

Year 9 2023 Mathematics 2024 Unit 13 Booklet – Part 1

HGS Maths

Tasks

Dr Frost Course

Name:

Class:

Year 9 2023 Mathematics 2024 Unit 13 Booklet – Part 2

HGS Maths

Tasks

Dr Frost Course

Name:

Class:

Contents Page

- 1 <u>2D Pythagoras' Theorem</u>
- 2 Properties of 3D Shapes
- 3 Plans and Elevations
- 4 Volume and Surface Area of Prisms
- 5 Area and Volume Unit Conversions
- 6 <u>Compound Measures</u>

1 2D Pythagoras' Theorem

Hypotenuse

- a) Cross out all shapes which Pythagoras' Theorem won't apply to.
- b) In each remaining shape, label the hypotenuse c and the legs a and b.

Pythagoras' Theorem

In any *right angled triangle*, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

In other words:

$$a^2 + b^2 = c^2$$

Note: a and b can be labelled in any order but c has to be the hypotenuse i.e the triangle could be labelled like this:

Worked Example	Your Turn
Calculate the unknown side in this triangle. Give your answer to 2 decimal places.	Calculate the unknown side in this triangle. Give your answer to 2 decimal places.
7cm 9cm	9cm 13cm x

Faded

Finding Missing Lengths Part 1. Complete the examples in the table by finding the value of the hypotenuse. Round your answers to 1 decimal place.

Question Label diagram	4cm a + 6cm b	$rac{c}{y}$ $7m$ $rac{a}{a}$	$\begin{array}{c} c \\ c$	3.2 m a 5.6 m b	t 15.7 cm 5.7 cm
Write down Pythagoras' Theorem	$c^2 = a^2 + b^2$	$c^2 = a^2 + b^2$	$c^2 = a^2 + b^2$	$c^2 = a^2 + b^2$	
Substitute in the values	$x^2 = 4^2 + 6^2$	$y^2 = 7^2 + 2^2$	$z^2 = 6.5^2 + 5.4^2$		
Evaluate the squares and add together	$x^2 = 16 + 36$ $x^2 = 52$	$y^2 = 49 + 4$ $y^2 = 53$	$z^2 = 42.25 + 29.16$ $z^2 = 71.41$		
Square root to solve the equation	$x = \sqrt{52}$	$y = \sqrt{53}$			
Round your answer (where appropriate) and give units	$x = 7.2 \ cm \ (1dp)$				

Worked Example	Your Turn
Calculate the unknown side in this triangle. Give your answer to 2 decimal places.	Calculate the unknown side in this triangle. Give your answer to 2 decimal places.
6 cm 2 cm x	9 cm x 5 cm

Faded

Finding Missing Lengths Part 2. Complete the examples in the table by finding the value of the leg. Round your answers to 1 decimal place.

Question Label diagram	$ \begin{array}{c} c \\ 9 cm \\ a \\ x \\ b \end{array} $	с 7.4 m 2.2 mb	6.4 mm a b z	w a 5.9 m b	3.45 cm 1.23 cm t
Write down Pythagoras' Theorem	$c^2 = a^2 + b^2$	$c^2 = a^2 + b^2$	$c^2 = a^2 + b^2$	$c^2 = a^2 + b^2$	
Substitute in the values	$9^2 = 6^2 + x^2$	$7.4^2 = y^2 + 2.2^2$	$9.1^2 = 6.4^2 + z^2$		
Evaluate the squares and rearrange the equation to get the unknown square on its own.	$81 = 36 + x^{2}$ -36 -36 $45 = x^{2}$ $x^{2} = 45$	$54.76 = y^{2} + 4.84$ -4.84 $49.92 = y^{2}$ $y^{2} = 49.92$	$82.81 = 40.96 + z^{2}$ $-40.96 - 40.96$ $41.85 = z^{2}$ $z^{2} = 41.85$		
Square root to solve the equation	$x = \sqrt{45}$	$y = \sqrt{49.92}$			
Round your answer (where appropriate) and give units	$x = 6.7 \ cm \ (1dp)$				

