.	Your Turn Two lighthouses flash their lights every 212 s and 360 s respectively. They both flash at the same time. After how many seconds will they next both flash at the same time.

Extra Notes

3 Standard Form

Standard form is written in the form of $a \times 10^n$, where a is a number bigger than or equal to 1 and less than 10 (i.e. $1 \le a < 10$). n can be any positive or negative whole number.

Note: *a* can be any positive or negative number.

In Standard Form	Not in Standard Form
7.3×10^{3}	438,000
1×10^{-3}	54×10^{7}
9.36×10^{18}	$0.6 imes 10^{-4}$
4×10^{1}	389×10000
5.002×10^{-7}	$6 \times 10^{1.5}$
-1.729×10^{211}	0.000372

Why use standard form?

- It allows us to write really small or really big numbers concisely.
- It allows us to easily compare small and big numbers.

Intelligent Practice	
in standard form	
3×-10^{5}	
$3 \times (-10)^5$	
$3 \div 10^{5}$	
$3 + 10^5$	
$3 - 10^5$	
4×10^{5}	
40×10^{5}	
46×10^{5}	
4.6×10^{5}	
0.46×10^{5}	
3.46×10^{5}	
3.46434561×10^5	
$-3.46434561 \times 10^{5}$	
	in standard form 3×-10^5 $3 \times (-10)^5$ $3 \div 10^5$ $3 + 10^5$ $3 - 10^5$ 4×10^5 40×10^5 46×10^5 4.6×10^5 3.46×10^5 3.46434561×10^5

Fluency Practice

10 ⁶	1 000 000	10 x 10 x 10 x 10 x 10 x 10 x 10	1
10 ⁵			first.
10 ⁴			Complete this part first.
10 ³		10 x 10 x 10	plete tl
10 ²			Com
10 ¹	10		J
			٦
10 ⁻¹			lumns .
		$\frac{1}{10} \times \frac{1}{10}$	the co le table
	<u>1</u> 1000		erns in olete th
10-4			Look for patterns in the columns to complete the table.
			Look 1 to
			L

Write the following numbers in standard formWrite the following numbers in standard forma) 70,000a) 63,000b) 72,000b) 630,000c) 720,000c) 60,000	Worked Example	Your Turn
	Write the following numbers in standard form a) 70,000 b) 72,000	Write the following numbers in standard form a) 63,000 b) 630,000

	Worked Example	Your Turn
Wri a) b)	Worked Example ite the following numbers in standard form 4367×10^6 0.125×10^{-6}	Your Turn Write the following numbers in standard form a) 0.4367 × 10 ⁶ b) 125 × 10 ⁻⁶

Worked Example	Your Turn
Worked ExampleWrite the following as an ordinary number 3.1×10^6	Your TurnWrite the following as an ordinary number 3.2×10^7

Worked Example	Your Turn
Write the following as an ordinary number 4.1×10^{-6}	Write the following as an ordinary number 4.2×10^{-7}

Worked Example	Your Turn
Put the following numbers in ascending order 5.77×10^{6} 8.85×10^{6} 6.35×10^{6} 2.6×10^{5} 3.9×10^{5}	Put the following numbers in ascending order 1.2×10^6 8.4×10^7 8.7×10^6 3.04×10^7

Worked Example	Your Turn
Worked Example Work out a) $(3 \times 10^5) \times (2 \times 10^4)$ b) $(3 \times 10^5) \times (4 \times 10^{-4})$	Your Turn Work out a) $(3 \times 10^5) \times (4 \times 10^4)$ b) $(3 \times 10^{-5}) \times (2 \times 10^4)$

