

Year 7 2023 Mathematics 2024 Unit 4 Tasks – Part 1

DO NOT WRITE INSIDE

Year 7 2023 Mathematics 2024 Unit 4 Tasks – Part 2

DO NOT WRITE INSIDE

Year 7 2023 Mathematics 2024 Unit 4 Tasks – Part 3

DO NOT WRITE INSIDE

Contents

1 <u>Rounding</u>

- 2 <u>Metric Units</u>
- 3 Properties of 2D Shapes
- 4 Area and Perimeter

1 Rounding

Intelligent Practice

Intelligent Practice

Intelligent Practice

Rou 1)	ind: 73 to the nearest 1	Rou 1)	ind: 75 to the nearest 1
2)	73 to the nearest 10	2)	75 to the nearest 10
3)	73 to the nearest 100	3)	75 to the nearest 100
4)	73 to the nearest 50	4)	75 to the nearest 50
5)	73 to the nearest 25	5)	75 to the nearest 25
6)	73 to the nearest 5	6)	75 to the nearest 5
7)	73 to the nearest 2	7)	75 to the nearest 2
8)	73 to the nearest 4	8)	75 to the nearest 4
9)	73 to the nearest 3	9)	75 to the nearest 3
10)	73 to the nearest 0.5	10)	75 to the nearest 0.5
11)	73 to the nearest 1.5	11)	75 to the nearest 1.5
12)	73 to the nearest 7.3	12)	75 to the nearest 7.5

				Int	elli	gen	t Pr	ract	ice					
15) A number has been rounded to 20 to the nearest	10. What are the integers values for this number?	16) A number has been rounded to 20 to the nearest 5.	What are the integers values for this number?	17) A number has been rounded to 20 to the nearest 4.	What are the integers values for this number?	18) A number has been rounded to 20 to the nearest 6.	How do you know a mistake has been made?							
1) Round 17 to the nearest 6.	2) Round 17 to the nearest 8.	3) Round 17 to the nearest 5.	4) Round 17 to the nearest 2.	5) Round 59 to the nearest 7.	6) Round 58 to the nearest 7.	7) Round 60 to the nearest 7.	8) Round 61 to the nearest 7.	9) Round 53 to the nearest 5.	10) Round 53 to the nearest 11.	11) Round -7 to the nearest 3.	12) Round -12 to the nearest 5.	13) Round -3.987 to the nearest 5.	14) Round -3.987 to the nearest 8.	

Question 1:	Round the following numbers to the nearest 10							
(a) 32	(b) 67	(c) 71	(d) 24					
(e) 59	(f) 92	(g) 16	(h) 83					
(i) 17	(j) 14	(k) 78	(l) 43					
(m) 84	(n) 27	(o) 25	(p) 41					
(q) 75	(r) 33	(s) 95	(t) 98					
(u) 19	(v) 99	(w) 62	(x) 54					
(y) 15	(z) 74							
Question 2:	Round the following nun	nbers to the neares	st 10					
(a) 121	(b) 146	(c) 164	(d) 185					
(e) 292	(f) 238	(g) 312	(h) 333					
(i) 845	(j) 582	(k) 233	(l) 167					
(m) 596	(n) 705	(o) 502	(p) 993					
(q) 998	(r) 1241	(s) 1628	(t) 1164					
(u) 2673	(v) 6036	(w) 7555	(x) 8128					
(y) 13821	(z) 29234							
Question 3:	Round the following nun	nbers to the neares	st 10					
(a) 24.2	(b) 61.9	(c) 76.8	(d) 26.4					
(e) 14.7	(f) 231.8	(g) 185.3	(h) 201.5					
(i) 78.38	(j) 135.14	(k) 141.97	(l) 164.89					
(m) 4938.3	(n) 5141.49	(0) 15.455	(p) 1009.02					

Question 4:	Round the following numb	ers to the nearest 10	0
(a) 390	(b) 220	(c) 160	(d) 240
(e) 518	(f) 842	(g) 756	(h) 547
(i) 371	(j) 578	(k) 613	(l) 888
(m) 374	(n) 611	(o) 673	(p) 480
(q) 150	(r) 349	(s) 951	(t) 950
(u) 850	(v) 949	(w) 748	(x) 540
(y) 450	(z) 495		
Overtian F.	Down d the fellowing much	one to the nearest 10	0
Question 5:	Round the following numb	ers to the nearest 10	0
(a) 1430	(b) 1280	(c) 1610	(d) 1550
(e) 4030	(f) 6080	(g) 7420	(h) 8160
(i) 3562	(j) 2415	(k) 8283	(l) 5858
(m) 9248	(n) 3358	(o) 4214	(p) 9987
(q) 13494	(r) 16148	(s) 13114	(t) 15832
(u) 26783	(v) 56862	(w) 45555	(x) 13668
(y) 489481	(z) 124346		
Question 6:	Round the following numb	ers to the nearest 10	0
(a) 248.2	(b) 561.9	(c) 716.8	(d) 246.4
(e) 149.7	(f) 2315.8	(g) 1835.3	(h) 2061.5
(i) 2378.38	(j) 5135.14	(k) 9141.97	(l) 4164.89
(m) 44938.3	(n) 25141.49	(o) 1995.455	(p) 51009.02

					_		
Question 7:	Round	d the following n	umbers	s to the neare	st 100	00	
(a) 2300		(b) 5600	(0	:) 2900		(d) 8200	
(e) 7200		(f) 8420	(g) 2780		(h) 4500	
(i) 1930		(j) 6480	(1	<) 7710		(l) 5500	
(m) 4951		(n) 7571	(0	o) 7456		(p) 5499	
(q) 7395		(r) 3112	(9	s) 3661		(t) 5532	
(u) 4945		(v) 9442	(1	w) 9550		(x) 9499	
(y) 9934		(z) 7409					
Question 8:	Round	d the following n	umber	s to the neare	st 10(00	
(a) 21800		(b) 18300	(0	c) 17600		(d) 19200	
(e) 11590		(f) 16350	(g) 24500		(h) 34800	
(i) 38434		(j) 84925	(1	x) 48358		(l) 56187	
(m) 123940		(n) 293482	(0	o) 231184		(p) 563921	
Question 10:	Round	d the following n	umbers	s to the neare	st 10(000	
(a) 39304		(b) 23424	(0	:) 44500		(d) 26492	
(e) 26500		(f) 54588	(g) 62049		(h) 75000	
(i) 418553		(j) 144503	(1	<) 185000		(l) 384458	
Question 11:	Round	d the following n	umbers	s to the neare	st 100	0000	
(a) 384000		(b) 129400	(0	:) 569000		(d) 812300	
(e) 384984		(f) 750000	(g) 1284000		(h) 2840000)
Question 12:	Round	d the following n	umbers	s to the neare	st 100	00000	
(a) 1492000		(b) 5600000	(0	:) 7308000		(d) 6670000)
(e) 1280000)	(f) 17450000	(g) 35700000		(h) 3847285	521

Extension

Question 1: 645 people attended a concert. Round this to the nearest 10.

Question 2: 861 students attend a school. Round this to the nearest 100.

Question 3: The cost of a laptop is £1348. Round this to the nearest £100.

Question 4: 24,812 people attended a football match. Round this to the nearest thousand.

Question 5: The population of a city is 85,398. Round this to the nearest thousand.

Question 6: The number of beads in a jar is 50 to the nearest ten.

(a) What is the minimum possible number of beads in the jar?

- (b) What is the maximum possible number of beads in the jar?
- Question 7: The number of students at a school is 1200 to the nearest 100. What is the maximum possible number of students at the school?

Question 8: The population of a village is 900 to the nearest 100. State if the following could be true or false:

- (a) 890 people live in the village.
- (b) 960 people live in the village.
- (c) 912 people live in the village.
- (d) 845 people live in the village.
- (e) 850 people live in the village.
- (f) 950 people live in the village.

Question 9: The value of a car is £7000 to the nearest thousand pounds.

(a) What is the least possible value of the car?

(b) What is the greatest possible value of the car?

Question 10: The number of people at a concert is 200 to the nearest 10.

- (a) What is the least possible number of people at the concert?
- (b) What is the greatest possible number of people at the concert?

Fluency Practice								
	(d) 4.82	(h) 9.0898767986	154.9140108252	5032.00724682	3.49999999999999999999	3.5000000000000001		
ger:		8135	(k)	(u)	(d)	(t) 3		
s to the nearest inte	(c) 4.28	:43 (g) 6.4085	12.74651245) 30.63461572	3.49	3.501		
umbei	4.8	7.918	(j)	u)	(d)	(s)		
ing nı	(q)	(f)						
Round the follow	(a) 4.2	(e) 2.3954	(j) 3.14159265	(I) 19.99157235	(o) 3.4	(r) 3.51		

lea	<u>rn by heart</u>		<u>example</u>		An integer is a whole number. 6.83 has 6 wholes +					
So the car	metimes we do no e digits of a decima n shorten it by roui	t want to write all I down and we nding.	Round 6.83	to the ble (integer) = 7	some extra, so it is between 6 and 7 wholes. Half way between 6 and 7 would be 6.5.					
<u>ex</u>	<u>ercise lo</u>	and 6.83 is more than this, so it is closer to 7.								
1.	Which of these numbers are integers? Choose all that apply.									
	a) 45.8	b) 36	c) 2.83	d) 1.5	e) 2					
2.	Round each num	ber to the nearest	whole:							
	a) 3.6	c) 2.	3	e)	6.5					
	b) 4.7	d) 14	1.9	f)	201.3					
3.	Round each num	ber to the nearest	t integer:							
	a) 2.68	c) 3.	15	e)	14.782					
	b) 4.79	d) 0.	86	f)	156.345					

4. Complete the table:

Number	Nearest 10	Nearest 100	Nearest 1000	Nearest Whole Number
426.24				
690.104				

5. Find all the numbers that round to 17, to the nearest integer:

A	17.5	^B 16.5	^C 16.2	^D 15.1	^E 17.5	^F 17.23
G	17.1	^H 16.9	^I 17.8	^J 16.4	^К 16.45	^L 17.51

6. Arrange the cards to make a number that rounds to 21, to the nearest integer:

(1) Complete this table, rounding each number to appropriate degree of accuracy.

