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Prior knowledge check

\

Prior knowledge check

Write down the exact values of the
following trigonometric ratios.

a cos120° b sin225° ¢ tan(-300°)

d sin(—480°) « Year 1, Chapter 10
Simplify each of the following expressions.
a (tan#cosf)? + cos?d

1 . , _ sinfl cosf
cosf \ tand
« Year 1, Chapter 10

Show that
a (sin20 + cos20)? =1 + 2sin2# cos26

2 : 2 cos?f
b — -2sinf=

sinf : sinf

« Year 1, Chapter 10

Solve the following equations for € in the
interval 0 = @ = 360°, giving your answers
to 3 significant figures where they are not
exact.

a 4cosf+2=3 b 2sin20=1
¢ 6tan?f + 10tanf — 4 =tané

d 10+ 5cosf = 12sin?f
&« Year 1, Chapter 10
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5.1 Radian Measure

A degree is an arbitrary measure of an angle which comes from the idea that once there was
believed to be 360 days in a year.

A radian on the other hand is not arbitrary as it represents that angle such that a single unit ensures
a sectors arc length is equal to the radii.

Therefore, as circumference is 2nr it follows that

360° = 2m radians

If the arc AB has

length r, then ZAOB A ® 27 radians = 360°
is 1 radian. \ ® 7 radians = 180°
; . 180°
® 1 radian= =

B
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Notes
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Worked Example

Convert to radians:

a) 360°
b) 45°
c) 120°
d) 315°
e) 72°
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Worked Example

Convert to degrees:

a) b5m
b) =

c) 5?”
d =
e) aid
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Worked Example

Convert the following angles into degrees.

a) % rad
8

b) A7 rad
15
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Worked Example

Convert the following angles into radians. Leave your answers in terms of 7.

a)

b)

150°

110°
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Worked Example

Find:
a) sin(0.3 rad)

b) cos(m rad)
c) tan(2rad)

Give your answers to 2 decimal places where appropriate.
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Worked Example

Sketch the graph for 0 < x < 2mof y = sinx
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Worked Example

Sketch the graph for 0 < x < 2mof y = cos x
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Worked Example

Sketch the graph for 0 < x < 2mof y = tan x
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Worked Example

Sketch the graph for 0 < x < 2m of y = cos (x + g)

Page 16




Worked Example

Sketch the graph for 0 < x < 2m of y = cos(x + 1)
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Worked Example

Sketch the graph for 0 < x < 2m of y = sin(2x)

Page 19




5.2 Arc Length

Using radians greatly simplifies the formula for arc length.

® To find the arc length / of a sector of a circle use the '\
formula / = r6, where r is the radius of the circle and ¢ 4’

is the angle, in radians, contained by the sector.
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Notes
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Worked Example

Find the length of the arc of a circle of radius 5.2 cm, given that the arc subtends an angle of 0.8 radians at the centre of the
circle.
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Worked Example

An arc AB of a circle with radius 7 cm and centre O has a length of 2.45 cm. Find the angle ZAOB subtended by the arc at the
centre of the circle.
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Worked Example

An arc AB of a circle, with centre O and radius r cm, subtends an angle of 8 radians at 0. The perimeter of the sector AOB is P
cm. Express r in terms of P and 6.
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Worked Example

The border of a garden pond consists of a straight edge AB of length 2.4 m, and a curved part C, also connecting A and B. The
curve partis an arc of a circle, centre O, radius 2 m.
Find the length of C

Page 28




Worked Example

A triangle ABC is such that AB = 8 cm, AC = 11 cm and £BAC = 0.7 radians.
The arc BD, where D lies on AC, is an arc of a circle with centre A and radius 8 cm.
A region R, is bounded by the straight lines BC and CD and the arc BD.

Find the perimeter of R
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Worked Example

A sector of a circle of radius 15 cm contains an angle of 8 radians. Given that the perimeter of the sector is 42 cm, find the value
of 6
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Worked Example

The perimeter of a sector OAB is four times the length of the arc AB. Find the size of angle AOB
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5.3 Areas of Sectors and Segments

Using radians also greatly simplifies the

formula for the area of a sector.

® To find the area A of a sector of a q
circle use the formula 4 = ;rz 0,
where r is the radius of the circle

and 0 is the angle, in radians,
contained by the sector.
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Notes
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Worked Example

Find the area of the sector of a circle of radius 2.44cm, given that the sector subtends an angle of 1.4 radians at the centre of the
circle.
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Worked Example

A circle, centre O, radius 5.2 cm has a minor sector OAB where the arc AB subtends an angle of 0.8 radians at the centre of the
circle.
Find the area of the sector.
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Worked Example

A circle, centre O, radius 5.2 cm has a minor sector OAB where the arc AB subtends an angle of 0.8 radians at the centre of the
circle.

A segment is enclosed by a chord AB and the arc AB.
Find the area of the segment.
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Worked Example

The area of the minor sector AOB is 28.9 cm?. Given that ZAOB = 0.8 radians and O is the centre of the circle, calculate the
length of the radius
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Worked Example

A sector of a circle of radius 55 m and perimeter 176 m.