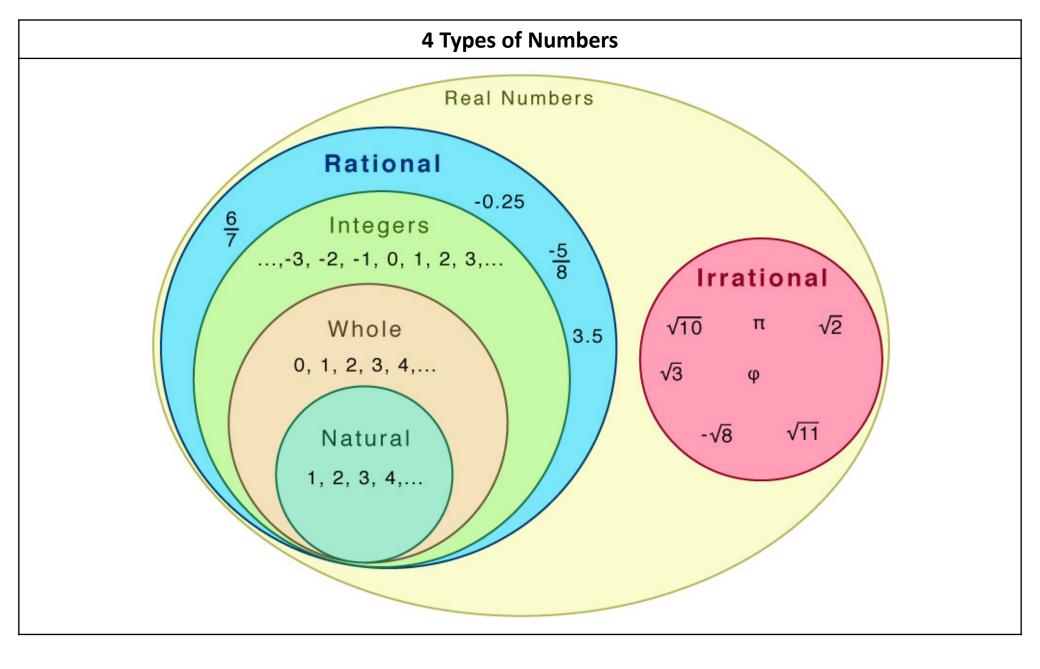
Worked Example	Your Turn
Worked Example Work out a) $(4 \times 10^9) \div (2 \times 10^3)$ b) $(2 \times 10^5) \div (8 \times 10^{-4})$	Your Turn Work out a) $(2 \times 10^9) \div (4 \times 10^3)$ b) $(8 \times 10^5) \div (2 \times 10^{-4})$

Calculator

Use the $\times 10^x$ button on your calculator to make calculations involving standard form. While you can explicitly write 3×10^7 using the x^y button, it is faster to use the specialised standard form key.

Check the following using your calculator: $(2.41 \times 10^{19}) \times (7.1 \times 10^{23}) = 1.7111 \times 10^{43}$

Worked Example	Your Turn
Worked Example Work out a) $(3 \times 10^4) + (4 \times 10^4)$ b) $(3 \times 10^4) + (8 \times 10^4)$ c) $(3 \times 10^5) + (8 \times 10^4)$	Your Turn Work out a) $(3 \times 10^7) + (2 \times 10^7)$ b) $(3 \times 10^7) + (9 \times 10^7)$ c) $(3 \times 10^8) + (9 \times 10^7)$


Worked Example	Your Turn
Worked Example Work out a) $(7 \times 10^4) - (4 \times 10^4)$ b) $(7 \times 10^4) - (0.4 \times 10^4)$ c) $(7 \times 10^5) - (0.4 \times 10^4)$	Your Turn Work out a) $(6 \times 10^7) - (2 \times 10^7)$ b) $(6 \times 10^7) - (0.2 \times 10^7)$ c) $(6 \times 10^7) - (0.2 \times 10^8)$

Worked Example	Your Turn
Worked Example Work out a) $(4 \times 10^{-1}) + (3 \times 10^{-2})$ b) $(7 \times 10^{-3}) - (2 \times 10^{-4})$	Your Turn Work out a) $(8 \times 10^{-2}) + (2 \times 10^{-3})$ b) $(2 \times 10^{-2}) - (5 \times 10^{-3})$

Worked Example	Your Turn
$ \frac{\text{Calculate}}{(4.6 \times 10^4) + (1.5 \times 10^3)}{(2 \times 10^2)} $	$\frac{\text{Calculate}}{(4.5 \times 10^4) + (1.3 \times 10^2)}{(2 \times 10^2)}$

					Fill in t	the Ga	os					
able using numbers.	50%					3 × 10 ⁻³						
Complete the table using standard form numbers.	20%							8.6 × 10 ⁻⁶	of 9×10 ⁴ =	d) 2% of $1.7 \times 10^7 =$	f) 120% of 9×10 ⁶ =	
	10%			3 × 10 ²					b) 30% of	d) 2% o	f) 120%	
Percenta	5%						7.5 × 10 ⁰					
Standard Form: Percentages	1%				1 × 10 ⁶				6 × 10 ⁹ =	5 × 10 ⁷ =	1 × 10 ⁻³ =	
Standa	100%	4 × 10 ⁵	8 × 10 ⁷						a) 20% of	c) 90% of	e) 75% of 1 × 10 ⁻³	

Extra Notes

Classify each number below as either rational or irrational. If you believe your number is rational, prove your answer by writing it as a fraction. The first one is done for you.

ion?	0r									
Fraction?	$\frac{8}{10}$ or $\frac{4}{5}$									
Rational or Irrational?	Rational									
	1) 0.8	2) $-\frac{3}{10}$	3) $\sqrt{40}$	4)	5) $2\frac{1}{3}$	6) 0.35	7) 0.33333	8) —9	9) 3.4	10) $\sqrt{2}$

Directions: For each number shown, classify it as either rational or irrational, then tell whether or not it is terminating or repeating.

