

**HGS Maths** 



# Year 12 Pure Mathematics P2 5 Radians Booklet

**Dr Frost Course** 



## Name:

## **Class:**

#### Contents

#### 5.1 Radian Measure

#### 5.2 Arc Length

- 5.3 Areas of Sectors and Segments
- 5.4 Solving Trigonometric Equations
- 5.5 Small Angle Approximations

Extract from Formulae booklet Past Paper Practice Summary

#### Prior knowledge check





#### 5.1 Radian Measure

A degree is an *arbitrary* measure of an angle which comes from the idea that once there was believed to be 360 days in a year.

A radian on the other hand is not arbitrary as it represents that angle such that a single unit ensures a sectors arc length is equal to the radii.

Therefore, as circumference is  $2\pi r$  it follows that

 $360^\circ = 2\pi$  radians





■ 2*π* radians = 360°

• 
$$\pi$$
 radians = 180°

1 radian = 
$$\frac{180^\circ}{\pi}$$

| Notes |
|-------|
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |

|          | Worked Example    |  |  |
|----------|-------------------|--|--|
| Cor      | nvert to radians: |  |  |
| a)       | 360°              |  |  |
| b)       | 45°               |  |  |
| ()<br>() | 120°<br>315°      |  |  |
| e)       | 72°               |  |  |
| - /      |                   |  |  |
|          |                   |  |  |
|          |                   |  |  |
|          |                   |  |  |
|          |                   |  |  |
|          |                   |  |  |
|          |                   |  |  |
|          |                   |  |  |
|          |                   |  |  |
|          |                   |  |  |
|          |                   |  |  |
|          |                   |  |  |
|          |                   |  |  |
|          |                   |  |  |
|          |                   |  |  |
|          |                   |  |  |

|            | Worked Example            |  |  |
|------------|---------------------------|--|--|
| Conv<br>a) | ert to degrees:<br>$5\pi$ |  |  |
| b)         | $\frac{\tau}{3}$          |  |  |
| c)         | $\frac{5\pi}{6}$          |  |  |
| d)         | $\frac{\partial \pi}{4}$  |  |  |
| e)         | $\frac{4\pi}{5}$          |  |  |
|            |                           |  |  |
|            |                           |  |  |
|            |                           |  |  |
|            |                           |  |  |
|            |                           |  |  |
|            |                           |  |  |

Convert the following angles into degrees.

a)  $\frac{7\pi}{8}$  rad

b)  $\frac{4\pi}{15}$  rad

Convert the following angles into radians. Leave your answers in terms of  $\pi$ .

a) 150°

b) 110°

Find:

- a) sin(0.3 rad)
- b)  $\cos(\pi \operatorname{rad})$
- c) tan(2 rad)

Give your answers to 2 decimal places where appropriate.

Sketch the graph for  $0 \le x \le 2\pi$  of  $y = \sin x$ 

Sketch the graph for  $0 \le x \le 2\pi$  of  $y = \cos x$ 

Sketch the graph for  $0 \le x \le 2\pi$  of  $y = \tan x$ 

Sketch the graph for  $0 \le x \le 2\pi$  of  $y = \cos\left(x + \frac{\pi}{2}\right)$ 

Sketch the graph for  $0 \le x \le 2\pi$  of  $y = \cos(x + \pi)$ 

Sketch the graph for  $0 \le x \le 2\pi$  of  $y = \sin(2x)$ 

#### 5.2 Arc Length

Using radians greatly simplifies the formula for arc length.

To find the arc length l of a sector of a circle use the formula l = rθ, where r is the radius of the circle and θ is the angle, in radians, contained by the sector.



| Notes |
|-------|
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |

Find the length of the arc of a circle of radius 5.2 cm, given that the arc subtends an angle of 0.8 radians at the centre of the circle.

An arc *AB* of a circle with radius 7 cm and centre *O* has a length of 2.45 cm. Find the angle  $\angle AOB$  subtended by the arc at the centre of the circle.

An arc *AB* of a circle, with centre *O* and radius *r* cm, subtends an angle of  $\theta$  radians at *O*. The perimeter of the sector *AOB* is *P* cm. Express *r* in terms of *P* and  $\theta$ .