Number	Nearest 10	Nearest 100	Nearest 1000
56	60	100	0
75			
123			
149			
152			
501			
753			
1204			
3428			
5007			
6043			
8989			

Fill in the Gaps													
led erS	e jumbled ct numbers		41,910	40,000	40,000	40,514	40,000	41,000	40,500	41 757	101,11	40,300	
jumbl ansue Choose from the		to make the tab	40,480	41,909	40,200	41, 760	41,000	41,010	41,800	40 500	000 00	42,000	
		To the Nearest	Thousand					42 000	000	41,000			
D)	To the Nearest	Hundred		40,300			41 QND	000				
- j Ū C C		To the	Nearest Ten	40,240						40,510			
5 0			NULLIDE	40,235	40, 296	41, 007	40,478						

Problem Solving

complete the table:

the difference is: nearest 100 – nearest 10

number	nearest 100	nearest 10	difference
174	200	170	+ 30
438			
563			
218			
35			
923			
263			
871			

why are some differences the same?

what could the numbers be?

the difference is nearest 10 – nearest 100

number	nearest 100	nearest 10	difference				
			- 30				
			- 50				
			+ 50				
			+ 10				
			- 10				
			+ 20				
			0				
49							
51							
what type of number has a difference of -40 ?							

Problem Solving

which 10 (whole) numbers round to 700 to the nearest 100 and 670 to the nearest 10 ? which 5 (whole) numbers round to 300 to the nearest 100 and 250 to the nearest 10 ?

which 5 (whole) numbers round to 400 to the nearest 100 and 450 to the nearest 10 ? which 5 (whole) numbers round to 800 to the nearest 100 and 850 to the nearest 10 ?

the difference between two whole numbers is 2 when rounded to the nearest *100* the difference is 100 what could the two numbers be?

the difference between two numbers is 0.2 when rounded to the nearest *ten* the difference is 10 what could the two numbers be? the difference between two whole numbers is 2 when rounded to the nearest *1000* the difference is **1000** what could the two numbers be?

the difference between two numbers is 0.02 when rounded to the nearest *unit* the difference is 1 what could the two numbers be?

Number	1 decimal place	2 decimal places	3 decimal places
0.1234			
0.2345			
0.3456			
0.4567			
0.04567			
0.40567			
0.45067			
9.45067			
9.45967			
9.95967			

(2) Complete this table, rounding each number to appropriate degree of accuracy.

Number	1 decimal place	2 decimal places	3 decimal places
5.6	6.0	5.60	5.600
7.5			
1.23			
1.49			
0.152			
1.5015			
1.2753			
0.1204			
2.3428			
12.5007			
1.6043			
9.9899			

Purposeful Practice

Rounding Square Roots

Use a calculator to find the square root of the number x each time. Round your answers to 3 dp, 2 dp, 1 dp and to the nearest integer. Round from the *original answer* each time and not from your previous rounding.

x	\sqrt{x} (as on calculator)	3 dp	2 dp	1 dp	nearest integer
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					

How many square roots are equal to 1 when rounded to the nearest integer?

How many round to 2?

How many round to 3?

Is there a pattern? How many do you think would round to 20?

Round to the nearest integer (whole						
numb	er):					
(a)	9.7	(b)	12.4			
(c)	47.1	(d)	0.9			
(e)	4.11	(f)	5.62			
(g)	24.57	(h)	13.45			
(i)	1.22	(j)	14.987			

Round	to 1	decimal place:	
(a)	2 1 2	(h) 6	

(a)	3.12	(D)	65.27	
(c)	5.88	(d)	4.25	
(e)	0.56	(f)	2.432	
(g)	21.635	(h)	283.123	
(i)	33.987	(j)	0.998	

Round to 2 decimal places:						
(a)	2.121	(b)	8.115			
(c)	6.878	(d)	13.989			
(e)	0.413	(f)	4.245			
(g)	18.7354	(h)	0.9998			
(i)	75.0123	(j)	1.7898			

Round these numbers to the stated number of decimal places.

- (a) 5.876 (1 d.p.)
- (b) 4.237 (2 d.p.)
- (c) 0.6754 (2 d.p.)
- (d) 12.96 (1 d.p.)
- (e) 4.302 (1 d.p.)
- (f) 5.999 (2 d.p.)

(a) The width of a book is 21.7 cm correct to 1 decimal place. What is the smallest and biggest width the book could have?(b) A pencil has a length 16.25 cm, correct to 2 decimal places. What is the smallest and biggest length the pencil could have?

Extension

Question 1:	51.26% of the people living in a town are female. Round this figure to one decimal place.
Question 2:	Walter has worked out a calculation on a calculator Shown on the calculator is the answer. 5.428
	 (a) Round the answer to one decimal place (b) Round the answer to two decimal places
Question 3:	Daniel has been asked to round 1.725 to one decimal place. His answer is 172.5 Explain Daniel's mistake.
Question 4:	Nicole has rounded a number to one decimal place. Her answer is 9.2 Write down 10 different possible numbers that she could have rounded.
Question 5:	A chocolate bar contains 0.4715g of salt. Round this to two decimal places.
Question 6: differe	Dominic writes down two numbers, A and B. A and B have 2 decimal places. Dominic rounds A to 1 decimal place and calls his answer C. He rounds B to 1 decimal place and calls his answer D. Dominic says the difference between A and B cannot be the same as the ence between C and D.
	Show he is incorrect

learn by heart

Sometimes we do not want to write all the digits of a decimal down and we can shorten it by rounding.

A number with 1 decimal place has 1 digit after the decimal point, e.g. 3.4

If rounding, to say, 2 decimal places, the value of the digit in the 3rd decimal place tells us whether to round up or down. If the 3rd decimal place is 5 or more, we round UP, which means we increase the value of the last digit by 1.

<u>examples</u>

Rc	ound:								
	a) 4.327 to 1 dec	imal place	4.3 27		4.3				
	b) 17.0269 to 2 d	ecimal places	17.026	9	17.03				
	c) 3.7997 to 3 de	cimal places	3.799	7	3.800				
	d) 1.996 to the ne	earest 0.1	1.996		2.0		ļ		
<u>ex</u>	exercise li								
1.	Which of these nu	Imbers have 1 o	decimal plac	ce? Selec	t all that ap	oply.			
	a) 43	b) 4.5	c) 2.75		d) 62.0	e) 2	200.30		
2.	Round each numl	ber to 1 decima	l place:						
	a) 3.62	c) 2.45		e) 4.319		g) 105.1	098		
	b) 1.84	d) 13.19		f) 26.453	3	h) 459.8	821		
3.	Round each num	ber to 2 decima	l places:						
	a) 4.085	b)	23.1279		c) 6	04.30567			
4.	Round each num	per to 3 decima	l places:						
	a) 4.0858	b)	23.127		c) 60	04.30567			
5.	Find all the numb	ers that round t	o 3.5 to 1 de	ecimal pla	ace:				

A	3.48	D	3.41	G	3.45	J	3.34	М	3.41
В	3.51	E	3.62	Н	3.55	ĸ	3.56	N	3.509
С	3.63	F	3.81	I	3.67	L	3.39	0	3.409

6

6.	Complete the table by rounding each number as shown:							
	Number		to 1 d.p.	to 2 d.p.	Nearest Integer			
	a)	3.7281						
	b)	52.5917						
	c)	0.1853						
	d)	9.6458						
	e)	4.0028						
7.	Whic	ch of these numbers i	s 24.976 correctly ro	unded to one decima	l place?			
	a) 2	4.9 b) 24.1	0 c) 25	d) 24.98	e) 25.0			
8.	Whic	ch of these lengths is	32.77m given correc	t to the nearest 0.1m	?			
	a) 3	3m b) 32.7	'm c) 32.70m	d) 32.8m	e) 32.80m			
9.	Shov to m one	w how these cards ca ake a number that ro decimal place.	an be arranged unds to 27.5 to	7 4	2 8 •			
10.	Whic Cho	ch of these numbers, ose all that apply	when rounded to 2 d	ecimal places, give 1	7.48 ?			
	a) 1	7.485 b)	17.475 c)	17.4805	d) 17.4705			
11.	Rou	nd:						
	a) 132.8427 to the nearest tenthb) 4.7396 to the nearest hundredth							
<u>challenge (rounding recurring decimals)</u>								
12.	Rou	nd each of these recu	urring decimals as inc	licated:				
	a) 0	.6 (1 d.p.)	d) 0.705 (3 d.p.)	g) 0.48	(3 d.p.)			
	b) 0.	 34 (1 d.p.)	e) 0.705 (3 d.p.)	h) 0.49	(3 d.p.)			
	c) 0.	•• 57 (2 d.p.)	f) 0.705 (3 d.p.)	i) 0.9 (1	d.p.)			