	11) -0.6 12)	<i>(ci</i> rational rational	<i>(circle one)</i> or irra or irra	<i>(circle one)</i> rational or irrational rational or irrational	<i>(circle one)</i> terminating, repeating, or neither terminating, repeating, or neither	or neither or neither
2 0		rational	or	ational or irrational	terminating, repeating, or neither	or neither
3 5 1		rational	or	ational or irrational	terminating, repeating, or neither	or neither
0.35	15) 0.35217534	rational	or	rational or irrational	terminating, repeating, or neither	or neither

Fluency Practice

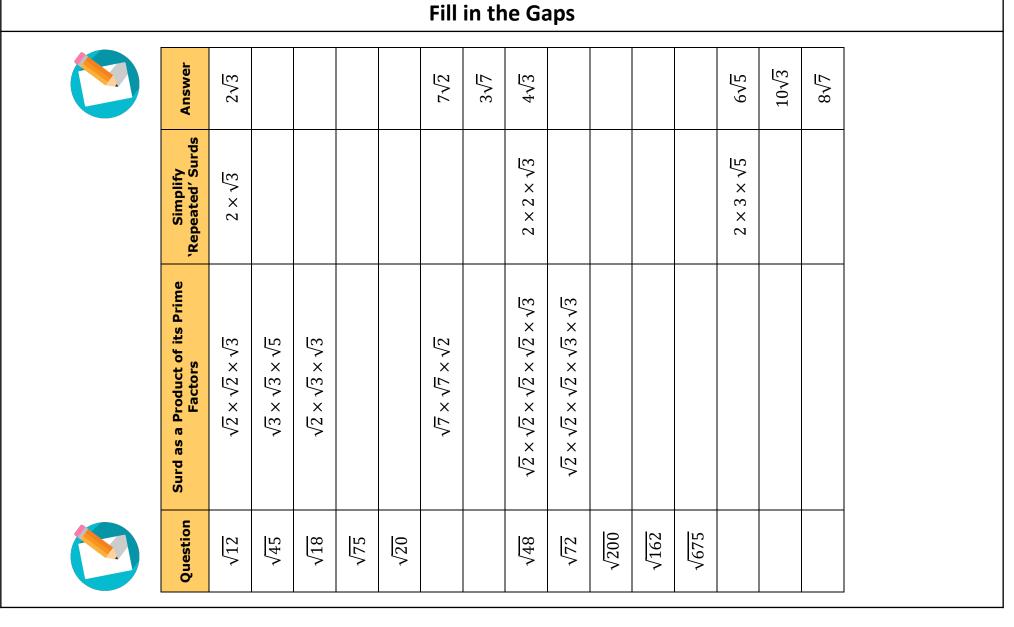
Extra Notes

5 Simplifying Surds

When the root (square root, cube root or higher root) of a number cannot be obtained exactly, the root is called a surd. A surd cannot be written as a fraction but can be written as a decimal, that goes on forever, without repeating (recurring) or ending (terminating). Hence, surds are irrational roots.