The border of a garden pond consists of a straight edge AB of length 2.4 m, and a curved part C, also connecting A and B. The curve part is an arc of a circle, centre O, radius 2 m. Find the length of C

A triangle *ABC* is such that  $AB = 8 \ cm$ ,  $AC = 11 \ cm$  and  $\angle BAC = 0.7$  radians. The arc *BD*, where *D* lies on *AC*, is an arc of a circle with centre *A* and radius 8 cm. A region *R*, is bounded by the straight lines *BC* and *CD* and the arc *BD*. Find the perimeter of *R* 

A sector of a circle of radius 15 cm contains an angle of  $\theta$  radians. Given that the perimeter of the sector is 42 cm, find the value of  $\theta$ 

The perimeter of a sector OAB is four times the length of the arc AB. Find the size of angle AOB

#### **5.3 Areas of Sectors and Segments**

Using radians also greatly simplifies the formula for the area of a **sector**.

To find the area A of a sector of a

circle use the formula  $A = \frac{1}{2}r^2\theta$ ,

where r is the radius of the circle and  $\theta$  is the angle, in radians, contained by the sector.



| Notes |
|-------|
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |

Find the area of the sector of a circle of radius 2.44cm, given that the sector subtends an angle of 1.4 radians at the centre of the circle.

A circle, centre O, radius 5.2 cm has a minor sector OAB where the arc AB subtends an angle of 0.8 radians at the centre of the circle.

Find the area of the sector.

A circle, centre O, radius 5.2 cm has a minor sector OAB where the arc AB subtends an angle of 0.8 radians at the centre of the circle.

A segment is enclosed by a chord AB and the arc AB.

Find the area of the segment.

The area of the minor sector AOB is 28.9 cm<sup>2</sup>. Given that  $\angle AOB = 0.8$  radians and O is the centre of the circle, calculate the length of the radius

A sector of a circle of radius 55 m and perimeter 176 m. Calculate the area of the sector

The diagram shows a sector of a circle. Find the area of the shaded segment.



OAB is a sector of a circle, centre O, radius 4m. The chord AB is 5m long. Find the area of the segment.

AB is the diameter of a semicircle, centre O, radius r cm.

C is a point on the semicircle.

<BOC =  $\theta$  radians.

Given that the area of  $\Delta AOC$  is three times the segment enclosed by CB, show that  $3\theta - 4\sin\theta = 0$ 

OAB is a sector of a circle, centre O, radius 9 cm and angle 0.7 radians.

C lies outside the sector.

AC is a straight line, perpendicular to OA.

OBC is a straight line.

Find the area of the region bounded by the arc AB and the lines AC and BC

OPQ is a sector of a circle, centre O, radius 10 cm where POQ = 0.3 radians.

The point R is on OQ such that the ratio OR:RQ is 1:3

A region is bounded by the arc PQ, QR and a line RP.

- a) Find the perimeter of the region
- b) Find the area of the region

## **5.4 Solving Trigonometric Equations**

| Notes |
|-------|
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |

Solve in the interval  $0 \le \theta \le 2\pi$ :  $\sin\theta = \frac{1}{2}$ 

Solve in the interval  $0 \le \theta \le 2\pi$ :  $\sin \theta + 1 = \frac{1}{2}$ 

Solve in the interval  $0 \le \theta \le 2\pi$ :  $3\sin\theta + 1 = 0.4$ 

Find the solutions of these equations in the interval  $0 \le \theta < 2\pi$ :

- a)  $\sin \theta = 0.3$
- b)  $4\cos\theta = 2$
- c)  $5 \tan \theta + 3 = 1$

Solve in the interval  $0 \le \theta \le 2\pi$ :  $\sin(\theta - \frac{\pi}{4}) = \frac{1}{2}$ 

Solve in the interval  $0 \le \theta \le 2\pi$ :  $\sin 3\theta = \frac{\sqrt{3}}{2}$ 

Solve in the interval  $0 \le \theta \le 2\pi$ :  $\sin^2\theta=\frac{1}{4}$ 

Solve in the interval  $0 \le \theta \le 2\pi$ :  $2\sin^2 \theta - 5\sin \theta - 3 = 0$ 

Solve in the interval  $0 \le \theta \le 2\pi$ :  $5\sin^2 \theta - 2\sin \theta = 0$ 