(1) For each number given, tick the significant digits and cross the non-significant digits:

	1,000	100	10	1	•	1 10	1 100	1,000	10,000	1 100,000	1,000,000
a)	9	2	3	4							
√ or ×											
b)	9	2	3	0							
√or ×	-			-							
	0	0	0	0							
Jor ×	9	2	0	U							
d)	9	2	0	4							
√ or ×											
e)	9	0	3	4							
√ or×											
f)	9	0	0	0							
√or ×											
a)		q	0	0							
9) √or×		0	U								
			•	•							
h)			9	0							
VOIX											
i)				9							
√ or ×											
j)				0	٠	9					
√ or ×											
k)				0	•	9	0				
√ or ×											
i)				0	•	0	q				
J) Jor×				U		0	3				

	1,000	100	10	1	•	1 10	1 100	1	1	1 100,000	1,000,000
k)				0	•	0	0	9			
√ or×											
I)				0	•	0	0	9	2	3	4
sor ×											
m)				0	•	9	2	3	4		
√ or×											
n)				0	•	9	2	0	4		
√ or×											
o)				0	•	9	0	3	4		
√ or ×											
p)				0	٠	9	2	0	0		
√ or×											
q)				0	•	9	2	3	0		
√ or ×											
r)				0	•	9	2	3	0	0	
√ or ×											
s)				0	•	9	2	3	0	0	0
√ or ×											
t)			1	0	•	9	2	3	0	0	0
√ or ×											
u)			1	0	•	9	2	3			
√ or ×											

(2) State how many significant figures each of the following numbers have:

	1,000	100	10	1	•	1 10	1 100	1,000	1 10,000	Number of Significant figures
a)	8	0	0	0						
b)	8	8	0	0						
C)		8	8	0						
d)		8	0	8						
e)	8	0	8	0						
f)	8	0	8	8						
g)				0	•	8				
h)				0	•	0	8			
i)				0	•	0	8	8		
j)				0	•	8	0	8		
k)				0	•	0	8	0	8	
I)				0	•	0	0	0	8	
m)				0	•	8	0	0	8	
n)			8	0	•	0	0	0	0	
o)			8	0	•	0	0			
p)		8	0	0	•	0				
q)	8	0	0	0	•	0				

Fluency Practice									
Number	Rounded to 1 significant figure	Rounded to 2 significant figures	Rounded to 3 significant figures						
1254									
59287									
699721									
0.3451									
0.005231									
0.050554									
0.050999									

Extension

A number is rounded to 1sf to 1000. How many possible integers could the original number have been?

Answer	43 000							
Round up or down?	dN							
Original Number on Number line	↓ ↓ 42 000 43 000	40 000 50 000						
Place value of that significant figure	$1\ 000$	10 000	100				$1\ 000$	100 000
Round to significant figure	2	1	3	3	3	2		
Original Number	42 850	42 850	42 850	40 850	40 950	40 950	563 814	563 814
Original Number	Round to significant figure	Place value of that significant figure	Original Number on Number line	Round up or down?	Answer			
--------------------	-----------------------------------	--	---	----------------------	------------------			
614			610 620					
2 614			2 610 2 620					
3 649					3 600			
3 999					4 000			
				dŊ	28 000			
				Down	28 000			
					1 700			
For which quest	tions could vou ha	ive more than one	answer? For each of these explain the types	of answers allowed	and not allowed.			

Fill in the Gaps

(3) F	or each numb	er given, rour	nd to the number o	of significan	t figures giver	n:		
(a)	76	(1 s.f.)	(g)	32,654	(1 s.f.)	(m)	2,374	(2 s.f.)
	≈		~	;		~		
(b)	320	(1 s.f.)	(h)	19,500	(1 s.f.)	(n)	34,821	(2 s.f.)
	≈		*	;		~		
(c)	475	(1 s.f.)	<i>(i)</i>	825	(2 s.f.)	(0)	7,654	(3 s.f.)
	≈		~	;		~	·	
(d)	5,500	(1 s.f.)	(j)	261	(2 s.f.)	(p)	5,448	(3 s.f.)
	≈		*			~		
(e)	8,272	(1 s.f.)	(k)	5,841	(2 s.f.)	(q)	125,640	(3 s.f.)
	≈		~			~		
(f)	5,499	(1 s.f.)	(1)	8,054	(2 s.f.)	(r)	35,253	(4 s.f.)
.,	~	. ,	≈	;		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-	. ,
(4) F	or each numb- 2.9	er given, rour (1 s.f.)	nd to the number of <i>(d</i>)	of significar 73.6	it figures giver (1 s.f.)	n: (m)	41.095	(1 s.f.)
()	~	(1)	~	3	(1 - 11)	~		(*)
(b)	14	(1sf)	(e)	293	(1 s f)	<i>(p</i>)	578 219/	 1 (1sf)
(0)	~	(1 5.1.)	(0)	20.0	(7 5.1.)	(""	, 0, 0.2 10-	+ (1 5.1.)
	~	(1 o f)	~ (f)	2,2600	(1 o f)	(a)	1254.22	(2 o f)
(C)	18.1	(75.1.)	(1)	2.3609	(1 S.1.)	(0)	1254.33	(3 8.1.)
	≈		~			~		
(5) F	For each numb	er given, rour	nd to the number o	of significar	it figures giver	n:		
(a)	4.31	(2 s.f.)	(c)	2.3609	(3 s.f.)	(m)	1254.33	(5 s.f.)
	≈		*	÷		~	:	
(b)	42.84	(3 s.f.)	(d)	7.3482	(4 s.f.)	(n)	41.095	(6 s.f.)
	≈		~	÷		~		

(6) F	or each numbe	r given, ro	ound to the number o	of significant	t figures giv	ven:		
(a)	0.054	(1 s.f.)	(f)	0.3189	(2 s.f.)	(k)	0.90341	(3 s.f.)
	≈		~			\approx		
(b)	0.161	(1 s.f.)	(g)	0.5622	(2 s.f.)	(1)	0.08906	(3 s.f.)
	≈		~			~		
(c)	0.048	(1 s.f.)	(h)	0.04912	(2 s.f.)	(m)	0.007812	? (3 s.f.)
	≈		~			\approx		
(d)	0.8835	(1 s.f.)	(i)	0.06014	(2 s.f.)	(n)	0.6006	(3 s.f.)
	≈		~			~		
(e)	0.00064	(1 s.f.)	<i>(j)</i>	0.0157	(2 s.f.)	(o)	0.05099	9 (5 s.f.)
	≈		~			~		
				f = 1 = (f) = =	. <i>6</i>			
(a)	97	(1 s.f.)	(f)	699,721	(3 s.f.)	(k)	0.096	(1 s.f.)
	≈		~			~		
(b)	99	(1 s.f.)	(g)	9.7299	(1 s.f.)	(1)	0.05099	9 (3 s.f.)
	≈		~	;		\approx		
(c)	9,964	(1 s.f.)	(h)	9.9566	(1 s.f.)	(m)	9.9566	(2 s.f.)
	≈		~	;		~		
(d)	9,964	(2 s.f.)	(i)	41.095	(4 s.f.)	(n)	9.7299	(4 s.f.)
	≈		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	;	. ,	≈		
(e)	699.721	(2 s.f.)	<i>(i)</i>	9,7299	(4 s.f.)	(0)	0.50999	(4 s.f.)
(0)	~	(_ 0)	~		(' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	~		(1011)
	·~		~			~		

Round to the nearest 10								
(a)	156	(b)	671					
(c)	5614	(d)	3277					
(e)	7499	(f)	56123					
(g)	131789	(h)	86					
(i)	33.5	(j)	3.2					

Roun	d to the near	est 100)
(a)	156	(b)	671
(c)	5614	(d)	3277
(e)	7499	(f)	56123
(g)	131789	(h)	86
(i)	233.5	(j)	43.2

Roun	d to the nea	rest 10	00
(a)	5614	(b)	3277
(c)	7499	(d)	56123
(e)	131789	(f)	866

Roun	d to 1 signific	ant fig	ure
(a)	156	(b)	7614
(c)	3277	(d)	56123
(e)	131789	(f)	86.2
(g)	33.5	(h)	3.29
(i)	0.145	(j)	0.06378

Roun	d to 2 signific	ant fig	ures
(a)	156	(b)	7614
(c)	3277	(d)	56123
(e)	131789	(f)	86.2
(g)	33.5	(h)	3.29
(i)	0.145	(j)	0.06378

