Year 9

2023 Mathematics 2024 Unit 13 Booklet - Part 1

Dr Frost Course

Name:

Class:

2023 Mathematics 2024 Unit 13 Booklet - Part 2

Dr Frost Course

Name:

Class:

Contents Page

1 2D Pythagoras' Theorem
2 Properties of 3D Shapes
3 Plans and Elevations
4 Volume and Surface Area of Prisms
5 Area and Volume Unit Conversions
6 Compound Measures

Hypotenuse

From the Greek derived hypo meaning 'under' and teinein meaning 'to stretch'.

The two sides that aren't the hypotenuse are known as legs.

The hypotenuse is the side that stretches from one leg to another.

Fluency Practice

Page 14
a) Cross out all shapes which Pythagoras' Theorem won't apply to.
b) In each remaining shape, label the hypotenuse c and the legs a and b.

Pythagoras' Theorem

In any right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

In other words:

$a^{2}+b^{2}=c^{2}$

Note: a and b can be labelled in any order but c has to be the hypotenuse i.e the triangle could be labelled like this:

Faded

Finding Missing Lengths Part 1. Complete the examples in the table by finding the value of the hypotenuse. Round your answers to 1 decimal place.

Question Label diagram			$7 m$ a			
Write down Pythagoras' Theorem	$c^{2}=a^{2}+b^{2}$	$c^{2}=a^{2}+b^{2}$		$c^{2}=a^{2}+b^{2}$	$c^{2}=a^{2}+b^{2}$	
Substitute in the values	$x^{2}=4^{2}+6^{2}$	$y^{2}=7^{2}+2^{2}$		$z^{2}=6.5^{2}+5.4^{2}$		
Evaluate the squares and add together	$\begin{gathered} x^{2}=16+36 \\ x^{2}=52 \end{gathered}$	$\begin{gathered} y^{2}=49+4 \\ y^{2}=53 \end{gathered}$		$\begin{gathered} z^{2}=42.25+29.16 \\ z^{2}=71.41 \end{gathered}$		
Square root to solve the equation	$x=\sqrt{52}$	$y=\sqrt{53}$				
Round your answer (where appropriate) and give units	$x=7.2 \mathrm{~cm}(1 \mathrm{dp})$					

Converse of Pythagoras' Theorem

If $c^{2}<a^{2}+b^{2}$ then ABC is an acute triangle

If $c^{2}=a^{2}+b^{2}$ then ABC is right triangle

Faded

Finding Missing Lengths Part 2. Complete the examples in the table by finding the value of the leg. Round your answers to 1 decimal place.

Question Label diagram					
Write down Pythagoras' Theorem	$c^{2}=a^{2}+b^{2}$	$c^{2}=a^{2}+b^{2}$	$c^{2}=a^{2}+b^{2}$	$c^{2}=a^{2}+b^{2}$	
Substitute in the values	$9^{2}=6^{2}+x^{2}$	$7.4^{2}=y^{2}+2.2^{2}$	$9.1^{2}=6.4^{2}+z^{2}$		
Evaluate the squares and rearrange the equation to get the unknown square on its own.	$\begin{gathered} 81=36+x^{2} \\ -36 \quad \begin{array}{r} -36 \\ 45 \end{array} x^{2} \\ x^{2}=45 \end{gathered}$	$\begin{gathered} 54.76=y^{2}+4.84 \\ -4.84 \quad-4.84 \\ 49.92=y^{2} \\ y^{2}=49.92 \end{gathered}$	$\begin{gathered} 82.81=40.96+z^{2} \\ -40.96 \quad-40.96 \\ 41.85=z^{2} \\ z^{2}=41.85 \end{gathered}$		
Square root to solve the equation	$x=\sqrt{45}$	$y=\sqrt{49.92}$			
Round your answer (where appropriate) and give units	$x=6.7 \mathrm{~cm}(1 \mathrm{dp})$				

Worked Example

Your Turn

Find the length of the line segments between the given points. Give your answers as simplified surds:
a) $(1,2)$ and $(4,6)$
b) $(-1,13)$ and $(4,1)$
c) $(1,2)$ and $(3,5)$

Find the length of the line segments between the given points. Give your answers as simplified surds:
a) $(1,2)$ and $(5,5)$
b) $(-5,10)$ and $(-13,4)$
c) $(1,2)$ and $(-1,5)$

Extra Notes

Fluency Practice

2. The net is folded to make a cube.

Two other vertices meet at P.

