2023

Year 9

HGS Maths

Tasks

Dr Frost Course

Name:

Class:

Contents Page

```
1 Percentages with Multipliers
2 Simple and Compound Interest
3 Similarity with Length
4 Right-Angled Trigonometry
```

Worked Example	Your Turn
Write down the multiplier:	Write down the multiplier:
To find 20\%	To find 30\% ...
To increase by 20\%	To increase by 30\%
To decrease by 20\%	

Worked Example	Your Turn
Write down the multiplier:	Write down the multiplier:
To find 12.5%	To find 0.5%
To increase by 12.5%	To increase by 0.5\%
To decrease by 12.5%	To decrease by 0.5%

Worked Example	Your Turn
Find 7\% of 493.8	Find 2\% of 34.32

Fill in the Gaps

Original Amount	Percentage	Increase/ Decrease	Multiplier	Calculation	New Amount
$£ 50$	25%	Increase	1.25	$£ 50 \times 1.25$	$£ 62.50$
$£ 70$	16%	Increase	1.16		
$£ 89$	15%	Decrease	0.85		
$£ 125$	76%	Increase			
$£ 49$	36%	Decrease			
$£ 218$	92%	Decrease			
$£ 24$	8%		1.08		
$£ 92$			1.83		
$£ 48$					
$£ 75$	12.5%	Increase			
$£ 13$	8.5%	Decrease			
$£ 54$			0.635		

Fill in the Gaps

Increasing \& Decreasing by a Percentage \square

Q	Whole	Increase or Decrease	Change		Decimal Multiplier		Result
			As a percentage	As a decimal	Calculation to Find		
A	400	+	20\%	0.2	$1+0.2$	1.2	
B	300	+	80\%				
C	800	+		0.15			
D	700	+				1.12	
E	900	+	3\%				
F	600	-	30\%				
G	200				1-0.15		
H	1400					0.35	
I	500					0.93	
J	250						500
K	700					2.35	
L	140	+	0.5\%				
M	550	+	14.5\%				
0	820	-	0.5\%				
P	1600	-	32.8\%				
Q	86	-	5.75\%				

Worked Example	Your Turn
In a 24\% sale, the price of a shirt is reduced by $\$ 68.88$. Find the original price of the shirt.	In a 3\% sale, the price of a phone is reduced by \$2.82. Find the original price of the phone.

The price of a jumper is increased by 74% and now is $\$ 581.16$. Find the original price.

The price of a jumper is increased by 68% and now is $\$ 717.36$. Find the original price.

Fill in the Gaps

	$\begin{aligned} & \text { Oi} \\ & \text { Nin } \end{aligned}$		$\begin{aligned} & \text { N } \\ & \text { H } \end{aligned}$							
			$\begin{aligned} & \infty \\ & 0 \\ & \dot{1} \\ & 0 \\ & \text { H} \end{aligned}$						$\begin{aligned} & \text { n } \\ & \underset{\sim}{1} \\ & \cdots \\ & \cdots \\ & \sim \\ & \hline \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & 0 \\ & \dot{+} \\ & \cdots \\ & \underset{N}{\infty} \end{aligned}$
	$\stackrel{\square}{\square}$	$\stackrel{\infty}{\infty}$	∞	$\begin{aligned} & \text { + } \\ & 0 \\ & \hline \end{aligned}$						
				$\begin{aligned} & 0 \\ & \text { ò } \\ & \text { ò } \\ & \cdots \\ & \cdots \\ & 0 \\ & 0 \\ & 0 \end{aligned}$						
	o웅 ᄃ $0_{0}^{\circ}{ }^{3}$変 른 \sum_{3}^{0}	 E 3 © シे $\stackrel{\circ}{\circ}_{\circ}^{\circ}$ ${ }_{5}^{\circ} \underset{\sim}{4}$ 					合 응․ 은 $\because 3$苞 ${ }^{\circ}$厄 $\frac{0}{0} \stackrel{0}{0}$ 			

