

Year 11 2024 Mathematics 2025 Unit 25 Booklet – Part 1

HGS Maths

Dr Frost Course

Name:

Class:

Year 11 2024 Mathematics 2025 Unit 25 Booklet – Part 2

HGS Maths

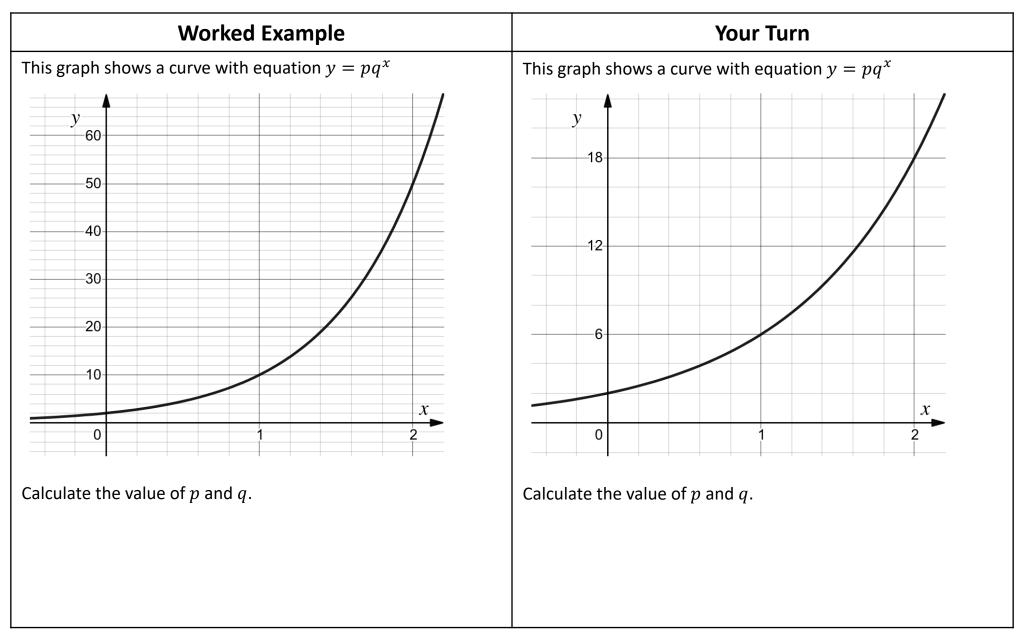
Dr Frost Course

Name:

Class:

Contents

- 1 Exponential and Trigonometric Graphs
- 2 <u>Trigonometric Identities and Equations (L2FM Only)</u>
- 3 Domain and Range (L2FM Only)
- 4 <u>Piecewise Functions (L2FM Only)</u>
- 5 <u>Graph Transformations</u>
- 6 <u>Congruency</u>
- 7 <u>Circle Theorem Proofs</u>


1 Exponential and Trigonometric Graphs

Exponential Graphs

Worked Example	Your Turn
Worked ExampleSome money M has been invested in a bank. The value of the money after t years is modelled by the function $M(t) = 1750 \times (1.02)^t$ State the initial amount of money invested.	Your TurnSome money M has been invested in a bank. The value of the money after t years is modelled by the function $M(t) = 3000 \times (1.005)^t$ State the initial amount of money invested.

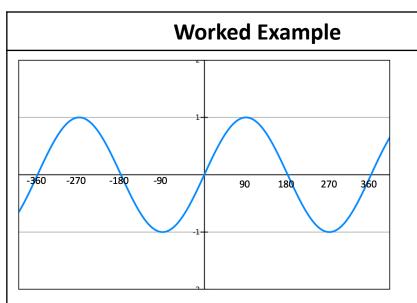
Worked Example	Your Turn
Worked ExampleSome money M has been invested in a bank. The value of the money after t years is modelled by the function $M(t) = 500 \times (1.04)^t$ Determine the interest rate offered by the bank.	Your TurnSome money M has been invested in a bank. The value of the money after t years is modelled by the function $M(t) = 1250 \times (1.025)^t$ Determine the interest rate offered by the bank.

Worked Example	Your Turn
Worked ExampleThe sketch graph shows a curve with equation $y = ab^x$ The curve passes through the points (0, 3.25) and (3, 87.75).Calculate the value of a and the value of b .	Your TurnThe sketch graph shows a curve with equation $y = ab^x$ The curve passes through the points $(0, 2.75)$ and $(2, 68.75)$.Calculate the value of a and the value of b .

Worked Example	Your Turn
Worked ExampleAt the start of an experiment, a petri dish contained 4,000,000bacteria. After 4 days, there were 6,000,000 bacteria. It isassumed that the number of bacteria is given by the formula $N = ar^t$ where N is the number of bacteria, t days after thestart of the experiment. Calculate the number of bacteria 7days after the start of the experiment, giving your answerto 3 significant figures.	Your Turn At the start of an experiment, a petri dish contained 4,000,000 bacteria. After 5 days, there were 13,000,000 bacteria. It is assumed that the number of bacteria is given by the formula $N = ar^t$ where N is the number of bacteria, t days after the start of the experiment. Calculate the number of bacteria 11 days after the start of the experiment, giving your answer to 3 significant figures.

Trigonometric Graphs									
	Angle (θ Degrees)	0°	30°	45°	60°	90°	180°	270°	360°
	$\sin(\theta)$								
	$\cos(\theta)$								
	$tan(\theta)$								

Worked Example

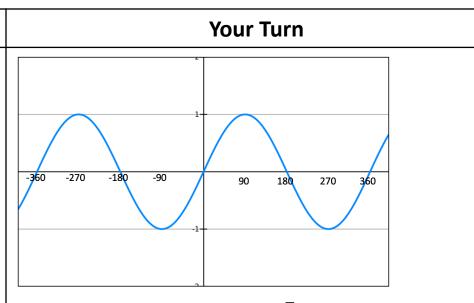

Sketch the graph $y = \sin(x)$ for $-360^{\circ} \le x \le 360^{\circ}$

Worked Example

Sketch the graph $y = \cos(x)$ for $-360^{\circ} \le x \le 360^{\circ}$

Worked Example

Sketch the graph $y = \tan(x)$ for $-360^{\circ} \le x \le 360^{\circ}$

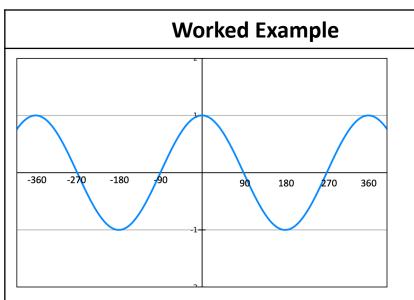


Suppose we know that sin(30) = 0.5. By thinking about symmetry in the graph, work out:

a) sin(150) =

b) sin(-30) =

c) $\sin(210) =$

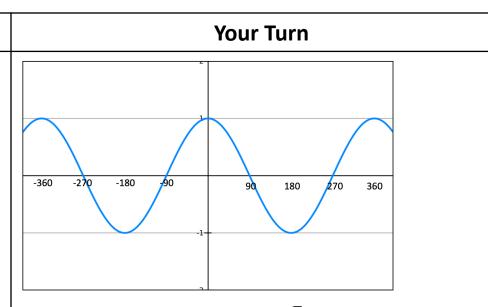


Suppose we know that $sin(60) = \frac{\sqrt{3}}{2}$. By thinking about symmetry in the graph, work out:

a)
$$\sin(240) =$$

c)
$$\sin(120) =$$

c)
$$\sin(-60) =$$

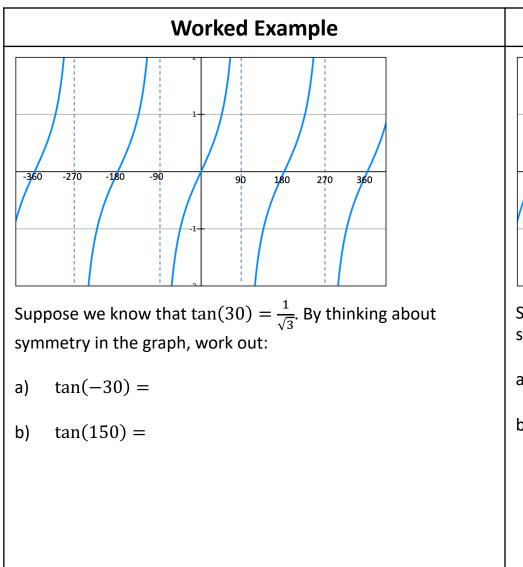


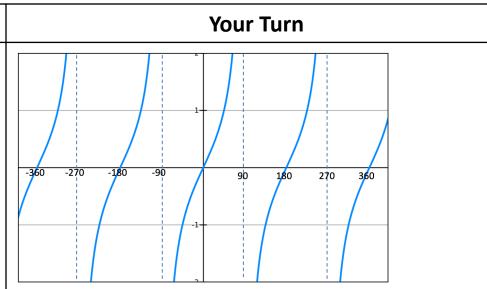
Suppose we know that cos(60) = 0.5. By thinking about symmetry in the graph, work out:

a) $\cos(120) =$

b) $\cos(-60) =$

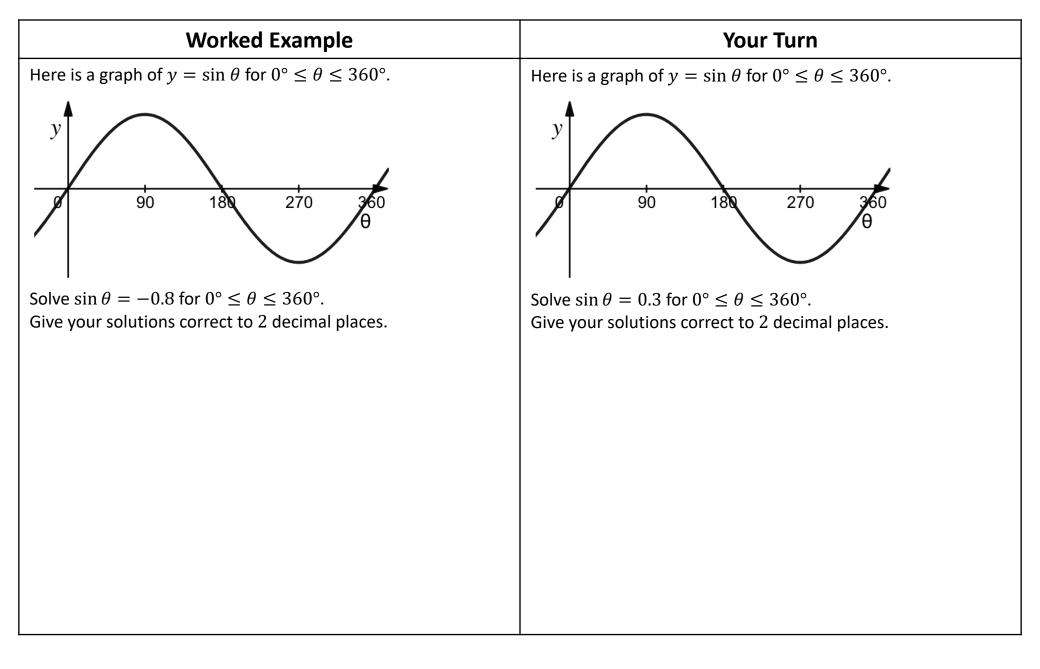
c) $\cos(240) =$

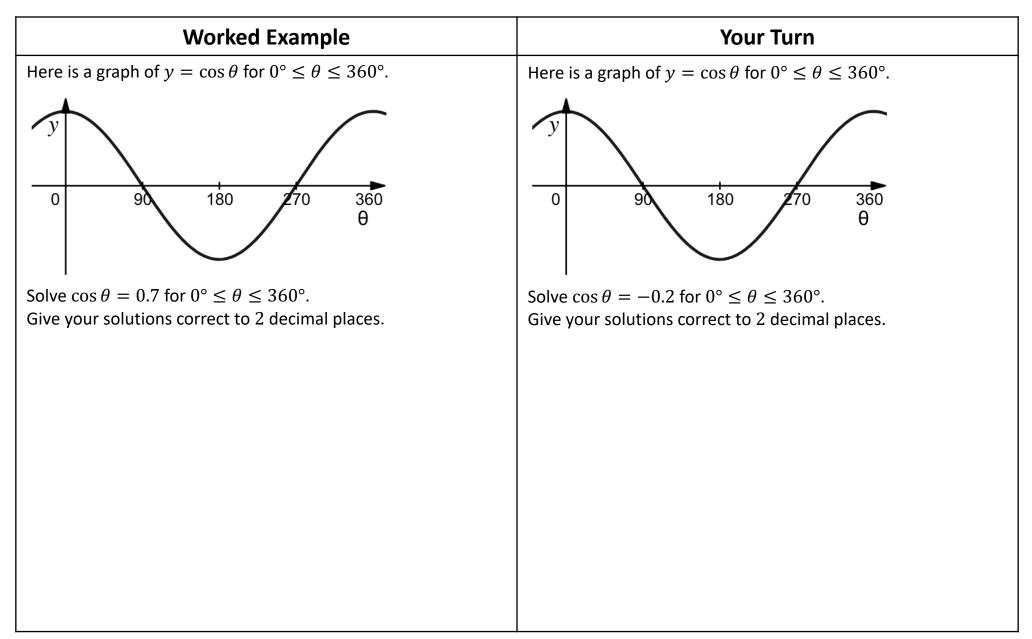


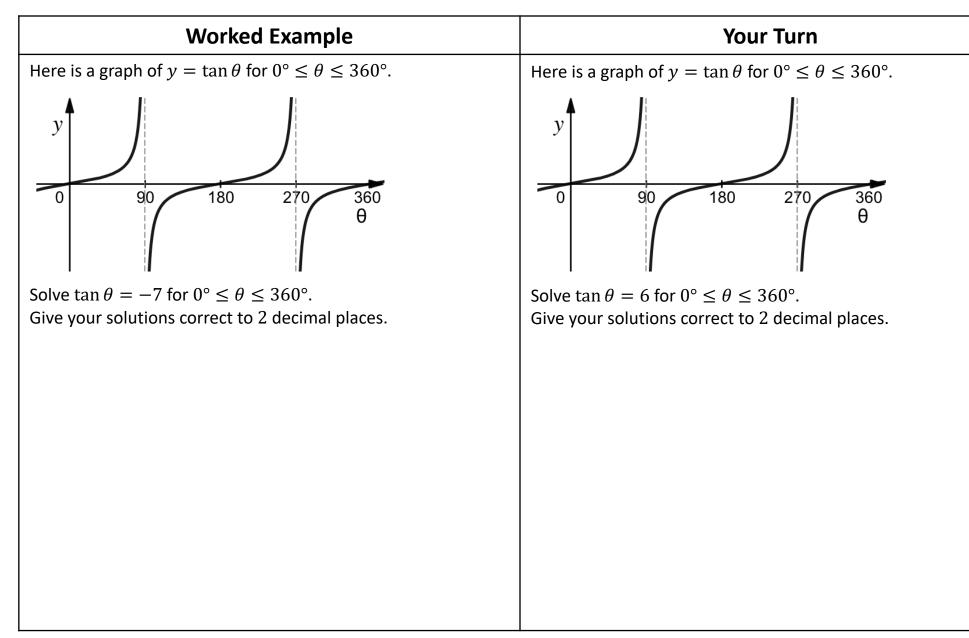

Suppose we know that $cos(30) = \frac{\sqrt{3}}{2}$. By thinking about symmetry in the graph, work out:

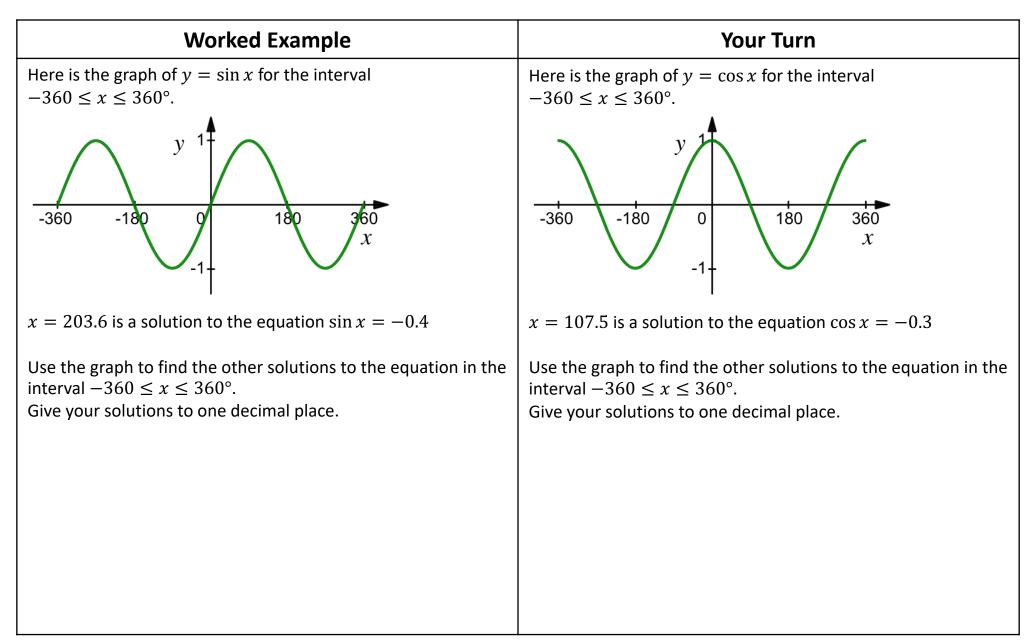
a)
$$\cos(-30) =$$

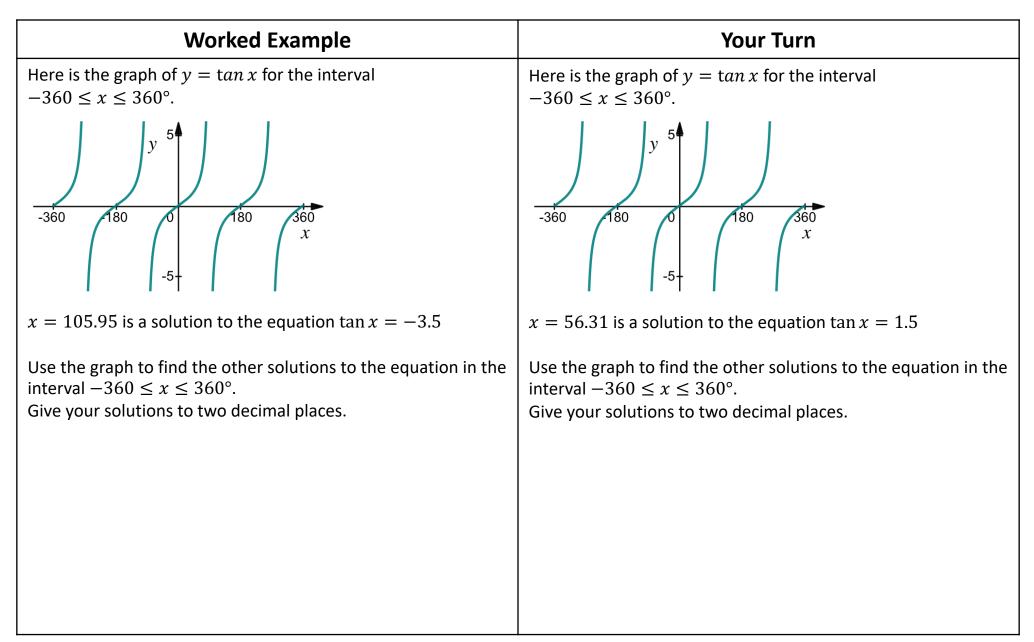
b)
$$\cos(210) =$$

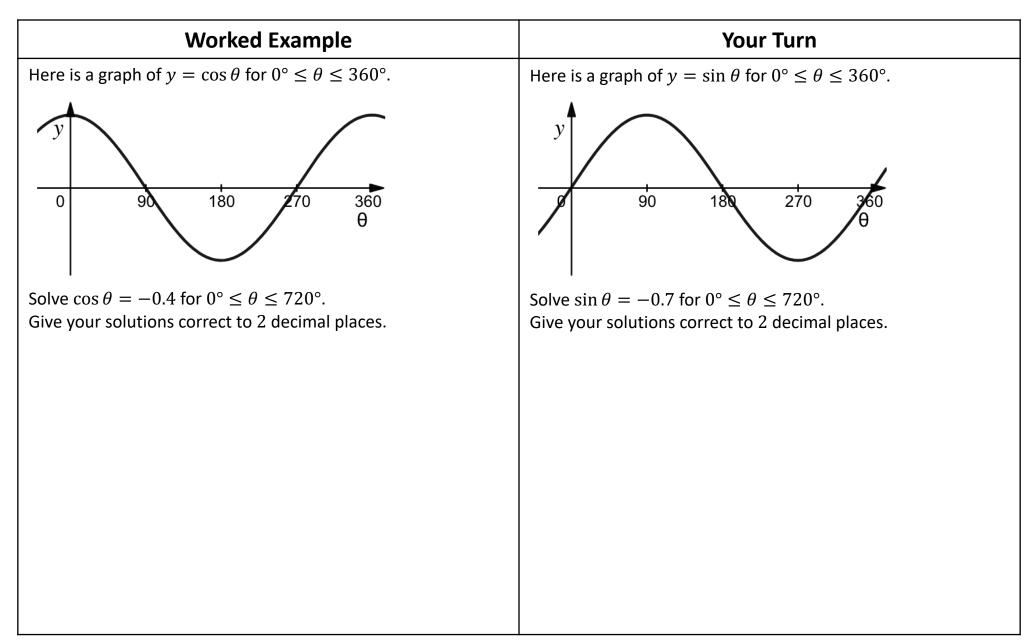

c)
$$\cos(150) =$$






Suppose we know that $tan(60) = \sqrt{3}$. By thinking about symmetry in the graph, work out:


b)
$$tan(-60) =$$



Extra Notes

2 Trigonometric Identities and Equations (L2FM Only)

Trigonometric Identities

Worked Example	Your Turn
It is given that α is acute and that $\cos \alpha = \frac{2}{3}$ Find the exact value of $\tan \alpha$	It is given that α is acute and that $\sin \alpha = \frac{4}{5}$ Find the exact value of $\tan \alpha$

Worked Example	Your Turn
Prove that $1 - \frac{\tan \theta \cos^3 \theta}{\sin \theta} \equiv \sin^2 \theta$	Prove that $1 - \tan \theta \sin \theta \cos \theta \equiv \cos^2 \theta$

Worked Example	Your Turn
Prove that $\tan \theta - \frac{1}{\tan \theta} \equiv \frac{1 - 2\cos^2 \theta}{\sin \theta \cos \theta}$	Prove that $\tan \theta + \frac{1}{\tan \theta} \equiv \frac{1}{\sin \theta \cos \theta}$

Worked Example	Your Turn
Prove that $\frac{\cos\theta - \cos^3\theta}{\sin^3\theta} \equiv \frac{1}{\tan\theta}$	Prove that $\frac{\sin\theta - \sin^3\theta}{\cos^3\theta} \equiv \tan\theta$

Worked ExampleYour TurnProve that
$$\frac{\sin^4 \theta - \cos^4 \theta}{\sin^2 \theta} \equiv 1 - \frac{1}{\tan^2 \theta}$$
Prove that $\frac{\cos^4 \theta - \sin^4 \theta}{\cos^2 \theta} \equiv 1 - \tan^2 \theta$

Worked Example	Your Turn
Prove that $\frac{\frac{\sin x}{\tan x}}{\sqrt{1-\sin^2 x}} \equiv 1$	Prove that $\frac{\tan x \cos x}{\sqrt{1-\cos^2 x}} \equiv 1$

Worked Example	Your Turn
Prove that $\frac{1}{\tan^2 \theta} \equiv \frac{1}{\sin^2 \theta} - 1$	Prove that $\tan^2 \theta \equiv \frac{1}{\cos^2 \theta} - 1$

Trigonometric Equations

Worked Example	Your Turn
Worked ExampleSolve $\cos x = -0.8$ in the interval $-180^\circ \le x \le 540^\circ$ Give your solution(s) correct to 1 decimal place where appropriate.	Your Turn Solve sin $x = -0.4$ in the interval $-180^\circ \le \theta \le 360^\circ$ Give your solution(s) correct to 1 decimal place where appropriate.

Worked Example	Your Turn
Worked ExampleSolve $\tan x = 0.4$ in the interval $-180^\circ \le x \le 180^\circ$ Give your solution(s) correct to 1 decimal place where appropriate.	Your TurnSolve $\tan x = -0.4$ in the interval $-180^\circ \le x \le 180^\circ$ Give your solution(s) correct to 1 decimal place where appropriate.

