Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
1a	There are a very large number of bags.	B1	2.4	3rd
	Bags are tested to destruction – there would be no bags left.	B1	2.4	Comment on the advantages and disadvantages of samples and censuses.
		(2)		
1b	One value is less than 12 kg	B1	2.4	3rd
	therefore claim is not reliable.	B1	2.3	Comment on the advantages and disadvantages of samples and censuses.
		(2)		
1c	Different samples can lead to different conclusions due to natural variations.	B1	2.3	3rd Comment on the
	Only a small sample taken so unreliable.	B1	2.3	advantages and disadvantages of samples and censuses.
		(2)		
1d	Larger sample.	B1	2.4	3rd Comment on the advantages and disadvantages of samples and censuses.
		(1)		
	·		•	(7 marks)
	Notes			

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
2	$\overline{v} = \frac{-467}{-467} = -2.335$ (seen or implied)	B1	1.1b	5th
	$\bar{x} = 2.5\bar{y} + 755.0$ z = 2.5(-467) + 755.0	M1	3.1a	Calculate the mean and standard deviation of coded data.
	$=2.5\left(\frac{1}{200}\right)+755.0$	M1	1.1b	
	= 749.1625 (Accept awrt 749)	A1	1.1b	
	$\sigma_y = \sqrt{\frac{9179}{200} - \left(\frac{-467}{200}\right)^2}$	M1 A1	1.1b 1.1b	
	= 6.3594	A1	3.1a	
	$\sigma_x = 2.5 \times 6.3594$	M1	1.1b	
	= 15.8986 (Accept awrt 15.9)	A1	1.1b	
		(9)		
(9 marks)				

Notes

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor	
3a	Total frequency = 120 P(Less than 17 cm) = $\frac{52+5}{120} = \frac{57}{120}$ or equivalent or 0.475	B1 M1 A1	3.1a 1.1b 1.1b	2nd Calculate probabilities from relative frequency tables and real data.	
		(3)			
3b	P(Between 12 cm and 18 cm) $=\frac{52+15}{120}=\frac{67}{120}$ or awrt 0.558 Assumption: foot lengths between 17 and 19 are uniformly distributed.	M1 A1 B1	2.2b 1.1b 3.5b	2nd Calculate probabilities from relative frequency tables and real data.	
		(3)			
(6 marks)					
Notes					

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor	
4 a	$0.15 + 0.15 + \alpha + \alpha + 0.1 + 0.1 = 2\alpha + 0.5 = 1$	M1	1.1b	4th	
	$\Rightarrow \alpha = 0.25$	A1	1.1b	Calculate probabilities from discrete distributions.	
		(2)			
4b	$P(-1 \le X \le 2) = P(-1) + P(0) + P(1) = 0.6$	B1	1.1b	4th Calculate probabilities from discrete distributions.	
		(1)			
4c	P(X > -2.3) = P(-2) + P(-1) + P(0) + P(1) + P(2) = 0.85	B1	1.1b	4th Calculate probabilities from discrete distributions.	
		(1)			
(4 marks)					
Notes					

Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
Let <i>X</i> be the random variable the number of games Amir loses.			5th
$X \sim B(9, 0.2)$	B 1	3.3	Calculate binomial
P(X=3) = 0.17616 = 0.176 to 3 sf from calculator	B 1	1.1b	probabilities.
	(2)		
$P(X \tilde{N} 4)$	M1	3.4	6th
= awrt 0.980 from calculator	A1	1.1b	Use statistical tables and calculators to find cumulative binomial probabilities.
	(2)		
			(4 marks)
Notes			
3) $-P(X \tilde{N} 2) = 0.9144 - 0.7382$ $(0.2)^3(0.8)^6$ $\times 0.2^3 \times 0.8^6$ $(0.2^3 \times 0.8^6)$ M1A0			
	Scheme Let X be the random variable the number of games Amir loses. $X \sim B(9, 0.2)$ $P(X = 3) = 0.17616 = 0.176$ to 3 sf from calculator $P(X \ N \ 4)$ $=$ awrt 0.980 from calculator Notes $3) - P(X \ N \ 2) = 0.9144 - 0.7382$ $(0.2)^3 (0.8)^6$ $\times 0.2^3 \times 0.8^6$ M1A0	Scheme Marks Let X be the random variable the number of games Amir loses. $X \sim B(9, 0.2)$ B1 $P(X = 3) = 0.17616 = 0.176 \text{ to } 3 \text{ sf}$ from calculator B1 $P(X = 3) = 0.17616 = 0.176 \text{ to } 3 \text{ sf}$ from calculator B1 $P(X = 3) = 0.17616 = 0.176 \text{ to } 3 \text{ sf}$ from calculator B1 $P(X = 3) = 0.17616 = 0.176 \text{ to } 3 \text{ sf}$ from calculator A1 $P(X = 3) = 0.17616 = 0.176 \text{ to } 3 \text{ sf}$ from calculator A1 $P(X = 3) = 0.17616 = 0.176 \text{ to } 3 \text{ sf}$ from calculator A1 $P(X = 3) = 0.17616 = 0.176 \text{ to } 3 \text{ sf}$ from calculator A1 $P(X = 3) = 0.980$ from calculator A1 $P(X = 3) = 0.9144 - 0.7382$ (2) $P(X = 3) = 0.9144 - 0.7382$ $(0.2)^3 (0.8)^6$ $(0.2^3 \times 0.8^6$ $(0.2^3 \times 0.8^6$ $(0.2^3 \times 0.8^6$ $(0.2^3 \times 0.8^6)$	Scheme Marks AOs Let X be the random variable the number of games Amir loses. $X \sim B(9, 0.2)$ B1 3.3 $P(X = 3) = 0.17616 = 0.176$ to 3 sf from calculator B1 1.1b (2) (2) $P(X \tilde{N} 4)$ M1 3.4 = awrt 0.980 from calculator A1 1.1b (2) (2) (2) Notes 3) - P(X \tilde{N} 2) = 0.9144 - 0.7382 (0.2) ³ (0.8) ⁶ $(0.2)^3 (0.8)^6$ $(0.2^3 \times 0.8^6$ M1A0 M10 M10