Solve in the interval  $0 \le \theta \le 2\pi$ :  $5\cos\theta \sin\theta + 2\sin\theta = 0$ 

Solve in the interval  $0 \le \theta < 2\pi$ :  $2 \tan x = 3 \sin x$ 

Find all the solutions, in the interval  $0 \le x < 2\pi$ , of the equation  $2\cos^2 x + 1 = 5\sin x$ , giving each solution in terms of  $\pi$ .

| Your Turn                                                                                          |  |
|----------------------------------------------------------------------------------------------------|--|
| Solve the equation $17 \cos \theta + 3 \sin^2 \theta = 13$ in the interval $0 \le \theta \le 2\pi$ |  |
|                                                                                                    |  |
|                                                                                                    |  |
|                                                                                                    |  |
|                                                                                                    |  |
|                                                                                                    |  |
|                                                                                                    |  |
|                                                                                                    |  |
|                                                                                                    |  |
|                                                                                                    |  |
|                                                                                                    |  |
|                                                                                                    |  |
|                                                                                                    |  |
|                                                                                                    |  |
|                                                                                                    |  |
|                                                                                                    |  |
|                                                                                                    |  |

#### **5.5 Small Angle Approximations**

You can use radians to find **approximations** for the values of  $\sin \theta$ ,  $\cos \theta$  and  $\tan \theta$ .

- When θ is small and measured in radians:
  - $\sin\theta \approx \theta$
  - $\tan\theta \approx \theta$
  - $\cos\theta \approx 1 \frac{\theta}{2}$

\*these are given in formulae booklet

These are derived from series found in Further Maths (and the formulae booklet) where you only take the first few term(s)

#### Maclaurin's and Taylor's Series

$$\mathbf{f}(x) = \mathbf{f}(0) + x \, \mathbf{f}'(0) + \frac{x^2}{2!} \, \mathbf{f}''(0) + \ldots + \frac{x^r}{r!} \, \mathbf{f}^{(r)}(0) + \ldots$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \ldots + (-1)^r \frac{x^{2r+1}}{(2r+1)!} + \ldots \quad \text{for all } x$$





| Notes |
|-------|
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |

When  $\theta$  is small, find the approximate value of:

- $\sin 2\theta + \tan \theta$ a)
  - 2θ
- $\frac{\cos 4\theta 1}{\theta \sin}$ b)
- $\sin 5\theta + \tan 2\theta \cos 2\theta$ c)

Find the percentage error when calculating the value of  $cos(0.246 \ rad)$  using the small-angle approximations.

When  $\theta$  is small, find the approximate value of:

 $1-2\tan\theta-4\cos2\theta$ 

 $\tan 2\theta + 1$ 

#### **Extract from Formulae book**

Small angle approximations

$$\sin\theta \approx \theta$$
$$\cos\theta \approx 1 - \frac{\theta^2}{2}$$

 $\tan\theta \approx \theta$ 

where  $\boldsymbol{\theta}$  is measured in radians

#### **Past Paper Questions**

2.



The shape *ABCDOA*, as shown in Figure 1, consists of a sector *COD* of a circle centre *O* joined to a sector *AOB* of a different circle, also centre *O*.

Given that arc length CD = 3 cm,  $\angle COD = 0.4$  radians and AOD is a straight line of length 12 cm,

(a) find the length of OD,

(b) find the area of the shaded sector AOB.

(3)

(2)



|      | (5 marks                                                                                         |      | narks) |
|------|--------------------------------------------------------------------------------------------------|------|--------|
|      |                                                                                                  | (3)  |        |
|      | $= 27.8 \text{cm}^2$                                                                             | AIft | 1.1b   |
|      | Uses area of sector $=\frac{1}{2}r^2\theta = \frac{1}{2} \times (12 - 7.5)^2 \times (\pi - 0.4)$ | MI   | 1.1b   |
| (p)  | Uses angle $AOB = (\pi - 0.4)$ or uses radius is $(12 - '7.5')$ cm                               | MI   | 3.1a   |
|      |                                                                                                  | (2)  |        |
|      | $\Rightarrow OD = 7.5 \text{ cm}$                                                                | Al   | 1.1b   |
| 2(a) | Uses $s = r\theta \Longrightarrow 3 = r \times 0.4$                                              | MI   | 1.2    |