Question 1:	Round each	of the followin	g numbers to	1 significant fi	gure			
(a) 36	(b) 22	(c) 83	(d) 68	(e) 97	(f) 120	(g) 519		
(h) 260	(i) 741	(j) 888	(k) 408	(l) 650	(m) 148	(n) 972		
(o) 3900	(p) 5400	(q) 4125	(r) 2732	(s) 6349	(t) 8099	(u) 6499		
Question 2:	Round each	of the followin	g numbers to	1 significant fi	gure			
(a) 12000	(b) 46000	(c) 74500	(d) 83771	(e) 95120	(f) 330000			
(g) 863000	(h) 248220	(i) 489331	(j) 1380000	0				
Question 3:	Round each	of the followin	g numbers to	1 significant fi	gure			
(a) 2.9	(b) 3.2	(c) 5.7	(d) 46.81	(e) 57.25	(f) 80.96	(g) 94.9		
(h) 115.1	(i) 8.482	(j) 13.65	(k) 66.321	(l) 5501.4	(m) 48.02	(n) 99.99		
Question 4:	Round each	of the followin	g numbers to	1 significant fi	gure			
(a) 0.54	(b) 0.86	(c) 0.161	(d) 0.048	(e) 0.0943	(f) 0.0071	(g) 0.0038		
(h) 0.06482	(i) 0.8835	(j) 0.00064	(k) 0.00098	(l) 0.000027	'89			
Question 5:	Round each of the following numbers to 2 significant figures							
(a) 844	(b) 665	(c) 129	(d) 2840	(e) 9250	(f) 1359	(g) 298		
(h) 504	(i) 999	(j) 3841	(k) 48500	(l) 13.7	(m) 58.3	(n) 49.6		
(o) 1.41	(p) 42.64	(q) 0.3189	(r) 22490	(s) 186110	(t) 0.04912	(u) 4.98		
(v) 997826	(w) 2.99517	' (x) 0.06014						
Question 6:	Round each	of the followin	g numbers to	3 significant fi	gures			
(a) 9433	(b) 1891	(c) 2496	(d) 3.226	(e) 37756	(f) 57147	(g) 7.0078		
(h) 51.564	(i) 0.90341	(j) 2.7892	(k) 0.08906	(l) 0.007812	(m) 9909.1	(n) 0.6006		

Extension

Question 1: In an election 43.8% of people voted for a candidate. Round this figure to one significant figure

- Question 2: 32641 people watch a rugby match between Italy and Argentina. Round this number to 2 significant figures.
- Question 3: Round the following numbers to 1 significant figure
- (a) eight million, six hundred thousand (b) the product of 19 and 351
- Question 4: Tom has been asked to round the number on the calculator to 2 significant figures. Tom says the answer is 516.16

Can you explain Tom's mistake?

Frome

Population 26,000

- Question 5: The population of Frome to 2 significant figures is 26,000.
- (a) Write down the lowest number of people that could live in Frome?
- (b) Write down the greatest number of people that could live in Frome?
- Question 6: Round $~7.494\times 10^7~$ to 2 significant figures. Give your answer as an ordinary number.

	Rounding to Sig	nificant Figures	
	(p)	(c)	(p)
nd 763 to 1 significant figure	Round 4382 to 1 significant figure	Round 92865 to 2 significant figures	Round 725 to 2 significant figures
	(f)	(6)	(4)
d 0.0643 to 1 significant figure	Round 756482 to 3 significant figures	Round 0.7634 to 2 significant figures	Round 8.2754 to 2 significant figures
	(j)	(k)	(1)
0.08537 to 2 significant figures	Round 9.524 to 1 significant figure	Round 243.725 to 4 significant figures	Round 89.43 to 1 significant figure
	(u)	(0)	(d)
ld 0.982 to 1 significant figure	Round 9.428553 to 5 significant figures	Round 1875.4 to 3 significant figures	Round 1856702 to 3 significant figures
	(r)	(s)	(t)
und 0.00456289 to 5 significant figures	Find two numbers that round to both 80 to 1 significant figure and 84 to 2 significant figures	Find two numbers that round to both 44.7 to 1 decimal place and 45 to 2 significant figures	Find two numbers that round to both 0.7 to 1 significant figure and 0.70 to 2 significant figures

ea	<u>rn by heart</u>						1	6,045
Th	e first significant figure o	f a number is	s the fir	st non-ze	ero c	ligit sig	; nifica	int
'Tr	rapped zeros' lie between 2	other digits.	They a	are signifi	cant		лге	signific fie
<u>5X</u>	<u>amples</u>							
Ro	ound 348 to 1 significant figu	ure (1.s.f)	Roun	d 4,075 to	<u>ع</u> 2 د	significant	figur	res (2.s.f)
(1s coli	st significant figure is in the hu umn, so round to the nearest	indreds hundred)	(2nd s colum	significant n, so roun	figuı d to	re is in the the neares	hund t hun	lreds .dred)
		= 300						= 4,100
ex,	ercise 1j							
1.	Round each of these num	bers to 1 sig	nifican	t figure:				
	a) 53	c) 709		-		e) 2,409		
	b) 56	d) 358				f) 15,008	3	
2.	Round each of these num	bers to 2 sig	nifican	t figures:				
	a) 956	c) 15,809)			e) 194,03	37	
	b) 2,085	d) 12,31	4			f) 280,30	0	
3.	The number 6,008 has	significan	it figure	s.				
4.	The number 84,001 has _	significa	int figu	res.				
5.	Round each of these num	ibers as indic	ated:					
	a) 536 (2 s.f.)	d) 8,900	(1 s.f.)			g) 99 (1 s	s.f.)	
	b) 804 (2 s.f.)	e) 84 (2 s	s.f.)			h) 999 (2 s.f.	.)
	(2 - 1)	f) 10 (1 a	, , f)			i) 0 000 /	(2 ~ f	, :)
	() 12,400 (2 S.I.)	1) 12 (18	5.I. <i>)</i>			1) 9,999 (ູວ 5.1	.)
б.	Find all the numbers that	round to 100	, to 1 s	ignificant	figu	re:		
	^A 105 ^D 102	G 99	J	95	M	90	P	110
	^B 92 ^E 100	^H 130	ĸ	107	N	91	Q	96

89

55

140

90

98

170

-1 **.**:

		Fluency	y Practi	ce		
lec	<u>irn by heart</u>			0.0050)	
Tr	ne zeros at the start o	f a decimal are not	significant] _1st /	2 nd	
Tr	ne zeros at the end of	a decimal ARE sig	gnificant	significant figure	significant figure	
<u>ex</u>	amples			-		
Ro	ound 0.0489 to 1 sign	ificant figure (1.s.f)	Round 0.089	9 to 2 significant figur	res (2.s.f)	
(1 <u>:</u> col	st significant figure is in 'umn, so round to the r	the hundredths nearest tenth)	(2nd significar column, so rou	nt figure is in the thousa and to the nearest thous	andths sandth)	
		= 0.05			= 0.090	
<u>ex</u>	<u>ercise 1k</u>					
1.	Which of these nun	nbers has 3 signific	ant figures?			
	a) 2.486	b) 2.406	c) 3.490	d) 0.03	00	
2.	Round each of thes	e to 1 significant fig	gure:			
	a) 0.765	c) 0.038		e) 2.845		
	b) 0.408	d) 0.0193	3	f) 0.099		
3.	Round each of thes	e to 2 significant fig	gures:			
	a) 3.867	c) 0.247		e) 0.309		
	b) 0.608	d) 12.85	9	f) 0.0049		
4.	The number 0.307	has significar	it figures.			
5.	The number 4.8050) has significa	int figures.			
6.	The number 900.009 has significant figures.					
7.	Round each of thes	e as indicated:				
	a) 0.289 (2 s.f.)	d) 8.207	(3 s.f.)	g) 0.3007 (3 s.	f.)	
	b) 42.806 (3 s.f.)	e) 0.069	(2 s.f.)	h) 0.0914 (2 s.	f.)	
	c) 0.0987 (2 s.f.)	f) 4.98 (1	s.f.)	i) 8.999 (2 s.f.))	
8.	What is the value o	f 0.408 to 4 signific	ant figures?			

<u>exercise 1</u>

1.	Circle the first sig	nificant fi	gure in each	of these nu	imbers.		
	a) 0.429		b) 9002		c)	45	
	d) 0.00011		e) 0.704		f)	32,415	
2.	How many signifi	cant figur	es do each o	f these nun	nbers have	?	
	a) 506	b) 0.	03	c) 0.4	1500	d) 2	23.605
3.	Which of these ha	as 2 signi	ficant figures	? Circle all	that apply.		
	a) 0.08	b) 10	08	c) 0.0	80	d) ⁻	1.08
4.	Round each of th	ese num	pers to one si	gnificant fig	gure:		
	a) 6.928		b) 0.0043	88	c)	82.9	
	d) 417.809		e) 0.089		f)	0.92	
5.	Which of these n	umbers is	72.46 round	ed to one s	ignificant fi	gure?	
	a) 72	b) 7	2.5	c) 70		d)	7
6.	Which of these n Choose all that a	umbers h pply.	ave the digit 3	3 as the se	cond signifi	cant figu	ıre?
	a) 4.312	b) 3.2	c) 4	403.1	d) 0.32	9	e) 0.0731
7.	Round each of th	ese numt	pers to the nu	Imber of sig	nificant fig	ures sho	wn:
	a) 45 (1 s.f.)		e) 0.0507 (2	2 s.f.)	i) 9607	7 (2 s.f.)	
	b) 0.956 (2 s.f.)		f) 503 (1 s.f.	.)	j) 8.09	9 (3 s.f.)	
	c) 3005 (3 s.f.)		g) 900 (2.s.	.f)	k) 609	(2 s.f.)	
	d) 551.8 (2 s.f.)		h) 0.56 (1 s.	.f.)	I) 800	(3 s.f)	
8.	Could the most si	gnificant	figure in a nu	mber be a	zero?		
9.	Could the second	most sig	nificant figure	e in a numb	er be a zer	o?	
10.	True or false: 42.3	389 round	led to 3 s.f. >	> 42.389 ro	unded to 3	d.p. ?	