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
6a	Understands that the pole vaulter will land when $h = 0$ or	M1	3.1b	3rd
	writes $\frac{1}{60}(125x-12x^2)=0$			Understand how mechanics
	Correctly factorises to get $x(125-12x) = 0$ o.e.	M1	1.1b	problems can be modelled
	Solves to get $x = \frac{125}{12} = 10.41(m)$	A1	1.1b	mathematically.
	Accept awrt 10.4 (m)			
		(3)		
6b	States that the greatest height will occur when $x = 5.20(m)$	M1	3.1b	3rd
	Makes an attempt to substitute $x = 5.20$ into the equation for	M1	1.1b	Understand how
	h. For example, $h = \frac{1}{60} \left(125 (5.20) - 12 (5.20)^2 \right)$ seen.			problems can be modelled
	h = 5.42(m) Accept awrt 5.4 (m)	A1 ft	1.1b	mathematically.
		(3)		
6c	States $h = 4.9$ or states that $\frac{1}{60} (125x - 12x^2) = 4.9$	M1	3.1b	3rd Understand how
	Simplifies this to reach $12x^2 - 125x + 294 = 0$ o.e.	M1	1.1b	mechanics
	Realises that the quadratic formula is needed to solve the quadratic. For example $a = 12, b = -125, c = 294$ seen, or makes attempt to use the formula: $x = \frac{125 \pm \sqrt{(-125)^2 - 4(12)(294)}}{2(12)}$	M1	1.1b	modelled mathematically.
	Simplifies the $b^2 - 4ac$ part to get 1513 or shows $x = \frac{125 \pm \sqrt{1513}}{24}$	M1	1.1b	
	x = 6.82(m) Accept awrt 6.8 (m)	A1	1.1b	
	x = 3.58(m) Accept awrt 3.6 (m)	A1	1.1b	
	The pole vaulter can leave the ground between 3.6 m and 6.8 m from the bar.	B1	3.2a	
		(7)		

6di	Allows the person to be treated as a single mass and allows the effects of rotational forces to be ignored.	B1	3.4	3rd Understand assumptions common in mathematical modelling.
		(1)		
6dii	The effects of air resistance can be ignored.	B1	3.4	3rd Understand assumptions common in mathematical modelling.
		(1)		
				(15 marks)
6b	Notes			

For the first method mark, accept their answer to part **a** divided by 2. Continue to award marks for a correct answer using their initial incorrect value.

6c

Accept $3.6 \le x \le 6.8$

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
7a	Correctly uses $s = ut + \frac{1}{2}at^2$ to write	M1	3.1b	5th
	$0.9 = (0)t + \frac{1}{2} \times a \times (0.8)^2$			Solve problems of connected particles using
	Correctly finds $a = \frac{45}{16}$ (m s ⁻²) or 2.8125 (m s ⁻²). Accept awrt 2.8 (m s ⁻²).	A1	1.1b	puneys.
		(2)		
7b	Demonstrates an understanding that the resultant force acting on sphere <i>B</i> is $1.2g - T$.	M1	3.1b	5th
	Uses $F = ma$ to write $1.2g - T = 1.2\left(\frac{45}{16}\right)$	M1	3.3	Solve problems of connected particles using pulleys.
	Correctly solves to find $T = \frac{1677}{200}$ (N) or 8.385 (N). Accept 8.4 (N).	A1 ft	1.1b	
		(3)		
7c	Demonstrates an understanding that the resultant force acting on box A is $T - F$.	M1	3.1b	5th Solve problems of
	Uses $F = ma$ to write $\frac{1677}{200} - F = 0.8 \left(\frac{45}{16}\right)$	M1	3.3	connected particles using pulleys.
	Correctly solves to find $F = \frac{1227}{200}$ (N) or 6.135 (N). Accept 6.1 (N).	A1ft	1.1b	
		(3)		
7d	Uses $v = u + at$ to write $v = 0 + \frac{45}{16} \times 0.8$	M1	3.1b	5th Solve problems of
	Solves to find $v = \frac{9}{4}$ or 2.25 m s ⁻¹ .	A1 ft	1.1b	connected particles using pulleys.
	Uses $F = ma$ to write $-F = 0.8a$ or $-\frac{1227}{200} = 0.8a$	M1	3.1b	
	Solves to find $a = -\frac{1227}{160}$ m s ⁻² or 7.66(m s ⁻²).	A1 ft	1.1b	

Uses $v^2 = u^2 + 2as$ to write $0 = \left(\frac{9}{4}\right)^2 + 2\left(-\frac{1227}{160}\right)s$	M1	2.2a	
Solves to find $s = \frac{135}{409}$ (m) or 0.33 (m). Accept awrt 0.33 (m).	A1 ft	1.1b	
States that the total distance travelled will be 1.23 m $(0.9 + 0.33)$.	B1 ft	3.2	
	(7)		
	•		(15 marks)

Notes

7b

Award ft marks for a correct answer using their value from part **a** for acceleration.

7c

Award ft marks for a correct answer using their values from part **a** for acceleration and part **b** for tension. **7d**

Award ft marks for a correct answer using their values from parts **a**, **b** and **c**.