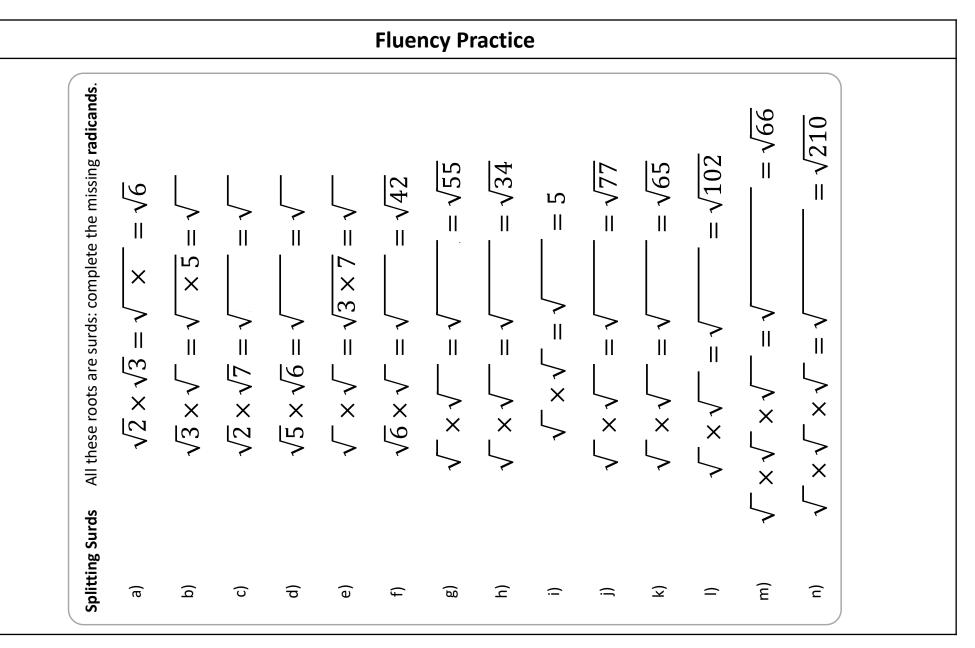
Surds	Not Surds
$\sqrt{8}$	8
$\sqrt{10}$	-12.05
$\sqrt{91}$	0.62
3√7	$\frac{3}{7}$
$\sqrt[3]{16}$	$7\frac{1}{2}$
4√73	$\sqrt{16}$
$2\sqrt{2}$	$\sqrt{25}$
$2 + \sqrt{5}$	<u>∛8</u>
$(2+\sqrt{5})(3+\sqrt{5})$	$\sqrt{2.25}$
$\frac{1}{5-\sqrt{17}}$	$\frac{\sqrt{100}}{\sqrt{4}}$

	Int	elligent Practice
Decide if the following numbers are surds	1	$\sqrt{0.25}$
$\sqrt{1}$	$\frac{1}{\left(\sqrt{5}\right)^2}$	$\sqrt{0.125}$
$\sqrt{4}$	$\frac{\sqrt{1}}{\sqrt{4}}$	$\sqrt{0.01}$
$\sqrt{9}$		$\left(\sqrt{2}\right)^2$
$\sqrt{36}$	$\sqrt{\frac{1}{4}}$	$\left(\sqrt{2}\right)^3$
$\sqrt{6}$	2	$\sqrt{2}(\sqrt{2}+3)$
$\sqrt{24}$	$\sqrt{\frac{2}{8}}$	$(\sqrt{2}+3)(\sqrt{2}-3)$
$\sqrt{3}$	2	
$2\sqrt{3}$	$\sqrt{\frac{2}{9}}$	$\frac{2}{\sqrt{2}}\sqrt{2}$
$3\sqrt{3}$	$\sqrt{\frac{4}{9}}$	$\frac{2}{3+\sqrt{2}}$
$3\sqrt{4}$	$\sqrt{9}$	2
$\sqrt{5}$	$\frac{2}{\sqrt{9}}$	$\frac{\overline{3}}{\sqrt{2}} + \sqrt{2}$
$\sqrt{5^2}$	$\frac{2}{\sqrt{9}}$ $\frac{\sqrt{7}}{2}$	


Question	As a decimal or whole number	Is it a surd?	Question	As a decimal or whole number	Is it a surd?
$\sqrt{1}$	1	No	$\sqrt{16}$		
$\sqrt{2}$	1.4142135	Yes	$\sqrt{17}$		
√ <u>3</u>	1.7320508	Yes	$\sqrt{18}$		
$\sqrt{4}$	2	No	$\sqrt{19}$		
√ <u>5</u>			√ <u>20</u>		
<u>√6</u>			$\sqrt{21}$		
$\sqrt{7}$			√22		
<u>√8</u>			√ <u>23</u>		
<u>~9</u>			$\sqrt{24}$		
$\sqrt{10}$			<u>√25</u>		
$\sqrt{11}$			$\sqrt{26}$		
$\sqrt{12}$			$\sqrt{27}$		
$\sqrt{13}$			$\sqrt{28}$		
$\sqrt{14}$			√ <u>29</u>		
$\sqrt{15}$			$\sqrt{30}$		

Purposeful Practice

Worked Example	Your Turn
Simplify a) $\sqrt{60}$	Simplify a) $\sqrt{50}$
b) $\sqrt{120}$	b) $\sqrt{200}$