Fluency Practice 11. Which section of the diagram should each of the following numbers be in? 2 Decimal 2 Significant Places Figures Some of the numbers go outside of the circles. В С А 0.340 31.5 3001 Е 43 2.3 0.25 D F 396.41 403 0.9 Н 0.90 3.52 1.01 G 3 Significant extension: there are two Figures empty sections, can you think of a number that would go in each of these two sections? Round It! 3160 3200 3000 3164 Place the numbers in the boxes so that all 2919 2900 3049 arrows indicate a correct rounding Rounded to 2 s.f. Rounded to 3 s.f. Rounded to 1 s.f. Rounded to 1 s.f Rounded to 2 s.f. Rounded to 2 s.f.

		• • •				
A. 9	Sort these numbers	s into the	1 Significan	t	2 Significant	3 Significant
cor	rect column on the	e right.	Figure		Figures	Figures
		-	0		5	<u> </u>
	2.2	0.034	1		1	1
		0.001	I	- i -	1	
0 1 0 0	6030					
0.109	0.	00391		1		
	0.	00001	I 	_1		
	0.001		1		1	1
	4320	000	I		· ·	1
				_ !		'
5.07	4000		1		1	1
		310	I	- 11	1	
				- '	/	
30	0.040	45				
	0.010					L!
50100					1	1
	34000	800				
						'
	• • • • • • • • • • • • • • • • • • • •					
R N	Aultinle Choice					
Cho	ose the correct ansv	ver for each of	these questions:			
1.	Round 0.345 to 2	significant figu	res	4.	Round 30.659 to 3 sign	ificant figures
a)	0.3			a)	30.6	-
b)	0.4			b)	30.7	
c)	0.34			C)	31	
d)	0.35			d)	30.66	
•				_		
2. 2)		significant figur	es	5. c)	Round 0.0999 to 3 sign	ificant figures
a) b)	3400			a) b)	0.0999	
(U C)	3410			D)	0.09	
(0 d)	3409			d)	0.1000	
۵)	0.00			а)	0.100	
3.	Round 4.005 to 2	significant figu	res	6.	4099.2 to 3 significant fi	gures
a)	4.0			a)	4010	•
b)	4.005			b)	4100	
c)	4.01			C)	410	
d)	4.015			d)	4000	
	ound coch of the	on to the rea	mbor of signifier	nt fire	uraa ahawa	
U. R	cound each of the	se to the hu	mber of significa	int lig	ures shown.	
a)	5676 (1 s.f.)			e)	0.00088 (1 s.f.)	
b)	2020(2 - f)			f)	$420.002 (4 \circ f)$	
D)	2039 (2 \$.1.)			1)	420.903 (4 \$.1.)	
c)	54 989 (3 s f)			a)	-0.899(2 sf)	
0)	0.000 (0.0.1.)			3/	5.000 (E 0.1.)	
d)	500798 (3 s.f.)			h)	109.99 (3 s.f.)	
,	, , , , , , , , , , , , , , , , , , ,			,	. ,	

0.0999 to 2	0.0999 to 2	0.0999 to 2	4.0834 to 3					
s.f. is 0.100	s.f. is 0.010	s.f. is 0.10	s.f. is 4.083					
0.995 to 2	0.0005 to 2	4.893 to 3	0.0034 to 1					
s.f. is 0.99	s.f is 0.0	s.f. is 4.90	s.f. is 0.003					
0.81 to 2 s.f.	492 to 1 s.f.	0.0384 to 2	9004 to 2					
is 0.81	is 490	s.f. is 0.038	s.f. is 9004					
1492 to 3	3997 to 2	4.03 to 2 s.f.	1.0090 to 3					
s.f. is 149	s.f. is 4000	is 4	s.f. is 1.01					
54.43 to 1	2.004 to 1	4.106 to 2	19.9 to 2 s.f.					
s.f. is 54.4	s.f. is 2.0	s.f. is 4.1	is 20					

0.135 to 2	299.9 to 2	501 14 to 3	0.0597 to 2					
s.f is 0.14	s.f. is 300	s.f. is 501 1	s.f. is 0.060					
6.0041 to 2	63.85 to 1	0.92 to 2 s.f.	0.135 to 2					
s.f. is 6.004	s.f. is 63.9	is 0.92	s.f is 0.1					
3.0381 to 3	0.875 to 2	51.02 to 3	7.256 to 2					
s.f. is 3.04	s.f. is 0.87	s.f. is 51	s.f. is 7.3					
3694 to 3	0.0998 to 2	0.0998 to 2	0.0998 to 2					
s.f. is 369	s.f. is 0.010	s.f. is 0.100	s.f. is 0.10					
581 to 1 s.f.	5986 to 2	3.012 to 1	7038 to 2					
is 580	s.f. is 6000	s.f. is 3.0	s.f. is 7040					

	Fluency Practice								
3sf									
2sf									
1sf									
2dp									
1dp									
Number	123.456	144.402	888.888	437.3946	987.654	3 809 830.492	1.98043	4.80808	006600.66

	000 0						
S	00						
Number	5 0(
g Whole	1 000						
Roundin	500						
	100						
	50						
.:	20						
the nearest	10						
number to							
Write each	ъ						
	MLEGA TABLE	786	1 265	3 954	14 527	25 463	

Fluency Practice								
	9.99899							
	4.9956							
	17.95							
	0.049243							
INDING	7.085686							
ROL	0.920472							
	68493.549							
	5.009434							
	63.24483							
		1 sf	1 dp	2 sf	2 dp	3 sf	3 dp	

Problem Solving

Extension

Problem Solving

	Extension										
m the list.	44.53 44.71	equal.									
numbers fro	44.48 44.67	two numbe ire equal. two numbe hey are not rs.									
100ses two 1	44.44 44.63	e rounds the place they a rounds the int figures, t rea's numbe									
Andrea cł	44.37 44.55	When she 1 decimal When she 2 significa Find And									

Extension							
Find a number that works for each question.	a. When rounded to the nearest ten and to the nearest hundred, the answer is the same.	b. When rounded to one decimal place and one significant figure, the answer is the same.	c. When rounded to two significant figures and the nearest hundred, the answer is the same.	d. When rounded to the nearest five and the nearest odd number, the answer is the same.	e. When rounded to three significant figures and two decimal places, the answer is the same,		

2 Metric Units

Match each word to both description using the definitions in the table, and highlight any that aren't in common use.

Ten metres

One thousandth of a metre

One thousandth of a gram

One tenth of a litre

Ten litres

One hundredth of a gram

On hundredth of a litre

One hundredth of a metre

One thousandth of a litre

One thousand grams

One tenth of a gram

One tenth of a metre

Ten grams

One thousand litres

One thousand metres

Fill in the Gaps

Complete the missing lengths in this table:

mm	cm	m	km
50			
2000			
	350		
		26	
		600	
			0.75
			2.5

Match these lengths into equivalent pairs. Record your answers in the table at the bottom.

Workout	Juonav	wractico	
WOIKOUL		k here	Scan here
Question 1: Con	vert the following le	engths into centimet	res (cm)
(a) 4 m	(b) 9 m	(c) 12 m	(d) 59 m
(e) 750 m	(f) 105 m	(g) 2.5 m	(h) 8.2 m
(i) 1.53 m	(j) 0.6 m	(k) 0.38 m	(l) 0.03 m
Question 2: Con	vert the following le	engths into metres (r	n)
(a) 300 cm	(b) 700 cm	(c) 900 cm	(d) 1400 cm
(e) 250 cm	(f) 740 cm	(g) 1000 cm	(h) 348 cm
(i) 80 cm	(j) 70 cm	(k) 53 cm	(l) 2 cm
Question 3: Con	vert the following le	engths into centimet	res (cm)
(a) 60 mm	(b) 30 mm	(c) 65 mm	(d) 87 mm
(e) 280 mm	(f) 812 mm	(g) 2030 mm	(h) 9000 mm
(i) 7 mm	(j) 4 mm	(k) 1.3 mm	(l) 0.6 mm
Question 4: Con	vert the following le	engths into millimetr	res (mm)
(a) 2 cm	(b) 6 cm	(c) 4.5 cm	(d) 9.2 cm
(e) 13 cm	(f) 78 cm	(g) 124 cm	(h) 520 cm
(i) 0.5 cm	(j) 0.2 cm	(k) 0.8 cm	(l) 0.16 cm
Question 5: Con	vert the following le	engths into metres (r	n)
(a) 4 km	(b) 9 km	(c) 13 km	(d) 28 km
(e) 125 km	(f) 300 km	(g) 7000 km	(h) 7200 km
cm Corbett maths 7 km	Videos 349a	Metric Units , 349b, 349c on Co	orbettmaths
Question 6: Conve	ert the following leng	ths into kilometres (km)
(a) 6000 m	(b) 2000 m	(c) 5500 m	(d) 6400 m
(e) 800 m	(f) 600 m	(g) 450 m	(h) 125 m
(i) 70 m	(j) 90 m	(k) 35 m	(l) 4 m
(m) 90000 m	(n) 40000 m	(o) 340000 m	(p) 90530 m
Question 7: Conve	ert the following leng	ths	
(a) 2 m into mm	(b) 8 m into	omm (c) 6	5500 mm into m
(d) 9000 mm into	m (e) 48000 d	cm into km (f) 9	250000 cm into km
(g) 780 mm into m	(h) 4km int	o cm (i) 1	km into mm
(j) 25000000 mm	into km (k) 0.5 km i	into cm (l) 0	.023km into mm