Worked Example	Your Turn
Worked ExampleSolve $sin^2 x = 0.53$ in the interval $-180^\circ \le x \le 360^\circ$ Give your solution(s) correct to 1 decimal place where appropriate.	Your TurnSolve $\cos^2 x = 0.62$ in the interval $-180^\circ \le \theta \le 360^\circ$ Give your solution(s) correct to 1 decimal place where appropriate.

Worked Example	Your Turn
Worked ExampleSolve $8 \tan^2 x = -6\tan x - 1$ in the interval $0^\circ < x < 540^\circ$ Give your solution(s) correct to 1 decimal place where appropriate.	Your TurnSolve $12 \tan^2 x - \tan x = 1$ in the interval $0^\circ < x < 540^\circ$ Give your solution(s) correct to 1 decimal place where appropriate.

Worked Example	Your Turn
Worked ExampleSolve $6 \sin^2 x - 5 \cos x = 2$ in the interval $0^\circ \le x < 540^\circ$ Give your solution(s) correct to 2 decimal places where appropriate.	Your TurnSolve $8 \cos^2 x = 2 \sin x + 5$ in the interval $0^\circ \le x < 540^\circ$ Give your solution(s) correct to 2 decimal places where appropriate.

Extra Notes	

3 Domain and Range (L2FM Only)

Worked Example	Your Turn
$f(x) = 3x^2 - 2$	$g(x) = 2x^3 + 1$
The domain of $f(x)$ is $\{1, 2, 3, 4\}$. What is the range?	The domain of $g(x)$ is $\{1, 2, 3, 4\}$. What is the range?

	Worked Example		Your Turn
a) b)	Work out a suitable domain and the range of $f(x) = x^2$ Work out a suitable domain and the range of $f(x) = \sqrt{x}$	a) b)	Work out a suitable domain and the range of $f(x) = x^3$ Work out a suitable domain and the range of $f(x) = \sqrt[3]{x}$

Worked Example	Your Turn
$f(x) = \frac{x-3}{5x-6}$ State the value of x that cannot be in the domain of $f(x)$	$f(x) = \frac{3-x}{6x-5}$ State the value of x that cannot be in the domain of $f(x)$

Worked Example	Your Turn
$g(x) = x^2 - 6x + 5, x \in \mathbb{R}$ Determine the range of $g(x)$	$f(x) = x^2 - 4x + 7, x \in \mathbb{R}$ Determine the range of $f(x)$

Worked Example	Your Turn
$g(x) = 3x^2 - 2x + 4, x \in \mathbb{R}$ Determine the range of $g(x)$	$f(x) = 2x^2 + 7x - 7, x \in \mathbb{R}$ Determine the range of $f(x)$

Worked Example	Your Turn
$g(x) = 14 + 2x - x^2, x \in \mathbb{R}$ Determine the range of $g(x)$	$f(x) = 21 + 4x - x^2, x \in \mathbb{R}$ Determine the range of $f(x)$

Worked Example	Your Turn
WORKED EXAMPLE f(x) is a function with domain all values of $xf(x) = \sqrt{x^2 + 12x - a} where a is a constantWork out the possible values of a$	f(x) is a function with domain all values of x $f(x) = \sqrt{x^2 + 6x - a}$ where a is a constant Work out the possible values of a

Worked Example	Your Turn
$g(x) = x^{2} + 6x + 5, x \ge 2$ Determine the range of $g(x)$	$f(x) = x^{2} + 4x + 3, x \ge 1$ Determine the range of $f(x)$

Worked Example	Your Turn
Worked Example $f(x) = 23 - 5x$ with domain $-3 < x \le 1$ Work out the range of $f(x)$	Your Turn $g(x) = 32 - 3x$ with domain $-5 \le x < 2$ Work out the range of $g(x)$

Worked Example	Your Turn
Determine the range of: $g(x) = \sin x$, $180 \le x < 360^{\circ}$	Determine the range of: $f(x) = \cos x$, $180 < x \le 360^{\circ}$

Worked Example	Your Turn
$g(x) = \frac{8x-2}{x-1}, x \ge 7$	$f(x) = \frac{5x+3}{x-4}, x \ge 5$
Work out the range of g	Work out the range of <i>f</i>

Worked Example	Your Turn
Worked Example $g(x)$ is an increasing function with domain $1 \le x \le 5$ and range $3 \le g(x) \le 11$. Construct a suitable function.	Your Turn $f(x)$ is a decreasing function with domain $4 \le x \le 6$ and range $7 \le f(x) \le 19$. Construct a suitable function.

Extra Notes		

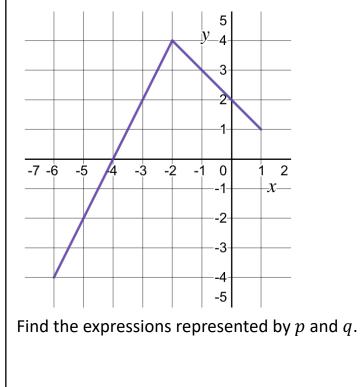
4 Piecewise Functions (L2FM Only)

Worked Example	Your Turn
$f(x) = \begin{cases} x^2 + 4, & -8 \le x \le 0\\ 3x + 4, & 0 < x \le 7 \end{cases}$	$f(x) = \begin{cases} x^2 + 1, & 0 \le x \le 3\\ 2x + 4, & 3 < x \le 8 \end{cases}$
Work out the value of $f(-3)$	Work out the value of $f(7)$

Worked Example	Your Turn
$f(x) = \begin{cases} (x-2)^2 + 1, & 0 \le x < 3\\ \frac{1}{4}x + \frac{5}{4}, & 3 \le x \le 7 \end{cases}$	$f(x) = \begin{cases} (x-1)^2 + 2, & 0 \le x < 2\\ \frac{1}{3}x + \frac{7}{3}, & 2 \le x \le 5 \end{cases}$
Sketch the graph of $y = f(x)$	Sketch the graph of $y = f(x)$

Worked Example	Your Turn
$f(x) = \begin{cases} 3, & 0 \le x < 1\\ x^2 + 2, & 1 \le x < 2\\ 8 - x, & 2 \le x < 3 \end{cases}$	$f(x) = \begin{cases} x^2, & 0 \le x < 1\\ 1, & 1 \le x < 2\\ 3-x, & 2 \le x < 3 \end{cases}$
Sketch the graph of $y = f(x)$	Sketch the graph of $y = f(x)$

Worked Example

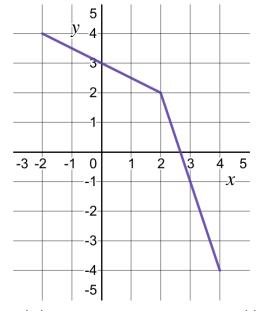

Your Turn

The function f(x) is defined as

$$f(x) = \begin{cases} p, & -6 \le x \le -2 \\ q, & -2 < x \le 1 \end{cases}$$

where p and q are unknown expressions.