Fill in the Gaps																	
	81 100	Answer	3√ <u>3</u>												3√7	7√3	
	49 64 8	Rationalise the Square Number	$3 \times \sqrt{3}$												$3 \times \sqrt{7}$		
	16 25 36	Split into Two Surds	$\sqrt{9} \times \sqrt{3}$	$\sqrt{4} \times \sqrt{6}$											$\sqrt{9} \times \sqrt{7}$		
	1 4 9	Largest Square Number Factor	6	4	25												
	Square Numbers	Question	$\sqrt{27}$	$\sqrt{24}$	$\sqrt{50}$	$\sqrt{28}$	$\sqrt{32}$	$\sqrt{45}$	$\sqrt{72}$	<u>06</u> /	<u>√75</u>	$\sqrt{200}$	$\sqrt{98}$	$\sqrt{80}$			

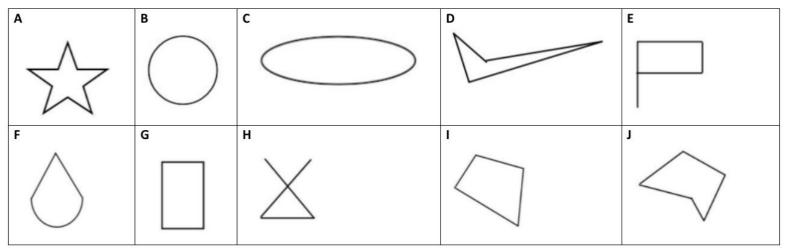
Worked Example	Your Turn
Worked Example	Your TurnSimplify a) $\sqrt{7} \times \sqrt{7}$ b) $(\sqrt{7})^2$ c) $(2\sqrt{7})^2$ d) $2(\sqrt{7})^2$ e) $2(\sqrt{7})^3$
	Worked Example

Worked Example	Your Turn
Simplify	Simplify
a) $2\sqrt{20}$	a) $3\sqrt{20}$ b) $4\sqrt{50}$
b) $4\sqrt{40}$	b) $4\sqrt{50}$

	Worked Example	Your Turn
Wri a) b)	Worked Exampleite the following as a single root $2\sqrt{15}$ $2\sqrt{30}$	Your TurnWrite the following as a single roota) $5\sqrt{2}$ b) $10\sqrt{2}$

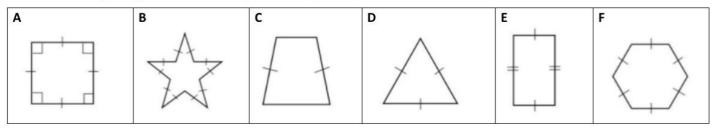
Extra Notes

6 Angles in Polygons	


Frayer Model – Polygons					
Definition	<u>Characteristics</u>				
Examples	Non-Examples				

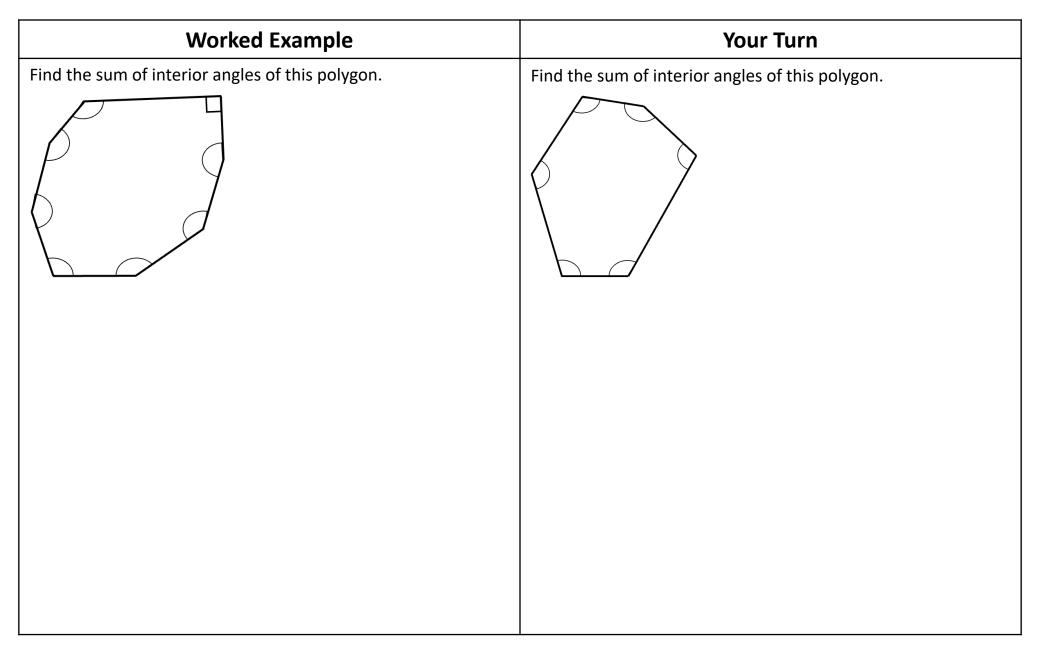
Frayer Model – Regular Polygons					
Definition	Characteristics				
<u>Examples</u>	Non-Examples				