<u>learn by heart</u>

When converting to a larger unit, divide

When converting to a smaller unit, multiply

<u>examples</u>

Convert 70cm into metres.	Convert 7m into kilometres.	Convert 84cm into mm.
70 ÷ 100	7 ÷ 1000	84 × 10
= 0.7m	= 0.007km	= 840mm

exercise 7g

1. Complete these statements:

2. Fill in the table to show equivalent lengths:

	mm	cm	m	km
А		600		
В			80	
С			1000	
D	2000			

3. Which of the following is equal to 200cm?

	a) 2000mm	b) 0.2km	c) 20m	d) 0.02km
4.	Which of the following	g is the largest?		
	a) 500cm	b) 7m	c) 0.08km	d) 9000mm

matching activity

5. Find 12 pairs of matching lengths. Record your results in the table.

	A 4m	3.5m	c 250m	ı	М	35cm	Ν	0.5kn	n	o 0.015km
	D 500m E	1.5m	F 2500r	n	. P	1.05kn	n	400cr	n	R 0.25km
	G 0.4m	0.35m	l 15m		S	350cm	ד	40cm	ı	U 105cm
	Ј 1.05m	(1050m	L 350m	ı		0.35kn	n	/ 2.5kn	n	x 150cm
	A B	C D	E	F	G	Н	I	J	K	L
6.	. True or false?									
	a) 30m = 300cm b) 5.4m = 54			= 540	cm		c) 2	.8cm=	280m	ım
7.	. Fill in the blank spaces.									
	a) 2cm + 3mm =cm			d) 6.1cm + 9mm =cm						
	b) 5cm + 1mm =cm			e) 8cm + 10mm =cm						
	c) 12cm + 8mm =cm				f) 1.1cm + 9mm =mm					
8.	3. Complete these conversions:									
	a) 0.24km =cm			d) 52,000cm =km			m			
	b) 3,400mm =m			e) 0.01m =mm						
	c) 1.9m =mm			f) 290mm =m						
9.	. Which of the following is equal to 4.05m?									
	a) 450cm	b) 405	50mm		c) 0.0	0405kn	n	d)	40.5ci	m
10.	Which of the follo	owing is the	smallesť	?						
	a) 0.002m	b) 0.7	cm		c) 0.0	00003	ßkm	d)	4mm	

Fluency Practice				
Enjoy - Improve - Succeed EVELYONG. COM	A4 Convert 32 m into cm B4 Convert 63 mm into m	C4 Convert 495 cm into km D4 Convert	19 km into mm E4 Convert 9400 mm into km	
Maths	A3 Convert 970 m into km B3 Convert 34 km into m	C3 Convert 3.6 km into mm D3 Convert	8500 mm into m E3 Convert 7 cm into km	
	 A2 Convert 740 cm into mm B2 Convert A20 m into mm 	C2 Convert 58 cm into km D2 Convert	429 mm into km E2 Convert 32.7 km into m	
	A1 Convert 26 mm into cm B1 Convert 380 cm into m	C1 Convert 21 km into cm D1 Convert	373 mm into cm E1 Convert 528 km into cm	

Question 8: Convert the following into grams						
(a) 2 kg	(b) 7 kg	(c) 19 kg	(d) 20 kg			
(e) 1.5 kg	(f) 2.4 kg	(g) 4.7 kg	(h) 0.5 kg			
(i) 0.8 kg	(j) 0.16 kg	(k) 0.03 kg	(l) 0.008 kg			
Question 9: Conv	ert the following into	kilograms				
(a) 7000 g	(b) 3000 g	(c) 12000 g	(d) 40000 g			
(e) 3945 g	(f) 600 g	(g) 850 g	(h) 735 g			
(i) 60 g	(j) 75 g	(k) 2 g	(l) 78.1 g			
Question 10: Conv	ert the following into	kilograms				
(a) 5 tonnes	(b) 8 tonnes	(c) 15 tonnes	(d) 0.6 tonnes			
(e) 1.6 tonnes	(f) 9.25 tonnes	(g) 0.3 tonnes	(h) 0.06 tonnes			
			© CORBETT			
			I			

<u>learn by heart</u>						
1 kilogram (kg) = 1000 grams 1 tonne (t) = 1000 kg						
<u>exercise</u>						
1. Fill in the gaps:						
a) 2500g =kg	b)g = 0.9kg					
c)g = 3.8kg	d) 9450g =kg					
e)g = 0.02kg	f) 0.043kg =g					
g) 3.5 tonnes =kg	h)kg = 3060g					
i) 450kg =tonnes	j) 10,000g =tonnes					
2. Which of these could be the weight of an	apple?					
a) 7.8g b) 78g	c) 780g d) 7.8kg					
3. Which of these are impossible?						
a) A real car that weighs 500g.	a) A real car that weighs 500g.					
b) A full grown man that weighs 90kg.	b) A full grown man that weighs 90kg.					
c) A laptop computer weights 150kg.						
d) A suitcase full of clothes weighs 30kg.	d) A suitcase full of clothes weighs 30kg.					
e) A recipe to make cake for 10 people us	ses 1kg of flour.					
4. Which of these could be the weight of an	elephant?					
a) 6km b) 6kg ² c) 6 tonnes	d) 60kg e) 60g f) 6 km ²					
5. Fill in the blanks with $>$, $<$ or =						
a) 360g 3kg	b) 490kg 4 tonnes					
c) 0.06kg 600g	d) 1050g 10.5kg					

- 1) Convert 576 litres to cl.
- 2) Convert 553 cl to ml.
- 3) Convert 270 litres to cl.
- 4) Convert 654 litres to cl.
- 5) Convert 90.1 cl to ml.
- 6) Convert 4700 cl to litres.
- 7) Convert 170 ml to cl.
- 8) Convert 1100 ml to cl.
- 9) Convert 7300 cl to litres.
- 10) Convert 5700 cl to litres.

learn by heart

	<u>ILL DY HEALT</u>					
Ca so m	apacity: the amo mething can ho easured in ml c	unt that old, or litres.	1 litre 1000 mil	e (l) = lilitres (ml)	100	1 litre (l) = centilitres (cl)
<u>ex</u>	<u>ercise</u>					
1.	Fill in the gaps:					
	a) 3500 <i>ml</i> = _	l		b)ml	= 41	
	c)ml =	3.6 <i>l</i>		d) 400 <i>ml</i> = _	l	
	e)ml =	0.2 <i>l</i>		f) 8.4 <i>l</i> =	cl	
	g) 20.7 <i>l</i> =	ml		h) <i>l</i> =	42 <i>cl</i>	
	i) 0.95 <i>l</i> =	ml		j) 52,000 <i>ml</i>	=	_1
2.	Fill in the blank:	0.2 <i>l</i> + 45 <i>ml</i> =	: <i>l</i>			
3.	Which of these	might be the ca	pacity of a ca	an of cola?		
	a) 3 <i>ml</i>	b) 30 <i>ml</i>	c) 300 <i>n</i>	<i>nl</i> d) 3	litres	e) 30 <i>litres</i>
4.	Which is bigger	, 1 <i>cl</i> or 1 <i>ml</i> ?				
5.	Which of the fol	lowing is $\frac{1}{100}$ of	a litre?			
	a) 1 <i>ml</i>	b) 1 <i>cl</i>		c) 100 <i>ml</i>	(d) 10 <i>cl</i>
6.	Fill in the blanks	s with >, < or =	:			
	a) 4 <i>cl</i> 1	0 <i>ml</i>		b) 6 <i>l</i>	750 <i>ml</i>	
	c) 250 <i>cl</i>	0.4 <i>l</i>		d) 3.8 <i>l</i>	380 <i>cl</i>	
7.	Which of these	could be the ca	pacity of a sv	wimming pool?)	
	a) 3 <i>l</i>	b) 300 <i>m</i>	l	c) 300,000 <i>l</i>	(d) 3,000,000 <i>1</i>

<u>X</u> ز	<u>amples</u>	How many minutes is $\frac{1}{10}$	Convert 3.2 hours to	Convert 3.2 hours to minutes				
С	onvert 150 minutes to hours 1 hour = 60 minutes, 150 ÷ 60 = 2.5	of an hour? 1 hour = 60 minute 60 ÷ 10 = 6 minute	s, 1 hour = 60 3.2 × 60 = 19;	, minutes 2 minute:				
X	<u>ercise 7n</u>							
	Convert each of these to m	ninutes:						
	a) 5 hours	e) 4 hours & 15 minute	i) $3\frac{1}{5}$ hours					
	b) $\frac{1}{2}$ an hour	f) $1\frac{1}{4}$ hours	j) 0.3 hours					
	c) $\frac{1}{10}$ of an hour	g) $\frac{3}{4}$ of an hour	k) $1\frac{3}{5}$ hours					
	d) 2.5 hours	h) 3.25 hours	I) 2.9 hours					
2.	Convert each of the followi	ig times to hours and minutes.						
	a) 110 mins	b) 70 m	ins					
	c) 345 mins	d) 420 r	nins					
3.	Match each time interval b the boxes on the right.	elow with a time in minute	s from 185 mins	90 mins				
	A 2 hours 15 mins 2 hou	urs 35 mins $\begin{bmatrix} C \\ 1\frac{3}{4} & 1 \end{bmatrix}$	s 155 mins	180 mins				
	D 1 hour 40 mins 3 hou	urs 5 mins $\begin{bmatrix} F \\ 3\frac{1}{2} \end{bmatrix}$ hours		 100 mins 135 mins 80 mins 				
	G H							
	1 hour 20 mins 3	¹ / ₄ hours 3 hours						
	$\begin{bmatrix} J \\ 1\frac{1}{2} \text{ hours} \end{bmatrix} \begin{bmatrix} K \\ 1 \text{ hours} \end{bmatrix}$	ur 55 mins $2\frac{1}{2}$ hours	3 105 mins	115 mins				
	ABCD	EFG		K L				

a) 1.2 hours b) 65 minutes c) $1\frac{1}{3}$ hours d) 1.3 hours

<u>examples</u>

The time is 17:45. What time will it be in 20 minutes? 15 minutes will make 18:00, so it will be 18:05 Work out the number of minutes between 13.48 and 14.25 60 - 48 = 1212 + 25 = 37 minutes