Worked Example	Your Turn
Find the length of the line segments between the given points. Give your answers as simplified surds: a) (1,2) and (4, 6) b) (-1, 13) and (4, 1) c) (1,2) and (3,5)	Find the length of the line segments between the given points. Give your answers as simplified surds: a) (1,2) and (5,5) b) (-5,10) and (-13,4) c) (1,2) and (-1,5)

Worked Example **Your Turn** ABC is an isosceles triangle where AB = BC. ABC is an isosceles triangle where AB = BC. В 9.5 cm 9.3 cm 7.3 cm 6 cm A A x х Find the length marked \boldsymbol{x} on the diagram. Calculate the length marked x on the diagram. Give your answer correct to 1 decimal place. Give your answer correct to 1 decimal place.

Extra Notes		

2 Properties of 3D Shapes

Worked Example	Your Turn
For the cuboid, write down the:	For the triangular prism, write down the:
Number of faces (F)	Number of faces (F)
The number of edges (E)	The number of edges (E)
The number of vertices (V)	The number of vertices (V)
Calculate $V - E + F$	Calculate $V - E + F$

1. Match the 3D solids with their net

2. The net is folded to make a cube.Two other vertices meet at *P*.Mark each of these vertices with the letter *P*.

3. The net shown is folded to make a dodecahedron. Label the face which is opposite the shaded one

4. Using the grid provided with 1 square = 1 cm, draw an accurate net of these solids

Extra Notes

3 Plans and Elevations

The **plan** is the view from the top of a 3D solid.

Elevations are horizontal views of a 3D object:

- **Front elevation**: The view from the front of an object.
- **Back elevation**: The view from behind the object.
- **Side elevation**: The view from the side of an object.

Worked	Example	You	r Turn
Plan:		Plan:	
Front (with arrow):		Front (with arrow):	
Side (from right):		Side (from right):	

Sketch the solid shape

Sketch the solid shape

1. Here is the plan and side elevation of a prism.

The side elevation shows the cross section of the prism.

On the grid below, draw the front elevation of the prism.

(b) In the space below, draw a 3-D sketch of the prism.

2. Here are the plan and front elevation of a prism.

The front elevation shows the cross section of the prism.

(a) On the grid below, draw a side elevation of the prism.

(b) In the space below, draw a 3-D sketch of the prism.

3. The diagram shows a solid object.

(a) In the space below,sketch the front elevationfrom the directionmarked with an arrow.

(b) In the space below, sketch the plan of the solid object.

Extra Notes

4 Volume and Surface Area of Prisms

Prisms

A **prism** is a 3D shape which has the same *cross-section* along its length.

Cross-Section

It is the shape made when a solid is cut through parallel to the base.

Frayer Mo	del – Prism
Definition	<u>Characteristics</u>
Examples	Non-Examples

Volume of Prisms

Volume of Prism = Area of Cross Section × Depth

Volume of Prism = A × D

Surface Area of Prisms

Surface Area of Prism = 2 × Area of Cross Section + Perimeter of Cross Section × Depth of Prism

Surface Area of Prism = 2A + PD

Fill i	n the	Gaps
--------	-------	------

Cube or Cuboid	Length	Width	Height	Volume	Surface Area
Cuboid	10~cm	5 <i>cm</i>	3 <i>cm</i>		$190 \ cm^2$
Cube	4~cm			$64 \ cm^{3}$	
Cuboid	12 <i>cm</i>	8 <i>cm</i>	2 <i>cm</i>		
Cuboid	30 <i>mm</i>	25 mm	$15\ mm$		
Cube		1.8 m			
Cuboid	10~cm	7 cm		350 cm ³	
Cube				729 cm ³	
Cuboid		3.6 <i>cm</i>	20 <i>cm</i>	259.2 <i>cm</i> ³	
Cuboid	$45\ mm$	20 <i>mm</i>		$22500 \ mm^3$	
Cube					$294 \ cm^2$
Cuboid	4 cm		6 <i>cm</i>		228 cm ²
Cuboid	20 <i>mm</i>	$12\ mm$			$1568 \ mm^2$
Cuboid		11~cm		528 cm ³	$404 \ cm^2$
Cuboid	2 mm			$720 \ mm^{3}$	$876 mm^{2}$