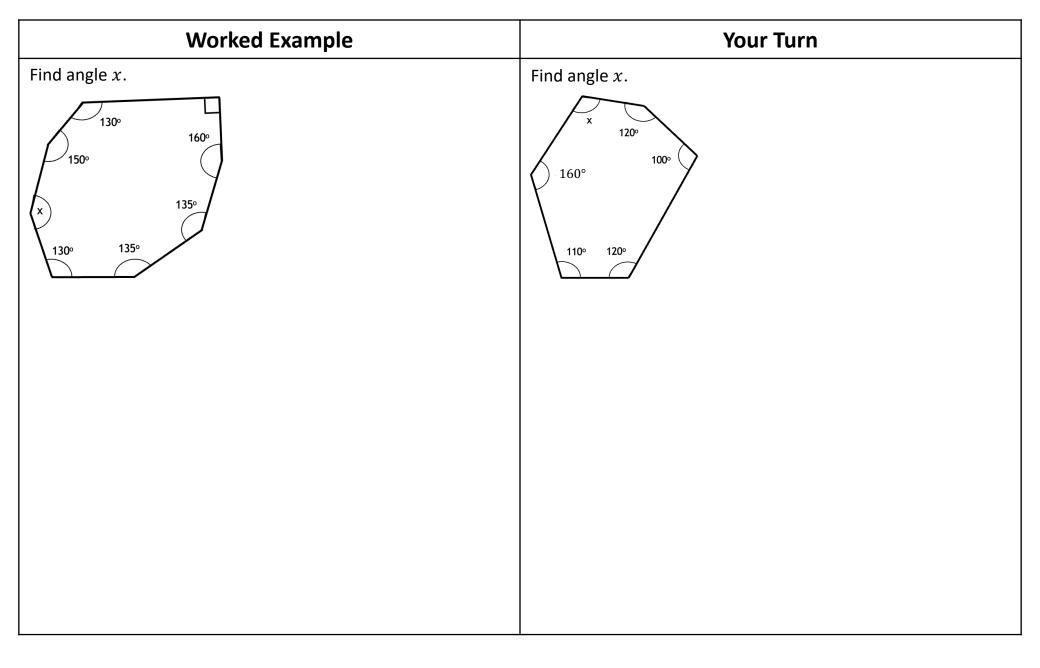
Fluency Practice


Polygons – Example or Non-Example

In each of the following diagrams decide whether the shape is a polygon or not. Label them 'Example' or 'Non-example'. For those that ARE polygons, give the name of the polygon.