<u>exercise 70</u>

1.	Each of the following times a Convert each to 12-hour clo	are given in 24-hour clock for ock format. The first one is dor	mat. ne for you.
	a) 14 28 2:28 pm	b) 13 15	c) 07 45
	d) 18 30	e) 11 28	f) 21 40
	g) 04 10	h) 00 50	i) 12 33
2.	Each of the following times a Convert each to 24-hour clo	are given in 12-hour clock for ock format. The first one is dor	mat. ne for you.
	a) 3:27 pm 15 27	b) 8:23 am	c) 8:56 pm
	d) 10:20 pm	e) 3:00 am	f) 6:30 pm
	g) 12:08 am	h) 12:38 pm	i) 11:17 pm
3.	Which of these times are in	the afternoon? Circle all that a	apply.
	a) 9:04 am b) 15.	01 c) 13.30	d) 4pm
4.	Work out how many minutes	s there are between:	
	a) 14.05 & 15.00	b) 11.10 & 12.00	c) 10.02 & 11.05
	d) 18.12 & 19.00	e) 10.06 & 10.45	f) 12.35 & 13.12
5.	The time is 13.05. What time	e will it be in 55 minutes?	
6.	The time is 14.25. How mar	y minutes is it until 3pm?	
7.	The time is quarter past thre	ee in the afternoon. What time	will it be in 20 minutes?
8.	The time is 15.15. How mar	y minutes is it until 5pm?	

9. Each flow diagram shows a starting time, an interval and an end time. Work out the missing parts:

- 10. A film starts at 7:30pm and lasts 110 minutes. At what time does the film finish?
- 11. It takes Sam $1\frac{1}{4}$ hours to travel to work. Sam set off for work at 8:50am. At what time did Sam arrive at work?
- 12. At an activity day, there are three sessions, each lasting 45 minutes.
 - a) Work out the total duration of the three sessions.
 - b) The first session starts at 10:30 am and there are no gaps between the sessions. Work out the time at which the last session ends.
- 13. A theatre show consists of two acts with a 20 minute interval. The first act is 1 hour 10 minutes long and the second act is 55 minutes long. The show starts at 7:30pm. Work out the finishing time of the show.
- 14. It takes 40 minutes for Claudia to travel from home to work. Claudia is due to start work at 10:30 am. Work out the lastest time that she could leave home in order to arrive at work on time.
- 15. Rebecca arrived at the gym at 3:50pm.
 She stayed at the gym for 1 hour and 20 minutes, then walked home.
 It took Rebecca ³/₄ hour to walk home. At what time did Rebecca get home?
- 16. Rob started gardening at 11:45 am and finished at 2:00 pm. During this time, Rob took a 20 minute break. How long was Rob gardening for?
- 17. Patients can book an appointment to see a doctor for ten minutes. In the morning, the doctor sees patients between 8:50 am and 11:30 am. The doctor also takes a 20 minute break during this time. Work out how many patients the doctor can see in the morning.

Write down the times shown. Give them in both 12-hour (am/pm) and 24-hour clock format.

(a) An overnight train sets off at 10 pm and arrives at 5.30 am. How long, in hours and minutes, is the journey?
(b) A TV programme starts at 5.35 pm and finishes at 7.12 pm. How long, in minutes, is the programme?
(c) A factory worker starts his shift at 8.12 am and finishes it at 4.43pm. How long, in hours and minutes, is his shift?

(a) Younis starts watching a film at 5.45
pm. The film lasts 2 hours 27 minutes.
What time does the film finish?
(b) A plane takes off at 3.40 am. The length of the flight is 10 hours 45
minutes. What time does the plane land?
(c) A concert lasts 3 hours 27 minutes.
The concert finishes at 9.58 pm. What time did the concert start?

(a) What time is 1500 seconds after16:10?(b) What time is 2100 seconds before15:45?

10

In each box, cross off pairs of time intervals that are **equal** to each other. Circle the time interval that is left over.

Times shown are in hours (h) and minutes (m).

Convert the following:

(a) 800 cm into m	(b) 500 cm into m
(c) 1500 cm into m	(d) 520cm into m
(e) 6 m into cm	(f) 13 m into cm
(g) 6.7 m into cm	(h) 5.82 m into cm

Convert the following:

- (a) 4000m into km (b) 7000m into km
- (c) 7600m into km (d) 8625m into km
- (e) 3 km into m (f) 3.2 km into m
- (g) 4.56 km into m (h) 1.87 km into m

Convert the following:

- (a) 5 cm into mm (b) 80 cm into mm
- (c) 3.5 cm into mm (d) 8.9 cm into mm
- (e) 20 mm into cm (f) 45 mm into cm
- (g) 31 mm into cm (h) 17 mm into cm

Convert the following:

- (a) 6 kg into g
 (b) 6.7 kg into g
 (c) 6.82 kg into g
 (d) 0.75 kg into g
 (e) 2000 g into kg
 (f) 2800 g into kg
- (g) 1750 g into kg (h) 600 g into kg

Convert the following

- (a) 2000 ml into L $\,$ (b) 4500 ml into L
- (c) 6 L into ml (d) 7.8 L into ml

In a 100 m race, when the winner crossed the finish line, the runner in last place had covered 91.72 m. What was the gap in cm between the first and last runners?

App	y Extension
Question 1:	Jack is 1.36 metres tall. His friend Ian is 5 centimetres taller than Jack. What height is Ian? Give your answer in metres.
Question 2:	Mary runs 600m every day. Work out how far Mary runs in one week. Give your answer in kilometres.
Question 3:	Karl is baking a loaf of bread and needs 0.8 kg of flour He has 72 grams of flour. How much more flour does Karl need? Give your answer in grams.
Question 4:	James and Jack buy a 3 litre carton of orange juice. Each boy drinks 650 ml of orange juice. How much orange juice is left? Give your answer in litres.
Question 5:	Rebecca has two dogs, Lucky and Pepe. Lucky weighs 5.4 kilograms. Pepe is 800 grams lighter than Lucky. Work out how much Pepe weighs. State your units.
Question 6:	A 2p coin has a mass of 7 grams. Find the total mass of £80 worth of 2p coins. Give your answer in kilograms.
Answ	ers
	Click here Scan here © CORBETTMATHS 20

3 Properties of 2D Shapes

T

ł

Challenge

Question 1

How many letters of the word MATHEMATICS do not have any lines of symmetry?

Question 2

The diagram shows a poster which Beatrix has (this way up!) on her wall. When Beatrix was standing on her head, looking in a mirror on the opposite wall at the poster on the wall behind her, how many letters could still be read in the normal way?

Question 3

The diagram shows a pattern made from matchsticks stuck to a piece of card. What is the smallest number of matchsticks that need to be added so that the resulting pattern has a line of symmetry?

Question 5

What is the smallest number of additional squares which must be shaded so that this figure has at least one line of symmetry and rotational symmetry of order 2?

Ouestion 7

The figure shows an equilateral triangle divided into small equilateral triangles, all equal. What is the lowest number of small triangles which must now be shaded to produce a figure which has a line of symmetry?

The diagram shows a weaver's design for a rihlélo, a winnowing tray from Mozambique. How many lines of symmetry does the design have?

learn by heart

A shape has **rotational symmetry** if it looks exactly the same after rotating by less than a full turn.

A shape's **order of rotational symmetry** is the number of times it looks the same in a full turn.

exercise 3f

1. State the order of rotational symmetry of each shape, or write 'none' if the shape has no rotational symmetry.

- 2. State the order of rotational symmetry of a regular octagon.
- 3. Sketch a hexagon with a rotational symmetry of order 2.
- 4. State the order of rotational symmetry of each drawing, or write 'none' if the drawing has no rotational symmetry.

- ^{5.} DEGHIMNSUWXZ
 - a) Which of the letters have rotational symmetry?
 - b) Which of the letters have rotational symmetry **and** at least 1 line of symmetry?