1. Match the 3D solids with their net

Mark each of these vertices with the letter P.

3. The net shown is folded to make a dodecahedron. Label the face which is opposite the shaded one

4. Using the grid provided with 1 square $=1 \mathrm{~cm}$, draw an accurate net of these solids

Fluency Practice

Fluency Practice

Fluency Practice

Extra Notes

3 Plans and Elevations

The plan is the view from the top of a 3D solid.
Elevations are horizontal views of a 3D object:

- Front elevation: The view from the front of an object.
- Back elevation: The view from behind the object.
- Side elevation: The view from the side of an object.

front elevation

side
elevation

back elevation

side
elevation

Fluency Practice

Fluency Practice
For each of the shapes below, draw the plan view, front view (shown with the arrow) and side
view (from the right).

Fluency Practice

Fluency Practice

4 Cubes

4 cubes can be arranged in 8 different ways.
Draw the plan, the front elevation and the side elevation
for each arrangement.
Why are there only 8 arrangements?

Front Elevation

Side Elevation

Front Elevation

Front Elevation
Side Elevation

Fluency Practice

Plans \& Elevations

scale
On the scale grid draw the front \& side elevations, and the plan, for these prisms.

Fluency Practice

Pythag \& Plans \& Elevations

not to On the scale grid draw the

scale front \& side elevations, and the plan, for these prisms.
Label lengths that are not on the diagrams below.

B

ront
E

1. Here is the plan and side elevation of a prism.

The side elevation shows the cross section of the prism.

On the grid below, draw the front elevation of the prism.

(b) In the space below, draw a 3-D sketch of the prism.
2. Here are the plan and front elevation of a prism.
The front elevation shows the cross section of the prism.
(a) On the grid below, draw a side elevation of the prism.

(b) In the space below, draw a 3-D sketch of the prism.
3. The diagram shows a solid object.
(a) In the space below, sketch the front elevation from the direction marked with an arrow.

(b) In the space below, sketch the plan of the solid object.

Extra Notes

[^0]
Prisms

A prism is a 3D shape which has the same cross-section along its length.

Cross-Section

It is the shape made when a solid is cut through parallel to the base.

What is a Prism?

Fluency Practice

Fluency Practice

Frayer Model - Prism

Definition	$\underline{\text { Characteristics }}$
Examples	

Volume of Prisms

Volume of Prism $=$ Area of Cross Section \times Depth

Volume of Prism $=A \times D$

Surface Area of Prisms

Surface Area of Prism =2×Area of Cross Section + Perimeter of Cross Section \times Depth of Prism
Surface Area of Prism = 2A + PD

Fluency Practice

Fill in the Gaps

$\frac{\xi}{\frac{n}{2}}$							$\begin{aligned} & \text { N } \\ & \text { İ } \\ & \text { N } \end{aligned}$	
				$\begin{array}{c\|cccc} 0 & & \wedge & \wedge \\ \times & \mathbf{N} & \times & \times \\ \infty & & \times & \times \\ \times & \infty & \bullet & \ddots \\ \sim & + & + & + \end{array}$		$\begin{array}{c\|cccc} \underset{\sim}{N} & & - & - & -1 \\ \times & N & \times & \times & \times \\ 0 & & M & ल & 0 \\ - & & + & \underset{+}{+} \\ \times & & + & + \\ N & & & \end{array}$	$\begin{array}{c\|cccc} \infty & & \sim & \sim & n \\ \times & \mathbf{N} & \times & \times & \times \\ \mathcal{N} & & 0 & 0 & \underset{\sim}{n} \\ \times & & + & + & + \\ N & & & + \end{array}$	
	$\stackrel{+}{\mathbf{0}}$							