Fill in the Gaps

	$\begin{aligned} & \text { Percentage } \\ & \text { Change } \end{aligned}$											
	$\begin{aligned} & \text { ᄃ } \\ & 0.0 \\ & \frac{\pi}{J} \\ & \frac{0}{\pi} \\ & 0 \end{aligned}$	$\begin{gathered} 8 \\ \vdots \\ \times \\ \times \\ \left\lvert\, \begin{array}{l} 0 \\ \hline \end{array}\right. \end{gathered}$										$\begin{gathered} o \\ \% \\ \times \\ \times 10 \end{gathered}$
		O	$\begin{aligned} & \text { O} \\ & \text { O} \\ & \text { è } \end{aligned}$									
		\mathfrak{O}	\circ © H1	$\begin{aligned} & \stackrel{0}{n} \\ & \stackrel{1}{4} \\ & \stackrel{H}{4} \end{aligned}$	$\begin{aligned} & \infty \\ & \cdots \\ & \infty \end{aligned}$							

Worked Example	Your Turn
Original Amount: 40 Percentage: 24\% As a fraction Multiplier Percentage of... Percentage: 72\% As a fraction Increased by...	Multiplier
Decreased by...	Percentage of...
	Increased by...

Fill in the Gaps

Original Amount	Percentage	As a fraction	Multiplier	Percentage of...	Increased by...	Decreased by....
60	20\%					
60		$\frac{3}{10}$				
60			0.25			
	25\%			7.5		
		$\frac{1}{40}$			30.75	29.25
30				6.75		
			0.225	67.5		

Fill in the Gaps

Original Amount	Percentage	As a fraction	Multiplier	Percentage of...	Increased by...	Decreased by....
300		$\frac{41}{200}$				
60					72.3	47.7
		$\frac{41}{40}$		61.5		
60			1.125			
6				0.675		
6					24.675	
6						-31.35

Fill in the Gaps
Fill in the gaps in the table.
The first one is done already.

Fill in the Gaps

	Amount (A)	Percentage (P\%)	P\% of A	A increased by P\%	A decreased by P\%	19.	Amount (A)	Percentage (P\%)	P\% of A	A increased by P\%	A decreased by P\%
1.	320	10 \%	32	352	288			10 \%		88	
2.	320	25 \%				20.	80		12		
3.	320	2.5 \%				21.		80 \%	12		
4.	320	1.25 \%				22.			12	52	
5.	80	1.25 \%				23.			12		48
6.	400	1.25 \%				24.			12		-2
7.	125		5			25.		5 \%	12		
8.		4 \%	10			26.			12	13	
9.	250		20			27.	10			13	
10.	625	16 \%				28.		25 \%		13	
11.	1859	16 \%				29.				13	12
12.	1234	16 \%				30.	15				12
13.	609		97.44			31.		25 \%			12
14.	84			97.44		32.			68		12
15.	116				97.44	33.				468	12
6.	116	160 \%				34.		97.5 \%			12
17.	116				-116	35.		2.5 \%			468
18.	348	662/3\%				36.				328	312

Fill in the Gaps

Amount (A)	Percentage (P\%)	P\% of A	A increased by P\%	A decreased by P\%
1.	64%	377856		
3.		64%		377856
4.		64%		
5.		42%		
6.		42%		
7.		42%		
8.			313344	
9.				313344
10.				
11.				
12.				
13.				
14.				
15.				
16.				
17.				
18.				

a) Complete rows 1-3.

Why was 377856 chosen for those rows?
b) What number could be used in rows $4-6$ to have the same effect?
Use that number to complete those rows.
c) What percentage could be used in rows 7-9 to have the same effect?
Use that percentage to complete those rows.
d) Find composite numbers for \mathbf{A} and \mathbf{P} such that $\mathbf{P} \%$ of \mathbf{A} is a prime number.
Use such pairs to complete rows 10-12.
e) Find composite numbers for \mathbf{A} and \mathbf{P} such that \mathbf{A} increased by $\mathbf{P} \%$ is a prime number.
Use such pairs to complete rows 13-15.
f) Find composite numbers for \mathbf{A} and \mathbf{P} such that A decreased by $\mathbf{P} \%$ is a prime number. Use such pairs to complete rows 16-18.