Volume of Cylinders

Volume of Cylinder = Area of circle × height Volume of Cylinder = π × radius² × height

Volume of Cylinder = $\pi r^2 h$

Worked Example	Your Turn
Find the height, x , given that the volume of the following half cylinder is $141.4 \ cm^3$. Give your answer to 1 decimal place.	Find the height, x , given that the volume of the following half cylinder is $1131.0 \ cm^3$. Give your answer to 1 decimal place.
for the second s	x cm

Worked Example	Your Turn
Find the diameter, x , given that the volume of the following half cylinder is $141.4 \ cm^3$. Give your answer to 1 decimal place.	Find the diameter, x , given that the volume of the following half cylinder is $1131.0 \ cm^3$. Give your answer to 1 decimal place.
10 cm	20 cm

Surface Area of Cylinders

Curved Surface Area of Cylinder = $2 \times \pi \times radius \times height$

Curved Surface Area of Cylinder = $2\pi rh$

Total Surface Area of Cylinder = $2 \times \pi \times \text{radius} \times \text{height} + 2 \times \pi \times \text{radius}^2$

Total Surface Area of Cylinder = $2\pi rh + 2\pi r^2$

Worked Example	Your Turn
Calculate the total surface area of the following half cylinder. Give your answer in terms of π and to 1 decimal place.	Calculate the total surface area of the following half cylinder. Give your answer in terms of π and to 1 decimal place.
f cm ↓ ↓ 10 cm	20 cm

Fluency Practice

Radius	Height	Volume in terms of π	Volume to 3 s.f.	Curved Surface Area in terms of π	Total Surface Area in terms of π	Total Surface Area to 3 s.f.
5 cm	10 cm	$250\pi \ cm^3$		$100\pi \ cm^2$	$150\pi \ cm^2$	
7 cm	15 cm			$210\pi \ cm^2$		
16 mm	20 mm					
0.6 m	2.4 m					
10 cm		$500\pi \ cm^3$				
	12 cm			$192\pi \ cm^2$		
1.5 m					$\frac{39}{2}\pi m^2$	
	20 mm				$312\pi mm^2$	

Extra Notes

5 Area and Volume Unit Conversions

	Worked Example	Your Turn
a)	Worked Example Nvert: 7 cm ² to mm ² 2500 cm ² to m ²	Your Turn Convert: a) 7 km ² to m ² b) 2500 mm ² to cm ²

Shape	Area in m ²	Area in cm ²	Area in mm ²
	2m		
7 <i>m</i>			
	3m		
6m			
3 <i>m</i>	ı		
5 <i>m</i>			
? n	ı	200 000 cm^2	
5 <i>m</i>			
	3 <i>m</i>		$21\ 000\ 000\ mm^2$
? m	•		
	m 22 m^2		
? m			

	Worked Example	Your Turn			
a)	overt: 7 cm ³ to mm ³ 5 mm ³ to cm ³	Convert: a) $7 m^3 to cm^3$ b) $5 cm^3 to m^3$			

	Worked Example	Your Turn
Cor a) b)	wert: 241 litres to cm³ 83400 cm³ to litres	Your Turn Convert: a) 4500 litres to cm ³ b) 813 000 cm ³ to litres

	Area		Volume			
mm ²	cm ²	m^2	mm ³	cm ³	<i>m</i> ³	litres
	10000			1000		1
		2	700000			
500000						20
		0.07			0.6	
	92000		3400000			
13000000				28000		
	62				1.7	
		7.81				0.45
42900				379000		
		0.363	8520000			

Extra Notes

6 Compound Measures

Compound measures are measures that rely on other measures:

- Speed
- Density
- Pressure

Worked Example	Your Turn
Worked Example Convert 3600 metres per second to a speed in kilometres per hour	Your Turn Convert 7200 metres per second to a speed in kilometres per hour

Worked Example	Your Turn
Worked Example Convert 250 kilometres per hour to a speed in metres per second	Your Turn Convert 750 kilometres per hour to a speed in metres per second

	Speed
Speed	$d = \frac{\text{Distance}}{\frac{1}{2}}$
	Time

Worked Example	Your Turn
A car travels 50 miles in 2 hours. What speed does it travel at?	A car travels 60 miles in 2 hours. What speed does it travel at?
A car travels at 50 <i>mph</i> (miles per hour) for 2 hours. How far does it travel?	A car travels at 60 <i>mph</i> (miles per hour) for 2 hours. How far does it travel?
A car travels 50 miles at $25mph$ (miles per hour). How long does it take?	A car travels 30 miles at 60 <i>mph</i> (miles per hour). How long does it take?