Fill in the Gaps

	$\begin{aligned} & \text { N } \\ & \text { E } \\ & \text { on } \\ & \text { in } \end{aligned}$									$\begin{aligned} & \text { N } \\ & \text { E } \\ & \text { H} \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { N} \\ & \text { Ẽ } \\ & \infty \\ & \text { N } \\ & \text { N } \end{aligned}$		$\begin{aligned} & \text { N } \\ & \text { É } \\ & \text { Ji } \end{aligned}$	$$
		$\begin{aligned} & \text { N్క } \\ & \text { تु } \end{aligned}$					$\begin{aligned} & \text { N } \\ & \text { E } \\ & \text { N} \\ & \underset{N}{n} \end{aligned}$	$\begin{aligned} & \text { m } \\ & \text { Ẽ } \\ & \text { N } \\ & \underset{\sim}{n} \\ & N \end{aligned}$	N ミ § N N				$\begin{aligned} & \text { N్ } \\ & \text { E } \\ & \infty \\ & N \\ & \end{aligned}$	$\begin{aligned} & \text { N} \\ & \text { E } \\ & \text { N } \\ & \text { N } \end{aligned}$
$\begin{aligned} & \pm \\ & \stackrel{\rightharpoonup}{0} \\ & \text { O} \\ & \text { I } \end{aligned}$	$\begin{gathered} \text { Ẽ̇ } \\ \mathrm{m} \end{gathered}$		$\begin{aligned} & \text { ẼU } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { ลิ } \\ & \text { ํㅡㅁ } \end{aligned}$				Ė O N			E			
$\begin{aligned} & \text { ¹ } \\ & \frac{0}{3} \end{aligned}$	$\begin{gathered} \text { Ẽ̇ } \\ \text { n } \end{gathered}$		$\underset{\substack{\text { E }}}{ }$	$\begin{aligned} & \text { § } \\ & \text { N } \\ & \text { N } \end{aligned}$	$$	$\underset{\sim}{\tilde{u}}$		E E 0 n	$\begin{aligned} & \text { § } \\ & \text { §̀ } \\ & \text { N} \end{aligned}$			ミิ Ẽ N	ĖU － －	
	$\begin{aligned} & \text { Ê } \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Ẽ̇ } \\ & \text { H} \end{aligned}$	$\begin{aligned} & \text { İ } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { Ẽ } \\ & \text { È } \\ & \text { O} \end{aligned}$		Ė 0 0			£		E	$\begin{aligned} & \text { §్ } \\ & \text { §̀ } \\ & \text { Nे } \end{aligned}$		E
	$$	$\stackrel{\circlearrowright}{\text { J }}$		$$	$\frac{\circlearrowright}{\mathfrak{J}}$		$\begin{aligned} & \text { ®ె } \\ & \text { In } \end{aligned}$	$$	$$	$\frac{\stackrel{0}{\mathrm{~J}}}{\substack{2}}$		$$	？	$\widetilde{3}$ U

Volume of Cylinders

Volume of Cylinder $=$ Area of circle \times height Volume of Cylinder $=\pi \times$ radius $^{2} \times$ height

Volume of Cylinder $=\pi r^{2} h$

Surface Area of Cylinders

Curved Surface Area of Cylinder $=2 \times \pi \times$ radius \times height
Curved Surface Area of Cylinder $=\mathbf{2 \pi r h}$

Total Surface Area of Cylinder $=\mathbf{2 \times \pi \times} \times$ radius \times height $+2 \times \pi \times$ radius 2
Total Surface Area of Cylinder $=\mathbf{2 \pi r h}+\mathbf{2 \pi} \mathbf{r}^{2}$
Surface area of cylinder $=2 \pi r^{2}+2 \pi r h$