The graph of y = f(x) is shown below.



The function f(x) is defined as

$$f(x) = \begin{cases} p, & -2 \le x \le 2\\ q, & 2 < x \le 4 \end{cases}$$

where p and q are unknown expressions.

The graph of y = f(x) is shown below.

Find the expressions represented by p and q.

Dr Frost 487c

Worked Example	Your Turn
$f(x) = \begin{cases} (x-a)^2 + b, & 0 \le x < 3\\ cx + d, & 3 \le x \le 7 \end{cases}$	$f(x) = \begin{cases} (x-a)^2 + b, & 0 \le x < 2\\ cx + d, & 2 \le x \le 5 \end{cases}$
The graph of $y = f(x)$ passes through the points (0, 5), (2, 1), (3, 2) and (7, 3) Find the values of a, b, c and d	The graph of $y = f(x)$ passes through the points $(0, 3), (1, 2), (2, 3)$ and $(5, 3)$ Find the values of a, b, c and d

Worked Example	Your Turn
The function $f(x)$ is defined as $f(x) = \begin{cases} x^2 + 7, & -2 \le x \le 2 \\ 15 - 2x, & 2 < x \le 7 \end{cases}$	The function $f(x)$ is defined as $f(x) = \begin{cases} -2x - 10, & -4 \le x \le -2 \\ -x^2 - 2, & -2 < x \le 2 \end{cases}$
Solve $f(x) = 8$	Solve $f(x) = -3$

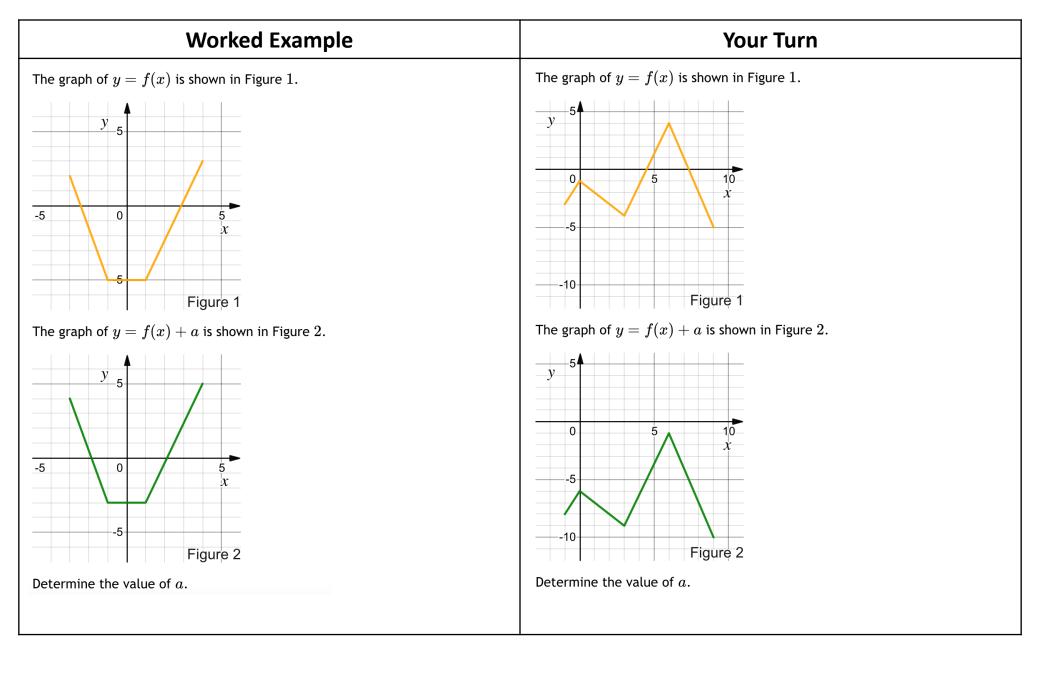
Worked Example	Your Turn
The function $f(x)$ is defined for all x : $f(x) = \begin{cases} 9, & x < -3 \\ x^2, & -3 \le x \le 3 \\ 15 - 2x, & x > 3 \end{cases}$	The function $f(x)$ is defined for all x : $f(x) = \begin{cases} 4, & x < -2 \\ x^2, & -2 \le x \le 2 \\ 12 - 4x, & x > 2 \end{cases}$
Determine the range of $f(x)$	Determine the range of $f(x)$

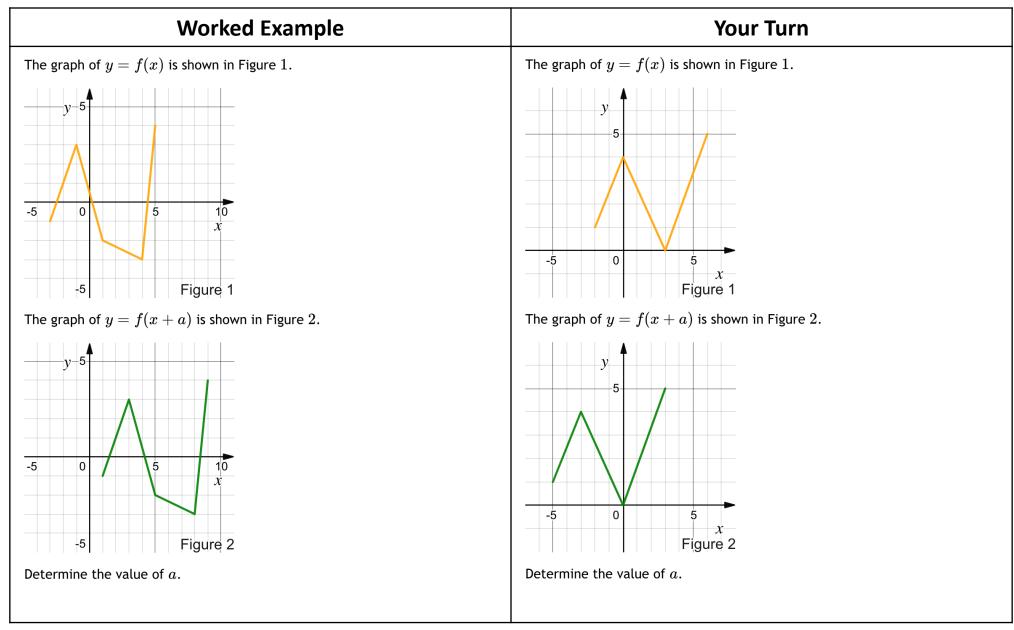
Worked Example	Your Turn
The function $f(x)$ is defined as $f(x) = \begin{cases} p, & -7 \le x \le 1 \\ q, & 1 < x \le 9 \end{cases}$	The function $f(x)$ is defined as $f(x) = \begin{cases} p, & -1 \le x \le 3 \\ q, & 3 < x \le 7 \end{cases}$
where p and q are unknown expressions.	where p and q are unknown expressions.
The graph of $y = f(x)$ is shown below.	The graph of $y = f(x)$ is shown below.
The graph is symmetrical about $x = 1$. The range of $f(x)$ is $-6 \le f(x) \le 34$. Find the expressions represented by p and q .	y The graph is symmetrical about $x = 3$. The range of $f(x)$ is $-2 \le f(x) \le 2$. Find the expressions represented by p and q .