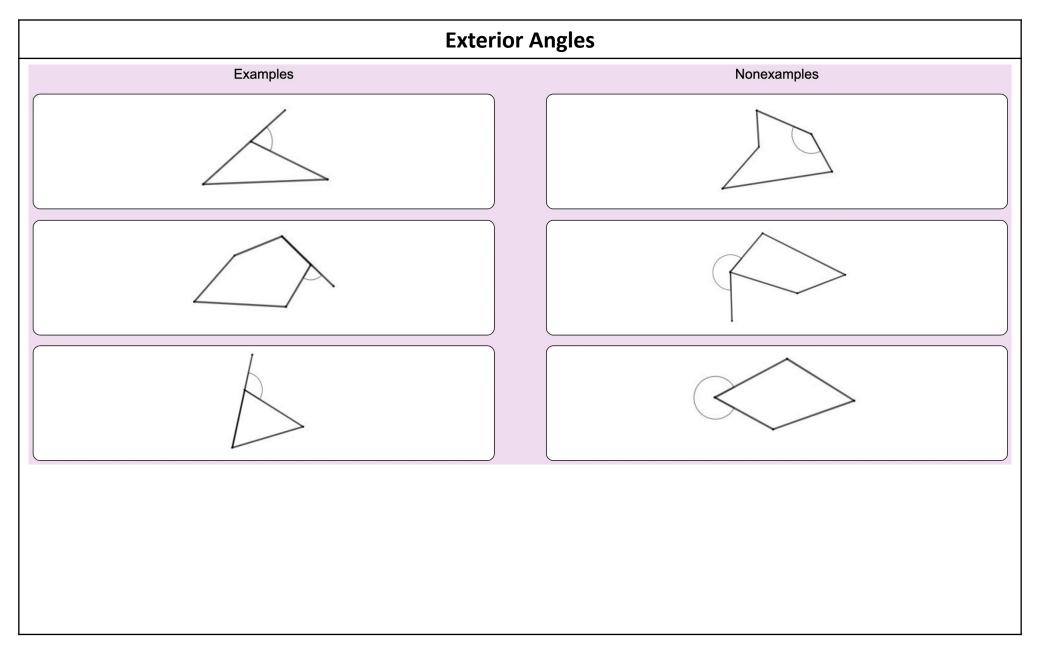
Polygons – Regular or Irregular

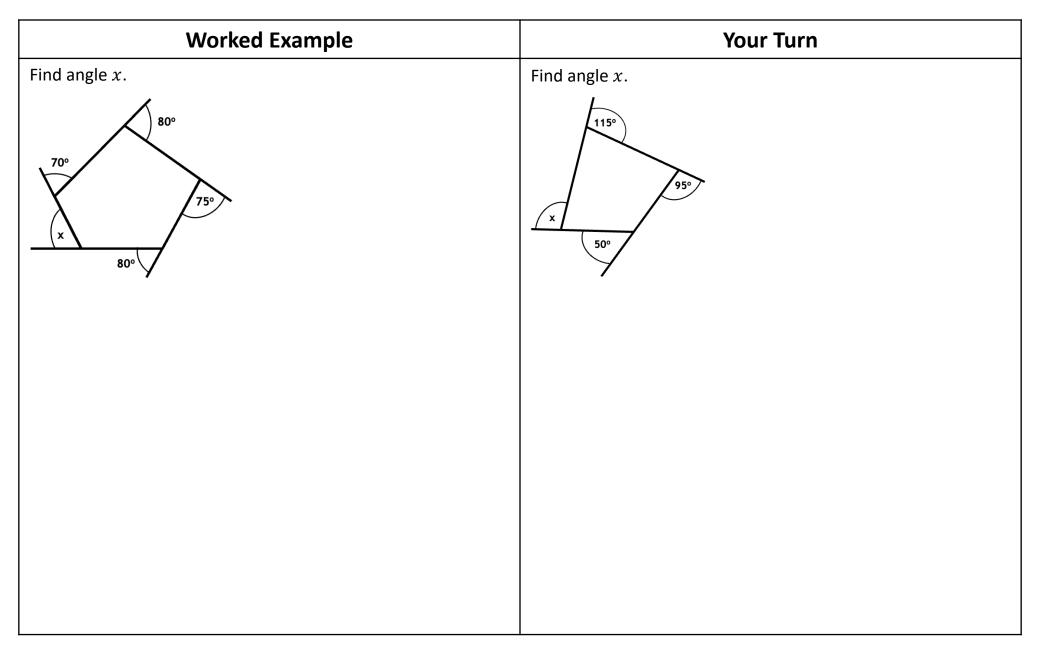

Which of the following are regular and which are irregular - how do you know?