Fluency Practice

Fill in the Gaps

Radius	Height	Volume in terms of $\boldsymbol{\pi}$	Volume to 3 s.f.	Curved Surface Area in terms of $\boldsymbol{\pi}$	Total Surface Area in terms of $\boldsymbol{\pi}$	Total Surface Area to 3 s.f.
5 cm	10 cm	$250 \pi \mathrm{~cm}^{3}$		$100 \pi \mathrm{~cm}^{2}$	$150 \pi \mathrm{~cm}^{2}$	
7 cm	15 cm			$210 \pi \mathrm{~cm}^{2}$		
16 mm	20 mm					
0.6 m	2.4 m		$500 \pi \mathrm{~cm}^{3}$			
10 cm				$192 \pi \mathrm{~cm}^{2}$		
12 cm				$\frac{39}{2} \pi \mathrm{~m}^{2}$		
1.5 m				$312 \pi \mathrm{~mm}^{2}$		
	20 mm					

Extra Notes

5 Area and Volume Unit Conversions

Worked Example	Your Turn
Convert: a) $7 \mathrm{~cm}^{2}$ to mm^{2} b) $\quad 2500 \mathrm{~cm}^{2}$ to m^{2}	Convert: a) $7 \mathrm{~km}^{2}$ to m^{2} b) $2500 \mathrm{~mm}^{2}$ to cm^{2}

Fill in the Gaps

Shape	Area in m^{2}	Area in cm^{2}	Area in mm^{2}
$7 m$			
$6 m \quad 3 m$			
$5 m \quad 3 m$			
		$200000 \mathrm{~cm}^{2}$	
			$21000000 \mathrm{~mm}^{2}$
$? m$	$22 m^{2}$		

Worked Example	
Convert:	Your Turn
a) $7 \mathrm{~cm}^{3}$ to mm^{3}	Convert:
b) $5 \mathrm{~mm}^{3}$ to cm^{3}	a) $7 \mathrm{~m}^{3}$ to cm^{3}

Worked Example	Your Turn
Convert:	Convert:
a) 241 litres to cm^{3}	
b) $83400 \mathrm{~cm}^{3}$ to litres	a) 4500 litres to cm^{3}
	b) $813000 \mathrm{~cm}^{3}$ to litres

Fill in the Gaps

Area		
$\boldsymbol{m m}^{\mathbf{2}}$	$\boldsymbol{c m}^{\mathbf{2}}$	$\boldsymbol{m}^{\mathbf{2}}$
	10000	
		2
500000		0.07
	92000	
13000000		
	62	7.81
42900		0.363

Volume			
$\boldsymbol{m m}^{\mathbf{3}}$	$\boldsymbol{c m}^{\mathbf{3}}$	$\boldsymbol{m}^{\mathbf{3}}$	litres
	1000		1
7000000			
		0.6	
3400000	28000		
		1.7	
			0.45
8520000			

Extra Notes

6 Compound Measures

Compound measures are measures that rely on other measures:

- Speed
- Density
- Pressure

Worked Example	Your Turn
Convert 3600 metres per second to a speed in kilometres per hour	Convert 7200 metres per second to a speed in kilometres per hour

Worked Example	Your Turn
Convert 250 kilometres per hour to a speed in metres per second	Convert 750 kilometres per hour to a speed in metres per second