Worked Example	Your Turn
The function $f(x)$ is defined as	The function $f(x)$ is defined as
$f(x) = \begin{cases} 2, & 0 \le x \le 5 \\ 2x - 8, & 5 < x \le 7 \\ 27 - 3x, & 7 < x \le 9 \end{cases}$	$f(x) = \begin{cases} 2, & 0 \le x \le 5 \\ x - 3, & 5 < x \le 8 \\ 45 - 5x, & 8 < x \le 9 \end{cases}$
Find the area enclosed by the graph of $y = f(x)$, the y-axis	Find the area enclosed by the graph of $y = f(x)$, the y-axis
and the x-axis.	and the x-axis.

Extra Notes

5 Graph Transformations

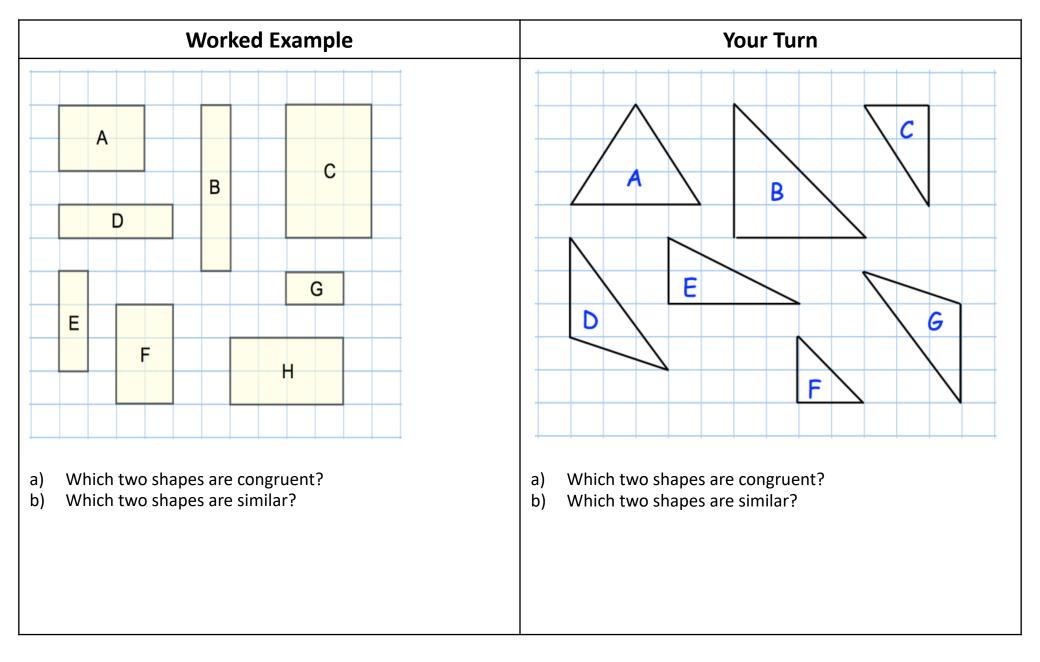

Worked Example	Your Turn
The point $A(2, 5)$ is on the graph of $y = f(x)$. Write the new coordinates of A after the transformation: a) $y = f(x) + 3$ b) $y = f(x + 3)$ c) $y = -f(x)$ d) $y = f(-x)$ e) $y = -f(x) + 3$ f) $y = f(-x) + 3$	The point $A(3, 4)$ is on the graph of $y = f(x)$. Write the new coordinates of A after the transformation: a) $y = f(x) - 4$ b) $y = f(x - 4)$ c) $y = f(-x)$ d) $y = -f(x)$ e) $y = -f(x) - 6$ f) $y = -f(-x) - 6$


Sketch $y = \sin x - 2$, $0 \le x \le 360^{\circ}$

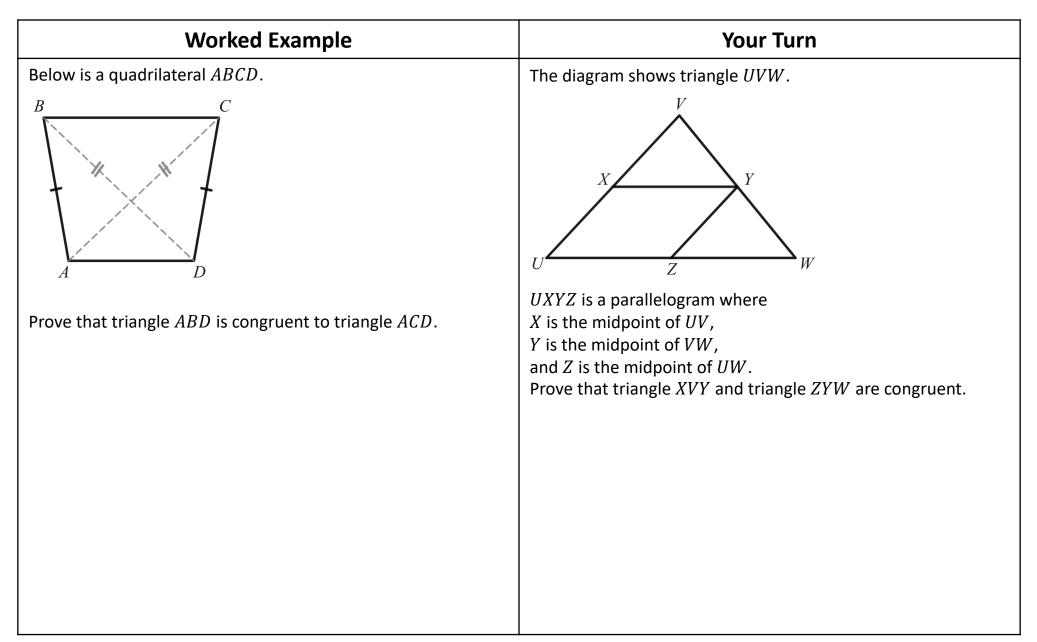
Worked Example	Your Turn
Sketch $y = \sin(x - 45^{\circ}), 0 \le x \le 360^{\circ}$	Sketch $y = \cos(x + 45^{\circ}), 0 \le x \le 360^{\circ}$