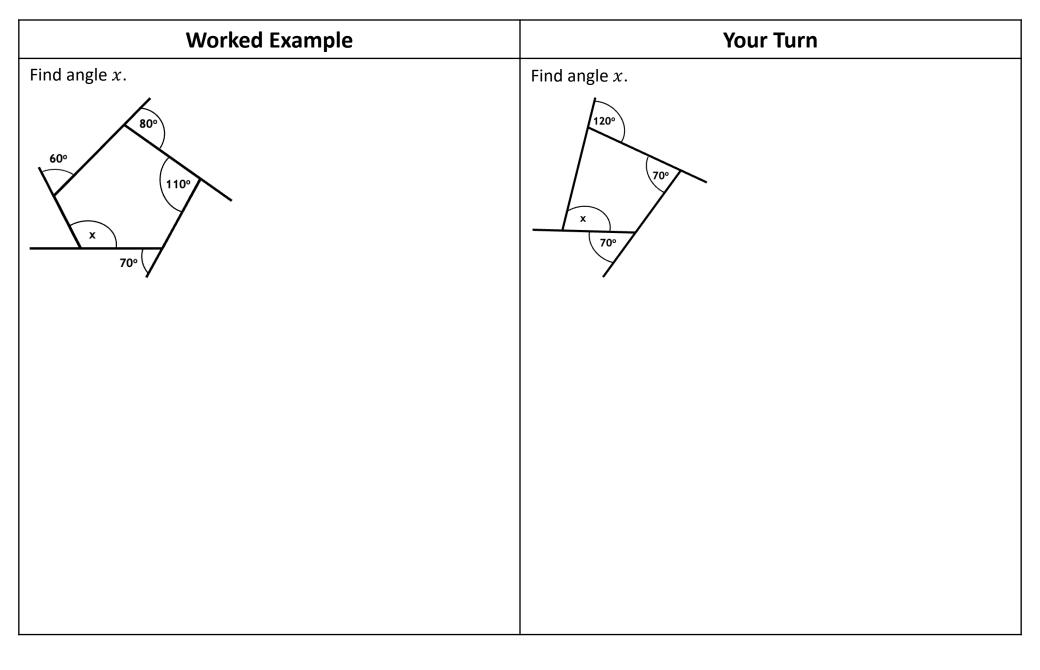


Interior and Exterior Angle Formulae					
All Polygons	Regular Polygons				
Interior Angle + Exterior Angle = 180°	Each Exterior Angle = $\frac{360^{\circ}}{n}$				
Sum of Interior Angles = $(n - 2) \times 180^{\circ}$					
Sum of Exterior Angles = 360°	Each Interior Angle = $180^{\circ} - \frac{360^{\circ}}{n}$				

Worked Example	Your Turn
Find the sum of the interior angles of a polygon with 30 sides.	Find the sum of the interior angles of a polygon with 60 sides.






Worked Example	Your Turn
Worked Example The sum of the interior angles of a polygon is 3240°. How many sides does the polygon have?	Your Turn The sum of the interior angles of a polygon is 6840°. How many sides does the polygon have?

Fill in the Gaps

Number of sides	Sum of interior angles	Size of one interior angle in a regular polygon
3	180°	
	360°	
7		
9		
10		144°
	1800°	150°
13	1980°	
14		
	2700°	

Worked Example	Your Turn
Worked Example A regular polygon has 12 sides. Find the size of each exterior angle.	Your Turn A regular polygon has 48 sides. Find the size of each exterior angle.

Worked Example	Your Turn
Worked Example A regular polygon has 12 sides. Find the size of each interior angle.	Your Turn A regular polygon has 48 sides. Find the size of each interior angle.

Worked Example	Your Turn
A section of a two different regular polygons are show below. How many sides do they each have?	A section of a two different regular polygons are show below. How many sides do they each have?
12° 175°	How many sides do they each have?

Worked Example	Your Turn
Worked Example The interior angle of a regular polygon is 160°. How many sides does the polygon have?	Your Turn The interior angle of a regular polygon is 140°. How many sides does the polygon have?

Fill in the Gaps				
Name	Number of Angles	Sum of Interior Angles	Size of One Interior Angle in a Regular Polygon	Size of One Exterior Angle in a Regular Polygon
	3			
		360°	90°	
Octagon				45°
Hexadecagon		2520°		
Pentadecagon	15		156°	
				72°
		720°	120°	
	12			
		1620°		$\frac{360^{\circ}}{11}$

Worked Example	Your Turn
Worked Example The size of each interior angle of a regular polygon is 9 times the size of each exterior angle. How many sides does the polygon have?	Your Turn The size of each interior angle of a regular polygon is 11 times the size of each exterior angle. How many sides does the polygon have?

Worked Example	Your Turn
These are regular polygons. Find <i>x</i> .	These are regular polygons. Find <i>x</i> .
These are regular polygons. Find x.	These are regular polygons. Find x.

Worked Example	Your Turn
A line joins two vertices of a regular heptagon. Find angle <i>x</i> to 2dp.	A line joins two vertices of a regular heptagon. Find angle <i>x</i> to 2dp.

Worked Example	Your Turn
The repeating pattern consists of three regular polygons, A (hexagon), B (square) and C. Determine how many sides C has. $\begin{array}{c} C \\ H \\ C \\ H \\ C \\ H \\ C \\ H \\ H \\ C \\ H \\ H$	The diagram shows 4 congruent regular pentagons that form the sides of an <i>n</i> -sided regular polygon. Determine the value of <i>n</i> .

Worked Example	Your Turn
The diagram shows a regular pentagon. <i>AB</i> and <i>CD</i> are two of the lines of symmetry of the pentagon. Work out the size of the angle marked <i>x</i> . Diagram NOT accurately drawn C	The diagram shows a regular pentagon and a regular hexagon which overlap. What is the value of <i>x</i> ?

Worked Example	Your Turn
ABCD is a square and CDEFGH is a regular hexagon. Determine the angle CBH.	The diagram shows a square inside a regular hexagon. What is the size of the marked angle at X ?
A = B $E = CBH$	$\int_{C} \int_{B} \int_{B$

Extra Notes