Speed

Speed $=\frac{\text { Distance }}{\text { Time }}$

Fill in the Gaps

$\begin{aligned} & \text { ర } \\ & 0 \\ & 0 \\ & 0 \\ & \text { no } \\ & 0 \\ & \vdots \\ & 5 \end{aligned}$	$\underset{\Sigma}{\xi}$	$\stackrel{n}{\mathfrak{E}}$	$\underset{\underset{z}{\Sigma}}{\mathfrak{\Sigma}}$	$\underset{\xi}{\xi}$	$\stackrel{n}{ミ}$	$\underset{\Sigma}{\Sigma}$	$\stackrel{n}{ミ}$	$\stackrel{\sim}{\S}$	$\mathfrak{\Sigma}$	$\underset{\Sigma}{\Sigma}$	$\stackrel{n}{ミ}$	$\stackrel{n}{ミ}$	$\mathfrak{\xi}$	$\sum_{\mathfrak{n}}^{n}$	
$\begin{aligned} & \text { ס्ס } \\ & \dot{0} \\ & \dot{0} \end{aligned}$					\bigcirc	ำ		$\stackrel{\sim}{\sim}$	∞	ㄴํ		$\stackrel{\cup}{\mathrm{N}}$	∞	\bigcirc	아
$\underset{\sim}{\mathbf{E}}$	$\begin{aligned} & \text { y } \\ & \text { § } \\ & \text { む } \end{aligned}$	$\begin{aligned} & \text { む̃ } \\ & \text { む̃ } \\ & \stackrel{0}{\omega} \\ & \text { in } \end{aligned}$	§ む N			$\begin{aligned} & \text { § } \\ & \text { §̃ } \\ & \text { n } \end{aligned}$	$\begin{aligned} & \tilde{\sim} \\ & \tilde{0} \\ & \stackrel{0}{6} \\ & \tilde{\sim} \end{aligned}$							$\begin{aligned} & \text { W } \\ & \text { ※̃ } \\ & \text { K̃ } \\ & 0 \\ & \end{aligned}$	
$\begin{aligned} & \mathscr{U} \\ & \text { U } \\ & \mathbb{T} \\ & \ddot{0} \\ & \ddot{0} \end{aligned}$	$\begin{aligned} & \text { 초 } \\ & \text { 욱 } \end{aligned}$	$\begin{gathered} \text { ミ } \\ \text { 능 } \end{gathered}$	$\begin{aligned} & \mathfrak{E} \\ & \stackrel{0}{8} \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Nㅗ } \\ & \frac{1}{6} \\ & \text { in } \end{aligned}$			$\begin{aligned} & \text { E } \\ & \text { O} \\ & \text { on } \end{aligned}$	$\begin{aligned} & \text { E } \\ & \underset{\sim}{N} \end{aligned}$	$\begin{aligned} & \text { K } \\ & \frac{5}{O} \\ & \text { G } \end{aligned}$		$\begin{aligned} & \text { E } \\ & \text { O} \end{aligned}$	$\begin{aligned} & \text { E } \\ & 0 \\ & \text { in } \\ & \end{aligned}$			E

Fill in the Gaps

$\begin{array}{ll} u_{0} & 0 \\ y & 0 \\ \cline { 1 - 2 } & 0 \\ & 0 \\ \hline \end{array}$	$\underset{i}{\Sigma}$	$\stackrel{\sim}{\Sigma}$		$\underset{\underset{y}{\Sigma}}{\stackrel{s}{\Sigma}}$	$\sum_{ミ}^{n}$	$\underset{i}{\mathfrak{\Sigma}}$	$\stackrel{n}{ミ}^{n}$	$\stackrel{\infty}{ミ}$	$\underset{i}{\Sigma}$	$\underset{i}{\Sigma}$	$\sum_{ミ}^{\infty}$	$\stackrel{\infty}{ミ}$	$\underset{i}{\Sigma}$	$\stackrel{\infty}{\aleph}$	$\stackrel{\rightharpoonup}{\Omega}$	
O U O O					$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{\cup}{N}$		$\stackrel{\sim}{\sim}$	∞	나ํ		$\stackrel{\sim}{\sim}$	∞	$\stackrel{0}{0}$		$\stackrel{\text { ¢ }}{+}$
$\stackrel{\text { © }}{\underline{E}}$	$\begin{gathered} n \\ \vdots \\ \vdots \\ -10 \end{gathered}$		$\begin{aligned} & \text { n } \\ & \text { § } \\ & \text { N } \end{aligned}$		\tilde{Z} む 0 \tilde{u} in N	$\begin{gathered} n \\ \tilde{j} \\ \text { § } \\ \hline \end{gathered}$	$\begin{aligned} & \tilde{\sim} \\ & \tilde{\delta} \\ & \dot{U} \\ & \dot{\sim} \\ & \text { m } \end{aligned}$							1 minute 18 seconds		
$\begin{aligned} & \text { U } \\ & \text { C } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { ह } \\ & \frac{1}{2} \\ & \text { n } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Ñ } \\ & \text { Ǹ } \end{aligned}$	$\begin{aligned} & \text { ㅌ } \\ & \text { O} \\ & \text { © } \end{aligned}$	$\begin{aligned} & \text { ㅌ } \\ & \frac{1}{0} \\ & \text { 낙 } \end{aligned}$			$\begin{aligned} & \text { Ẽ } \\ & \text { o } \\ & \text { oे } \end{aligned}$		$\begin{aligned} & \frac{\Sigma}{2} \\ & \frac{1}{n} \\ & \infty \\ & \text { m } \end{aligned}$		$\begin{aligned} & \text { E} \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { Ė } \\ & 0 \\ & \text { 슥 } \end{aligned}$				§ O O － N