ſ		

Y	

Units of Speed	km/h	s/w	km/h	km/h	m/s	km/h	m/s	m/s	km/h	km/h	m/s	m/s	km/h	s/m	
Speed					10	25		12	80	65		2.5	88	8.5	40
Time	4 hours	5 seconds	2 hours	180 minutes	20 seconds	3 hours	3 seconds			120 minutes	1 minute		150 minutes	1.5 minutes	30 minutes
Distance	120 <i>km</i>	55 m	8000 m	450 <i>km</i>			$900\ cm$	132 m	640 <i>km</i>		30 <i>m</i>	1750 cm			20000 m

Distance	Time	Speed	Units of Speed
135 <i>km</i>	$4\frac{1}{2}$ hours		km/h
57.2m	5.2 seconds		s/m
8000 m	2 hours		h/m
450 <i>km</i>	180 minutes		km/h
	20 seconds	10.5	s/m
	3 hours	27.5	km/h
900 <i>cm</i>	3 seconds		s/m
170.4 m		12	s/m
348.5 <i>km</i>		82	km/h
	150 minutes	65	km/h
30 m	1 minute		s/m
1750 <i>cm</i>		2.5	s/m
	2 hours 20 minutes	28	km/h
	1 minute 18 seconds	8.5	s/m
358.4 miles	192 minutes		$\eta d m$
20000 m	30 minutes	40	
	_		

Speed			not simplified	☐〉 denominator of 1		
Distance Time	Distance	Time	distance time	distance time	Speed	Compound Units
00	60 kilometres	2 hours	$\frac{60}{2}$	=		km/h
00	80 kilometres	4	4	=		
00	90 miles	6 hours		=		mph
次		12 hours	60	=		kmph
	50	30 minutes	0.5	=		km/h
00	7 miles	30 minutes		=		mph
	20 kilometres	15 minutes		=		kmph
00	60		1.5	=		km/h
00	75	2 hours 30 minutes		=		kph
00	36 miles	4 hours 30 minutes		=		
次		45 minutes	9	=		km/h
			$\frac{36}{0.75}$	=		kmph
ŝ	12 miles	minutes	0.1	=		mph
	32	24 minutes		=		km/h
	392	2 hours 48 minutes		=		kph

Sporting Speeds							
Sport		Distance	Time	Speed (km/h)	Speed (m/s)		
Adam Peaty Swimming	<u></u>	100 m	56.88 seconds	6.33 km/h			
Battaash Horse Racing		1 <i>km</i>	50.9 seconds				
Mark Cavendish Cycling	50	200 m			21.7 m/s		
Rafael Nadal's Tennis Ball	۲ [¢]		0.47 seconds		50 m/s		
Usain Bolt 100 m Sprint	Ż	100 m	9.58 seconds				
Max Verstappen Formula 1			1 minute 14 seconds	157.8 km/h			
Lionel Messi's Football	\odot	23.4 m		130 km/h			
Mo Farah Marathon	六	42.24 km	2 hours 10 min 28 seconds				

Worked Example	Your Turn
Worked Example John travels 94 miles at a speed of 47 mph. John then travels 115 miles at a speed of 46 mph. Work out John's overall speed for the entire journey. Give your answer correct to 1 decimal place.	Your Turn Fred travels 105 km at a speed of 35 km/h. Fred then travels 126 km at a speed of 60 km/h. Work out Fred's overall speed for the entire journey. Give your answer correct to 1 decimal place.