Fill in the Gaps

a	Question			New \%	Multiplier	Calculation	Answer
	Increase	15	by 54%	154\%	1.54	1.54×15	
b	Decrease		by 23%	77\%	0.77	$\times 30$	
c	Increase	14	by 65%	165\%		\times	
d	Decrease	35	by 34%			\times	
e	Increase	22	by	105\%		\times	
f	Decrease		by		0.7	$\times 33$	
g	Increase		by			1.1×21	
h			by			0.55×42	
			by			1.155×20	
j	Decrease	25	by 7.6\%			\times	
k	Decrease	24	by 3.75\%			\times	
	Increase	12	by 92.5%			\times	
		28	by			\times	23.1
			by 47.5%			\times	23.1

Extra Notes

Simple Interest

Worked Example	Your Turn
Write down the multiplier to increase by 20\% then decrease by 20%	Write down the multiplier to decrease by 30\% then increase by 30%

Fill in the Gaps

Q	Original amount	Percentage change 1	Percentage change 2	Overall percentage change	New amount
1	£200	Increase by 20\%	Decrease by 20\%		
2	£200	Decrease by 20%	Increase by 20\%		
3	£200	Decrease by 20%			£200
4	£200	Decrease by 20%	Decrease by 20\%		
5	£200	Increase by 20\%	Increase by 20\%		
6		Increase by 20\%	Increase by 50\%		£288
7		Increase by 20\%		Increase by 50\%	£288
8		Decrease by 20%	Decrease by 37.5\%		£288
9	£576	Decrease by 20%		Increase by 50\%	
10	£576	Increase by 20\%		Decrease by 50\%	
11	£576	Decrease by 50%			£576
12	£576	Increase by 50\%	Decrease by 100%		

Fill in the Gaps

Section 1: Complete the table
Repeated percentage change

$1^{\text {st percentage change }}$	$1^{\text {st }}$ percentage multiplier	$2^{\text {nd }}$ percentage change	$2^{\text {nd }}$percentage multiplier	Overall percentage change	Overall percentage multiplier
30% increase	$\times 1.3$	15% increase	$\times 1.15$	49.5% increase	$\times 1.495$
15% increase		30% increase			
20% increase		25% increase			
5% increase		40% increase			
7.5% increase					
	$\times 1.06$				
		50% increase			
10% decrease		10% decrease			
20% decrease		20% decrease			
30% decrease		30% decrease			
30% decrease		30% increase			
30% increase					

Compound Interest

Worked Example	Your Turn
A person invests $£ 400$ at 5% compound interest per annum.	A person invests $£ 400$ at 6% compound interest per annum.
After x years they have $£ 463.05$. Find the value of x.	After x years they have $£ 476.40$. Find the value of x.

Worked Example	Your Turn
Person A invests a sum of money. The account pays 5\% compound interest per annum. After how many years will A have trebled their investment (as a whole number of years)?	Person A invests a sum of money. The account pays 6\% compound interest per annum. After how many years will A have trebled their investment (as a whole number of years)?

Worked Example	Your Turn
A person invests $£ 400$ at 5\% compound interest per annum. A person invests $£ 400$ at 3% compound interest per annum. How much interest has been earned after three years? How much interest has been earned after 5 years?	

Fill in the Gaps

	Compound Growth E Decay				original \times multiplier ${ }^{\text {years }}=$ final		Final Quantity	
	Original Quantity	Yearly Growth Rate	Multiplier (M)	Years	Formula	Rearranged Formula (unknown as subject)		
a	400	+30\%	1.3	2	$400 \times 1.3^{2}=$ final	x		
b	400	+3\%		2	$\times 1.03^{2}=$ final	x		
c	400	+12\%		3		x		
d	600		1.05	4		X		
e	400	-20\%			$400 \times 0.8^{2}=$ final	x		
f	400	-2\%		2		x		
g					$400 \times 0.88^{3}=$ final	x		
h	600	-33\%		4		x		
i		+20\%			original $\times 1.2^{2}=720$	original $=720 \div 1.2^{2}$	720	
j		+8\%			original $\times 1.08^{3}=$		755	
k			0.6	2			800	
1		-15\%		3			430	
m	800			2	$800 \times M^{2}=968$	$M=\sqrt[2]{968 \div 800}$	968	
n	500			3			630	