Fill in the Gaps

Speed	not simplified $\quad \checkmark$ denominator of 1					
Distance Time	Distance	Time	$\frac{\text { distance }}{\text { time }}$	$\frac{\text { distance }}{\text { time }}$	Speed	Compound Units
oib	60 kilometres	2 hours	$\frac{60}{2}$	$\overline{1}$		km／h
かib	80 kilometres	4	4	1		
oic	90 miles	6 hours				mph
		12 hours	$\underline{60}$	$\overline{1}$		kmph
-0	50	30 minutes	$\overline{0.5}$	1		km／h
がচ	7 miles	30 minutes		1		mph
Cos	20 kilometres	15 minutes		1		kmph
ふீচ	60		$\overline{1.5}$			km／h
oic	75	2 hours 30 minutes		1		kph
oic	36 miles	4 hours 30 minutes		1		
$\dot{\gamma}$		45 minutes	9			km／h
Co			$\frac{36}{0.75}$			kmph
－8	12 miles	minutes	$\overline{0.1}$	1		mph
－8	32	24 minutes		$\overline{1}$		km／h
-0	392	2 hours 48 minutes				kph

Fill in the Gaps

Sporting Speeds				
Sport	Distance	Time	Speed (km/h)	Speed (m/s)
Adam Peaty Swimming	100 m	56.88 seconds	$6.33 \mathrm{~km} / \mathrm{h}$	
Battaash Horse Racing	1 km	50.9 seconds		
Mark Cavendish Cycling	200 m			$21.7 \mathrm{~m} / \mathrm{s}$
Rafael Nadal's Tennis Ball		0.47 seconds		$50 \mathrm{~m} / \mathrm{s}$
Usain Bolt 100 m Sprint	100 m	9.58 seconds		
Max Verstappen 0. Formula 1		$\begin{aligned} & 1 \text { minute } \\ & 14 \text { seconds } \end{aligned}$	$157.8 \mathrm{~km} / \mathrm{h}$	
Lionel Messi's Football	23.4 m		$130 \mathrm{~km} / \mathrm{h}$	
Mo Farah Marathon	42.24 km	2 hours 10 min 28 seconds		

Density

$$
\text { Density }=\frac{\text { Mass }}{\text { Volume }}
$$

Worked Example	Your Turn
The mass of an object is 50 g . The volume is $10 \mathrm{~cm}^{3}$. What is the density of the object?	The mass of an object is 100 g . The volume is $25 \mathrm{~cm}^{3}$. What is the density of the object?
The density of an object is $10 \mathrm{~g} / \mathrm{cm}^{3}$. The volume is $5 \mathrm{~cm}^{3}$. What is the mass?	The density of an object is $10 \mathrm{~g} / \mathrm{cm}^{3}$. The volume is $25 \mathrm{~cm}^{3}$. What is the mass?
The density of an object is $10 \mathrm{~g} / \mathrm{cm}^{3}$. The mass is 50 g . What is the volume?	The density of an object is $10 \mathrm{~g} / \mathrm{cm}^{3}$. The mass is 25 g . What is the volume?