Density	
Density = Mass Volume	

Worked Example	Your Turn
The mass of an object is 50 g . The volume is $10 \ cm^3$. What is the density of the object?	The mass of an object is 100 g . The volume is 25 cm^3 . What is the density of the object?
The density of an object is $10 \ g/cm^3$. The volume is $5 \ cm^3$. What is the mass?	The density of an object is $10 \ g/cm^3$. The volume is $25 \ cm^3$. What is the mass?
The density of an object is $10 \ g/cm^3$. The mass is $50 \ g$. What is the volume?	The density of an object is $10 \ g/cm^3$. The mass is $25 \ g$. What is the volume?

Worked Example	Your Turn
Liquid <i>A</i> has a density of 1.15 g/cm ³ . Liquid <i>B</i> has a density of 1.23 g/cm ³ . 76 cm ³ of liquid <i>A</i> and 116 cm ³ of liquid <i>B</i> are mixed to make liquid <i>C</i> . Work out the density of liquid <i>C</i> . Give your answer correct to 2 decimal places.	Liquid <i>A</i> has a density of 1.11 g/cm ³ . Liquid <i>B</i> has a density of 1.3 g/cm ³ . 41 cm ³ of liquid <i>A</i> and 143 cm ³ of liquid <i>B</i> are mixed to make liquid <i>C</i> . Work out the density of liquid <i>C</i> . Give your answer correct to 2 decimal places.

Pressure	
$Pressure = \frac{Force}{Area}$	

Worked Example	Your Turn
The force exerted by an object on a surface is $50N$. The surface area in contact with the object is $10cm^2$. What is the pressure exerted by the object?	The force exerted by an object on a surface is $100N$. The surface area in contact with the object is $25cm^2$. What is the pressure exerted by the object?
The pressure exerted on a surface by an object is $50N/cm^2$.	The pressure exerted on a surface by an object is $100N/cm^2$.
The surface area in contact with the object is $10cm^2$. What is the force exerted?	The surface area in contact with the object is $25cm^2$. What is the force exerted?
The pressure exerted on a surface by an object is $50N/cm^2$.	The pressure exerted on a surface by an object is $100N/cm^2$.
The force exerted on the surface is $10N$. What is the surface area in contact with the object?	The force exerted on the surface is $25N$. What is the surface area in contact with the object?

Cut	ooid Compound Measures The obje	cts are resting on E	Earth (Gravitation	al acceleration = 1	0 m/s²).	Answer to 3	sf.
	Object	Mass	Volume	Density	Force (Weight)	Contact Area	Pressure
1	square-based 1 m	400 kg					
2	cube	1,000 kg	8 m ³				
3	cube 50 cm	3 kg					
4	square-based 3 m		12 m ³		500 N		
5	0.5 m	20 kg				6 m²	
6	0.5 m <u>3 m</u> 2 m	20 kg					
7	80 cm 20 cm				1,500 N		
8	isosceles 60 cm 80 cm	4 kg					
9	60 cm 50 cm 40 cm	3.5 kg					
10	50 cm				8 N		40 N/m²

Mass	Volume	Density		Force	Area	Pres	sure
500 <i>g</i>	200 cm ³		<i>g/cm</i> ³	7 N	$0.4 m^2$		N/m^2
6.2 kg	$0.004 m^3$		kg/m^3	60 N	$2.4 m^2$		N/m^2
1.6 <i>kg</i>		2000	kg/m^3		$0.06 m^2$	70	N/m^2
	2.25 cm ³	1.6	g/cm ³	56 N		32	N/m^2
	0.2 <i>m</i> ³	750	kg/m^3		$0.001 m^2$	3800	<i>N/m</i> ²
264 g		0.88	g/cm ³	99 N		450	N/m^2
0.24 <i>kg</i>	400 cm ³		g/cm ³	85 N	20000 cm ²		N/m ²
56000 <i>g</i>		800	kg/m^3		80000 cm ²	12.75	N/m^2
	400000 cm ³	2180	kg/m^3	174 N	725 cm ²		N/m^2
8000 <i>g</i>	$0.0025 m^3$		g/cm ³	135 N	5000000 mm ²		N/m^2
13.8 <i>kg</i>	$0.015 m^3$		g/cm ³		3600 mm ²	1850	N/m^2

Extra Notes