Worked Example	Your Turn
Sketch $y = -\sin x$, $0 \le x \le 360^{\circ}$	Sketch $y = -\tan x$, $0 \le x \le 360^{\circ}$

Worked Example	Your Turn
Sketch $y = \cos(-x), 0 \le x \le 360^{\circ}$	Sketch $y = \tan(-x), 0 \le x \le 360^{\circ}$

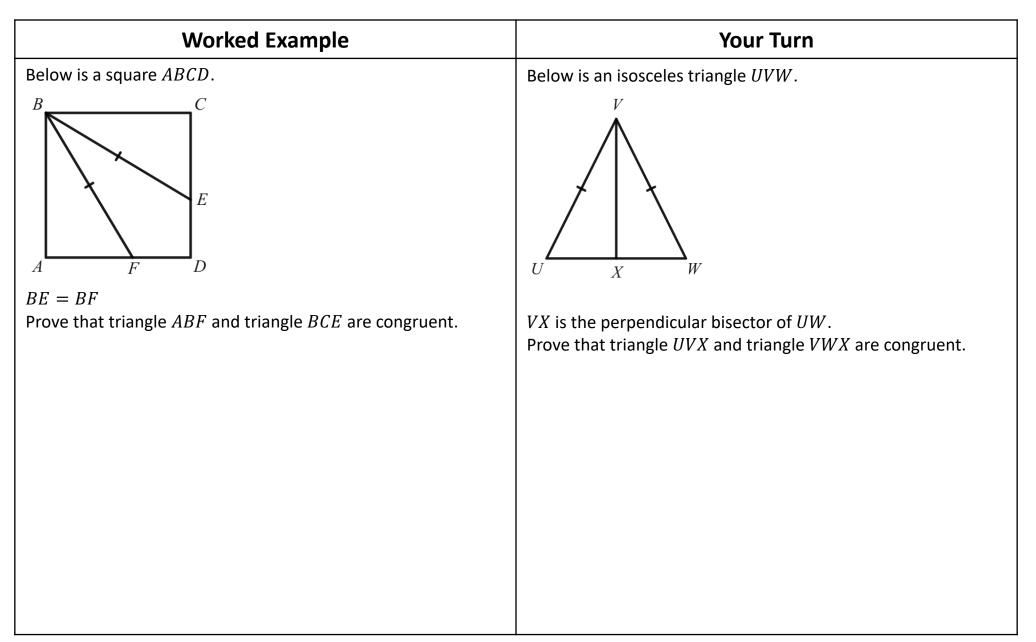

	Worked Example		Your Turn
a)	The curve $y = cos(4x + 90)$ is translated by $\binom{30}{0}$ State the equation of the new curve after this transformation.	a)	The curve $y = \tan(3x - 30)$ is translated by $\begin{pmatrix} 0 \\ -3 \end{pmatrix}$ State the equation of the new curve after this transformation.
b)	The curve $y = \frac{4}{2x-5}$ is translated by $\binom{0}{3}$ State the equation of the new curve after this transformation.	b)	The curve $y = \frac{1}{3x-3}$ is translated by $\binom{-4}{0}$ State the equation of the new curve after this transformation.

Worked Example	Your Turn
Worked Example The curve $y = 2x^2 + 3x$ is translated by $\binom{-4}{5}$ State the equation of the new curve after this transformation.	Your TurnThe curve $y = 2x^3 - x^2$ is translated by $\binom{3}{-4}$ State the equation of the new curve after this transformation.


		Fill in the	Gaps	
$f(\mathbf{x})$	Function notation	Description of translation	Vector of translation	New function
2x + 1	f(x - 3)	3 places right	$\begin{pmatrix} 3 \\ 0 \end{pmatrix}$	f(x-3) = 2(x-3) + 1 = 2x - 6 + 1 = 2x - 5
3x + 1	f(x-2)			
<i>x</i> ²	f(x-1)			
<i>x</i> ²		2 places left		
$x^{2} + 5$			$\begin{pmatrix} -3\\ 0 \end{pmatrix}$	
				4(x+5)+2
$x^2 + 2x - 1$		1 place left		
	f(x-4)			

Extra Notes

6 Congruency



	No con Troure
Worked Example	Your Turn
State the condition why these two triangles are congruent.	State the condition why these two triangles are congruent.
A 25° B 25° B 10cm	80° 80° E 25° 10cm 10cm

	1
Worked Example	Your Turn
In the diagram below, <i>ABCE</i> and <i>BCDF</i> are parallelograms and <i>N</i> is the midpoint of <i>CE</i> . $\begin{bmatrix} B & C \\ N & N \\ E & F \end{bmatrix}$	In the diagram below, <i>UWY</i> and <i>VWX</i> are straight lines.

Worked Example	Your Turn	
Below is a quadrilateral <i>ABCD</i> .	The diagram below shows a parallelogram UVWX.	
Prove that triangle <i>ABF</i> and triangle <i>BCE</i> are congruent.	Prove that triangle <i>UVW</i> and triangle <i>UWX</i> are congruent.	

Extra Notes

7 Circle Theorem Proofs

Prove angles in a semicircle are 90°.

Prove the angle at the centre of a circle is twice the angle at the circumference.

Prove angles in the same segment are equal.

Prove opposite angles of a cyclic quadrilateral add to 180°.

Prove the alternate segment theorem.

Extra Notes