Fill in the Gaps

	$\begin{aligned} & \infty \\ & \infty \\ & \underset{y}{1} \\ & \underset{4}{4} \end{aligned}$											$\begin{aligned} & \sqrt{3} \\ & 0 \\ & 0 \\ & 4 \\ & 4 \end{aligned}$	$\stackrel{9}{7}$ - $\underset{4}{2}$ $\underset{4}{2}$	$$	$\underset{\sim}{2}$ $\underset{\sim}{3}$ $\underset{\sim}{3}$	
$\begin{aligned} & \frac{5}{0} \\ & \frac{0}{0} \\ & \frac{\pi}{3} \\ & \frac{\underline{U}}{0} \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{1}{0} \\ & 0 \\ & \underset{\sim}{x} \\ & 0 \\ & 0 \end{aligned}$									$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & + \\ & \times \\ & 0 \\ & \dot{+} \\ & \underset{4}{2} \end{aligned}$	$\begin{aligned} & \text { N} \\ & 0 \\ & 0 \\ & \underset{\sim}{x} \\ & \times \\ & 8 \\ & 8 \\ & \hline- \end{aligned}$					
	$\stackrel{\square}{\square}$	$\stackrel{\square}{\square}$	∞	\bigcirc	ค	m	N	+	ம					∞	\bigcirc	+
$\begin{aligned} & \frac{2}{0} \\ & \frac{\vdots}{2} \\ & \frac{1}{5} \end{aligned}$	$\begin{aligned} & \text { RO } \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \text { O } \\ & \underset{i}{2} \end{aligned}$						$\begin{aligned} & 0 \\ & \hline- \\ & \hline \end{aligned}$	$$						$\begin{aligned} & \text { UN } \\ & \text { O } \\ & \text { rin } \end{aligned}$	
	ㅇํ	১ী	oొ	oి	ô	$\stackrel{\substack{\mathrm{N}}}{\stackrel{1}{\mathrm{~N}}}$	$\begin{aligned} & \text { ơ } \\ & \stackrel{\rightharpoonup}{+} \end{aligned}$					ㅇํ	ిం			¢ิ
	$\begin{aligned} & 8 \\ & \stackrel{3}{4} \end{aligned}$	$\begin{aligned} & 8 \\ & \frac{8}{4} \end{aligned}$	$\begin{aligned} & \text { O } \\ & \text { N } \end{aligned}$	$$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{\mathcal{H}} \\ & \underset{4}{2} \end{aligned}$	$\stackrel{\circ}{\stackrel{\circ}{4}}$	$\begin{aligned} & \circ \\ & \text { 을 } \\ & \text { Hen } \end{aligned}$	$\begin{aligned} & \text { 은 } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \stackrel{1}{N} \\ & \underset{\sim}{2} \end{aligned}$			$\begin{aligned} & \circ \\ & \stackrel{8}{+} \\ & \underset{\sim}{2} \end{aligned}$	$$	$\begin{aligned} & 8 \\ & \stackrel{8}{8} \\ & 4 \end{aligned}$		

Fill in the Gaps

Q	Yearly percentage change	Original Amount	Amount after 5 years	Amount after 10 years
1	100\%	£1		
2	50\%	£1		
3	5\%	£1		
4	-50\%	£2,048		
5	25\%		£20	
6	-25\%		£20	
7	7\%		£1	
8	100\%			£2,048
9	5\%			£100
10	100\%			£2,048
11		£20	£30	
12		£1	£5	
13		£1	£10	
14			£50	£100
15		£4		£64

Extra Notes

Extra Notes

Worked Example	Your Turn
Find ' x '. Give your solution to 2 decimal places if required.	Find ' x '. Give your solution to 2 decimal places if required.
a) $\sin (60)=\frac{x}{5}$	a) $\sin (60)=\frac{x}{4}$

Trigonometric Functions

A function $f(x)$ takes an input x and outputs a value y. A trigonometric function takes an angle x° and outputs a ratio of sides.

For any right-angled triangle we always label the longest side as the hypotenuse (H). For the purposes of trigonometry, we label the other two sides relative to one of the non-right angles.