Worked Example	Your Turn
Liquid A has a density of $1.15 \mathrm{~g} / \mathrm{cm}^{3}$. Liquid B has a density of $1.23 \mathrm{~g} / \mathrm{cm}^{3}$. $76 \mathrm{~cm}^{3}$ of liquid A and $116 \mathrm{~cm}^{3}$ of liquid B are mixed to make liquid C. Work out the density of liquid C. Give your answer correct to 2 decimal places.	Liquid A has a density of $1.11 \mathrm{~g} / \mathrm{cm}^{3}$. Liquid B has a density of $1.3 \mathrm{~g} / \mathrm{cm}^{3}$. $41 \mathrm{~cm}^{3}$ of liquid A and $143 \mathrm{~cm}^{3}$ of liquid B are mixed to make liquid C. Work out the density of liquid C. Give your answer correct to 2 decimal places.

Pressure

$$
\text { Pressure }=\frac{\text { Force }}{\text { Area }}
$$

Worked Example

Your Turn
The force exerted by an object on a surface is 50 N . The surface area in contact with the object is $10 \mathrm{~cm}^{2}$. What is the pressure exerted by the object?

The pressure exerted on a surface by an object is $50 \mathrm{~N} / \mathrm{cm}^{2}$. The surface area in contact with the object is $10 \mathrm{~cm}^{2}$. What is the force exerted?

The pressure exerted on a surface by an object is $50 \mathrm{~N} / \mathrm{cm}^{2}$. The force exerted on the surface is 10 N . What is the surface area in contact with the object?

The force exerted by an object on a surface is 100 N . The surface area in contact with the object is $25 \mathrm{~cm}^{2}$. What is the pressure exerted by the object?

The pressure exerted on a surface by an object is $100 \mathrm{~N} / \mathrm{cm}^{2}$. The surface area in contact with the object is $25 \mathrm{~cm}^{2}$. What is the force exerted?

The pressure exerted on a surface by an object is $100 \mathrm{~N} / \mathrm{cm}^{2}$. The force exerted on the surface is 25 N . What is the surface area in contact with the object?

Fill in the Gaps

Fill in the Gaps

Mass	Volume	Density	
500 g	$200 \mathrm{~cm}^{3}$		$\mathrm{~g} / \mathrm{cm}^{3}$
6.2 kg	$0.004 \mathrm{~m}^{3}$		$\mathrm{~kg} / \mathrm{m}^{3}$
1.6 kg		2000	$\mathrm{~kg} / \mathrm{m}^{3}$
	$2.25 \mathrm{~cm}^{3}$	1.6	$\mathrm{~g} / \mathrm{cm}^{3}$
	$0.2 \mathrm{~m}^{3}$	750	$\mathrm{~kg} / \mathrm{m}^{3}$
		0.88	$\mathrm{~g} / \mathrm{cm}^{3}$
264 g	$400 \mathrm{~cm}^{3}$		$\mathrm{~g} / \mathrm{cm}^{3}$
0.24 kg		800	$\mathrm{~kg} / \mathrm{m}^{3}$
56000 g		$400000 \mathrm{~cm}^{3}$	2180
	$\mathrm{~kg} / \mathrm{m}^{3}$		
8000 g	$0.0025 \mathrm{~m}^{3}$		$\mathrm{~g} / \mathrm{cm}^{3}$
13.8 kg	$0.015 \mathrm{~m}^{3}$		$\mathrm{~g} / \mathrm{cm}^{3}$

Force	Area	Pressure	
$7 N$	$0.4 m^{2}$		N / m^{2}
$60 N$	$2.4 m^{2}$		N / m^{2}
	$0.06 \mathrm{~m}^{2}$	70	N / m^{2}
$56 N$		32	N / m^{2}
	$0.001 \mathrm{~m}^{2}$	3800	N / m^{2}
99 N		450	N / m^{2}
85 N	$20000 \mathrm{~cm}^{2}$		N / m^{2}
	$80000 \mathrm{~cm}^{2}$	12.75	N / m^{2}
174 N	$725 \mathrm{~cm}^{2}$		N / m^{2}
135 N	$5000000 \mathrm{~mm}^{2}$		N / m^{2}
	$3600 \mathrm{~mm}^{2}$	1850	N / m^{2}

Extra Notes

[^0]: 4 Volume and Surface Area of Prisms