Calculate the area of the sector
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Worked Example

The diagram shows a sector of a circle. Find the area of the shaded segment.
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Worked Example

OAB is a sector of a circle, centre O, radius 4m.
The chord AB is 5m long.
Find the area of the segment.
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Worked Example

AB is the diameter of a semicircle, centre O, radius r cm.

Cis a point on the semicircle.

<BOC = @ radians.

Given that the area of AAOC is three times the segment enclosed by CB, show that 360 — 4sinf = 0
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Worked Example

OAB is a sector of a circle, centre O, radius 9 cm and angle 0.7 radians.
C lies outside the sector.

AC is a straight line, perpendicular to OA.

OBC is a straight line.

Find the area of the region bounded by the arc AB and the lines AC and BC
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Worked Example

OPQ is a sector of a circle, centre O, radius 10 cm where <POQ = 0.3 radians.
The point R is on OQ such that the ratio OR:RQ is 1: 3

A region is bounded by the arc PQ, QR and a line RP.

a) Find the perimeter of the region

b) Find the area of the region
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5.4 Solving Trigonometric Equations
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Notes
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Worked Example

Solve in the interval 0 < 0 < 2m:

g =1
Sin —2
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Worked Example

Solve in the interval 0 < 0 < 2m:

' 9+1—1
sin =3
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Worked Example

Solve in the interval 0 < 6 < 2m:
3sinfd+1=0.4
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Worked Example

Find the solutions of these equations in the interval 0 < 6 < 2m:
a) sinf =0.3

b) 4cosf =2

c) b5tanf6+3=1
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Worked Example

Solve in the interval 0 < 0 < 2m:

(0 r. 1
sin( 4)—2
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Worked Example

Solve in the interval 0 < 0 < 2m:

V3

in30 = —
sin >
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Worked Example

Solve in the interval 0 < 0 < 2m:

1
in2 @ = —
Sin 4
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Worked Example

Solve in the interval 0 < 6 < 2m:
2sin?@ — 5sinf —3 =0
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Worked Example

Solve in the interval 0 < 6 < 2m:
5sin’ 8 — 2sin® =0
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Worked Example

Solve in the interval 0 < 6 < 2m:
5cos @ sinB + 2sinf =0
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Worked Example

Solve in the interval 0 < 6 < 2m:
2tanx = 3sinx

Page 77




Worked Example

Find all the solutions, in the interval
0 < x < 2m, of the equation
2cos?x + 1 = 5sinyx,

giving each solution in terms of .
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Your Turn

Solve the equation 17 cos 0 + 3sin? 6 = 13 intheinterval 0 < 6 < 27
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5.5 Small Angle Approximations

You can use radians to find approximations for
the values of sinf, cos# and tan#.

term(s)
® When @ is small and measured in radians:

» sinf=¢0

Maclaurin’s and Taylor’s Series

These are derived from series found in Further Maths (and
the formulae booklet) where you only take the first few

. x° 1"
f(x)=f(0) +xf'(0)+ —f"(0)+... + f0) +...
« tanf@ =0 2! rt
92
* cosO=1- ? . E Zr+l
sm.\"—.l'—;+§—...‘—(—l)’m+... for all x
*these are given in formulae booklet .3 e 2
cosx=1-—+— -, +(-1)y — + for all x
” 21 a4 T '
y=tanéf
VA VA VA
y=sinf
0 7 b 0 v
y=cost v=0
y=40
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Worked Example

When 6 is small, find the approximate value of:

a) sin 26+tan
260
cos 460-1
b) 0 sin

c) sin560 + tan 26 — cos 26
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Worked Example

Find the percentage error when calculating the value of cos(0.246 rad) using the small-angle approximations.
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Worked Example

When 6 is small, find the approximate value of:
1—2tan6 —4cos 260

tan260 + 1
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Extract from Formulae book

Small angle approximations

sinfd = @
0>
cosf=] - —
2
tanfd = @

where @ is measured in radians
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Past Paper Questions

Cal -

Exams

Formula Booklet

Past Papers

Practice Papers

past paper Qs by topic

12cm

Figure 1

The shape ABCDOA, as shown in Figure 1, consists of a sector COD of a circle centre O

joined to a sector 40B of a different circle, also centre O.

Past paper practice by
topic. Both new and old
specification can be
found via this link on

Given that arc length CD = 3 ¢cm, ZCOD = 0.4 radians and 40D is a straight line of
length 12 cm,

(a) find the length of OD,

(b) find the area of the shaded sector AOB.

(2 warye)
&)
=31 8cu; viy I'IP
1262 9169 O] 26C[OL :%\.:“:%x(lj-_\'g);x(\x—g'-q) i I'IP
®) (1262 9uG[6 OB =(L—0'¢) oL 262 Lyqunz 12 (]3 - ,1°2,) cw w1 319
o |
—QOD=1320w VI[P
3(%) Nneez :=x\y=3=wx0¢ Wi ‘ I3
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