In order to understand and use some other rules connecting the sides \& angle of right-angled triangles, we introduce a system for labelling the three sides:

You must be able to correctly recognise the hypotenuse, opposite and adjacent side for any given rightangled triangle and angle

The hypotenuse is the longest side, always opposite the right-angle

The opposite is always
from the angle θ
The adjacent is the remaini next to the angle θ

Trigonometric Functions

A function $f(x)$ takes an input x and outputs a value y. A trigonometric function takes an angle x° and outputs a ratio of sides.

The three sides of right-angled triangles are:
O-Opposite
A - Adjacent
H - Hypotenuse
The next section considers the ratios between the hypotenuse, opposite and adjacent, relative to angle x, in a right-angled triangle.

The ratio of the opposite to the hypotenuse is called sine
The ratio of the adjacent to the hypotenuse is called cosine
The ratio of the opposite to the adjacent is called tangent
These are abbreviated as sin, cos and tan

$$
\sin x=\frac{O}{H} \quad \cos x=\frac{A}{H} \quad \tan x=\frac{O}{A}
$$

This is commonly given the acronym: SOHCAHTOA

Fill in the Gaps

Labelled diagram	Sine Ratio	Cosine Ratio	Tangent Ratio	Labelled diagram	Sine Ratio	Cosine Ratio	Tangent Ratio
(A)	$\sin x=\frac{3}{5}$	$\cos x=\frac{4}{5}$	$\tan x=\square$		$\sin x=\square$	$\cos x=\square$	$\tan x=\square$
(0)	$\sin x=\square$	$\cos x=$	$\tan x=$		$\sin x=\square$	$\cos x=\square$	$\tan x=\square$
	$\sin x=\square$	$\cos x=\square$	$\tan x=$		$\sin x=\square$	$\cos x=\square$	$\tan x=\frac{9.9}{2}$
	$\sin x=$	$\cos x=$	$\tan x=$		$\sin x=\frac{4}{7}$	$\cos x=\square$	$\tan x=$

Fill in the Gaps
For each triangle, write down the value of each trigonometric ratio:

$\frac{0}{i}$						
$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$						
$\begin{gathered} 0 \\ \underset{\sim}{3} \\ \cdot \underset{5}{5} \end{gathered}$						
$$						

Diagrams not drawn to scale

Page 81

Fill in the Gaps

Fill in the Gaps

	$\begin{gathered} \times \mid \underset{ }{\\|} \\ \\| \\ \infty \\ \infty \\ \tilde{m} \end{gathered}$			$\begin{gathered} \infty 1 \times \\ 11 \\ \infty \\ 0 \\ \tilde{0} \\ 0 \end{gathered}$				$\begin{gathered} \text { N } 14 \\ \text { II } \\ \infty \\ \text { 픙 } \end{gathered}$		
	5	뎆		\%	댇					
			$>$			$\times \sum^{8} 4$				

Inverse Trigonometric Functions

We have met the idea that if $f(x)=y$ then $f^{-1}(y)=x$
The trigonometric functions \sin , \cos and \tan are all functions where the input is an angle giving an output which is a ratio of sides.

The inverse of these functions therefore does this in reverse.
If $\sin \left(30^{\circ}\right)=0.5$ then $\sin ^{-1}(0.5)=30^{\circ}$
If $\cos \left(60^{\circ}\right)=0.5$ then $\cos ^{-1}(0.5)=60^{\circ}$
If $\tan \left(45^{\circ}\right)=1$ then $\tan ^{-1}(1)=45^{\circ}$

Fill in the Gaps

$\begin{array}{ll} \frac{1}{0} & 2 \\ 3 & 2 \\ 3 & 0 \\ c & -1 \\ 4 & \end{array}$								
Rearrange formula	$$							
							$\begin{gathered} \text { N Im } \\ \text { II } \\ x \\ \vdots \\ 0 \\ 0 \end{gathered}$	
$\begin{array}{ll}0 \\ 0 & 0 \\ 0 & 0 \\ 0 \\ \text { c } \\ \text { U } \\ 0\end{array}$	on	$\stackrel{\approx}{n}$						

Extra Notes