	Flags of the W	Iorld Sym	metry		
	Country		Country		
۲	Number of Lines of Symmetry		Number of Lines of Symmetry		
	Order of Rotational Symmetry		Order of Rotational Symmetry		
	Country		Country		
*	Number of Lines of Symmetry	思定机的	Number of Lines of Symmetry		
	Order of Rotational Symmetry		Order of Rotational Symmetry		
	Country	W	Country		
Nº S	Number of Lines of Symmetry		Number of Lines of Symmetry		
and set at	Order of Rotational Symmetry		Order of Rotational Symmetry		
	Country		Country		
	Number of Lines of Symmetry		Number of Lines of Symmetry		
	Order of Rotational Symmetry		Order of Rotational Symmetry		
	Country		Country		
-	Number of Lines of Symmetry		Number of Lines of Symmetry		
	Order of Rotational Symmetry	W - Mi	Order of Rotational Symmetry		
	Country	Ŵ	Country		
	Number of Lines of Symmetry		Number of Lines of Symmetry		
	Order of Rotational Symmetry		Order of Rotational Symmetry		
	Country		Country		
Ö	Number of Lines of Symmetry		Number of Lines of Symmetry		
	Order of Rotational Symmetry		Order of Rotational Symmetry		
	Country	62829	Country		
*	Number of Lines of Symmetry		Number of Lines of Symmetry		
	Order of Rotational Symmetry		Order of Rotational Symmetry		
× ×	Country		Country		
* *	Number of Lines of Symmetry	*	Number of Lines of Symmetry		
* *	Order of Rotational Symmetry		Order of Rotational Symmetry		
	Country	*	Country		
	Number of Lines of Symmetry	*	Number of Lines of Symmetry		
	Order of Rotational Symmetry		Order of Rotational Symmetry		
	Country		Country		
	Number of Lines of Symmetry		Number of Lines of Symmetry		
	Order of Rotational Symmetry		Order of Rotational Symmetry		
	Country		Country		
*	Number of Lines of Symmetry		Number of Lines of Symmetry		
	Order of Rotational Symmetry		Order of Rotational Symmetry		

Workout

FluencyePractice Scan here

Question 6: Draw an equilateral triangle

Apply

© CORBETTMATHS 2016

s (big	equilateral				e can be	aw an nd try to say
able like this wings):	isosceles				, if a triangle	e-angled, dr mpossible, a
Draw up a t contain <i>dra</i>	scalene				o left square	ne and acut Put X if it's i plete the tal
Triangles. enough to		acute- angled	obtuse- angled	right- angled	For the top	both scale example.] whv. Com

Extension

What Quadrilateral am I?

The following quadrilaterals have not been drawn to scale, but each one has some markings that tell you something about it. If you used the information to construct the quadrilateral, but didn't include any additional features that have not been shown, what is the best name for the quadrilateral? Here are the choices:

quadrilateral, kite, trapezium, parallelogram, rhombus, rectangle, square Write the best name for the quadrilateral on each diagram.

learn by heart

Rectangles & Squares are special parallelograms

exercise 8b

1. Which of the shapes below are parallelograms? Circle 2 answers.

6. On the grid draw in extra lines to make 3 parallelograms:

/									

- 7. True or False?
 - a) A square has four equal sides.
 - b) The sides of a square are perpendicular to each other.
 - c) A square is a type of parallelogram.
 - d) A rectangle always has four equal sides.
 - e) The opposite sides of a rectangle are parallel.
 - f) A parallelogram can have four equal sides.
 - g) You can cut a parallelogram in half to make two triangles.
- 8. How many parallelograms are in the picture?

9. Complete the lines draw to show each shape:

learn by heart

exercise 8c

1. State whether each of these shapes is a rhombus, kite or trapezium:

Problem Solving

	Alway	ys, Som	etimes,	Never	
3. A rectangle is a square.	6. A square is a rhombus.	9. A square has opposite angles congruent.	22. A rhombus is a rectangle.	25. A rectangle is a rhombus.	 The diagonals of a rhombus are congruent.
 The diagonals of a rhombus are perpendicular. 	5. A trapezoid has opposite sides parallel.	8. A trapezoid has legs congruent.	 A rectangle has perpendicular diagonals. 	14. A parallelogram has diagonals that bisect each other.	17. A parallelogram has diagonals that bisect angles.
1. A square is a rectangle.	4. A rhombus is a square.	7. A parallelogram is a rectangle.	10. A parallelogram has congruent diagonals.	13. A parallelogram is a quadrilateral.	16. A rhombus has congruent diagonals.

Problem Solving

Cut out the nine shape cards and arrange them into a 3×3 grid using the clues below:

- 1. The equilateral shapes are all in different columns.
- 2. Each shape in the middle row has two sets of parallel lines.
- 3. The shapes in the top two corners each have exactly one line of symmetry.
- 4. One of the rows contains a total of 10 sides.
- 5. The square is in a corner below the parallelogram.
- 6. The shape in the centre has all angles the same, but its diagonals do not intersect at right angles.
- 7. The shape with two pairs of equal adjacent sides is not in the same column as the square.
- 8. The shape with the most sides is in the bottom right hand corner.

	Extension							
	6)	a hexagon with two lines of symmetry and two reflex angles	12)	a quadrilateral with diagonals that bisect each other	18)	an octagon with one line of symmetry (only)	24)	a dodecagon with only four lines of symmetry
	5)	a hexagon with just one line of symmetry and with five right angles	11)	four congruent (identical) kites surrounding a point	17)	an octagon with four lines of symmetry (only)	23)	a hexagon with only rotational symmetry, order 3
	4)	a trapezium made up of a square and an isosceles triangle	10)	a quadrilateral with just one line of symmetry which does not pass through any of the vertices (corners)	16)	a kite that is a trapezium	22)	a decagon with only two lines of symmetry
	3)	a parallelogram made up of two isosceles right angled triangles	9)	a hexagon made up of four isosceles right angled triangles	15)	a hexagon with one line of symmetry (only) and two right angles	21)	a heptagon with only one line of symmetry and four right angles
	2)	an isosceles triangle with one obtuse angle	8)	a pentagon with two sides parallel, one reflex angle and one line of symmetry	14)	an octagon with (exactly) five right angles	20)	a quadrilateral with two equal length diagonals and 1 reflex angle
sketch the shape	1)	a triangle with a right angle that is isosceles	7)	a quadrilateral with perpendicular diagonals and two pairs of equal sides	13)	an octagon with rotational symmetry, order 2 and with six right angles	19)	a hexagon with only rotational symmetry, order 2

4 Area and Perimeter

Workout

Fluency Practice

UK-2-34

Question 2: The following shapes are drawn on centimetre-squared paper. Find the perimeter of each shape.

Appl	y Extension				
Question 1:	On centimetre-square paper, draw a rectangle with a perimeter of 14cm				
Question 2:	On centimetre-square paper, draw three different rectangles with an perimeter of 18cm				
Question 3:	A square has a perimeter of 24cm. (a) Draw this square on centimetre-square paper. (b) Find the area of the square.				
Question 4:	A rectangle has an area of 12cm ² . (a) Draw three possible rectangles on centimetre-square paper. (b) Find the perimeter of three rectangles.				
Question 5:	A square has an area of 49cm ² (a) Draw this square on centimetre-square paper. (b) Find the perimeter of the square.				
Question 6:	Draw a shape that has one line of symmetry and a perimeter of 10cm				
Question 7:	Jasmine says the perimeter of this shape is 12cm.				
Question 8:	An "equable" shape is a shape where the area and perimeter of the shape have the same numerical value.				
	The shape shown has an area of 26cm ² and a perimeter of 26cm.				
	Draw four more equable shapes.				
Question 9:	Martin has drawn the shape below.He says it is possible to draw a shape with thesame area but a larger perimeter.Show Martin is correct.				
Answe	Answers				

Click here Page 196

Scan here

© CORBETTMATHS 2019

For each question, nibble off one square

each time but keep the same perimeter

4			

5			

6			

10			

12			

For each question, draw a shape using the

following instructions on the grids below

1) Draw a shape

where the value of the perimeter is more than the number of squares used.

3) Draw a shape
 where the value of
 the perimeter is
 equal to the number
 of squares used.

 4) Draw a shape where the value of the perimeter is three times larger the number of squares used.

5) Draw a shape where the value of the perimeter is twice as large the number of squares used.

6) The largest perimeter
you can make on a 5 by
5 grid has a length of 34.
Draw a shape with a
perimeter of 34 units.

For each grey grid, find the maximum

perimeter shape that will fit inside it

4 *cm*

Extension

perimeter

2. Use a ruler to measure the perimeter of these shapes.

Give your answer in cm.

3. Draw a shape with a perimeter of 20cm.

4. Draw a different shape with a perimeter of 20cm.

perimeterDiagrams not to scaleexampleCalculate the perimeter of this shape:8 cm= 8 cm + 5.5 cm + 6.2 cm + 4 cm4 cm= 23.7 cm62 mm

<u>questions</u>

5. These shapes are not drawn accurately. Calculate their perimeter. Give your answer in cm.

perimeter

Diagrams not to scale

<u>questions</u>

6. These diagrams are drawn on cm squared paper. Work out their perimeters.

7. On the cm squared paper below, draw two different shapes each with a perimeter of 10cm

Extension

More-Same-Less

Workout

Fluency Practi Scan here

Appl	y Extension
Question 1:	On centimetre-square paper, draw a rectangle with an area of 10cm ²
Question 2:	On centimetre-square paper, draw three different rectangles with an area of 12 cm^2
Question 3:	A square has an area of 25cm ² . (a) Draw this square on centimetre-square paper. (b) Find the perimeter of the square.
Question 4:	A rectangle has an area of 30cm ² . (a) Draw two possible rectangles on centimetre-square paper. (b) Find the perimeter of both rectangles.
Question 5:	A square has a perimeter of 12cm (a) Draw this square on centimetre-square paper. (b) Find the area of the square.
Question 6:	Draw a shape that has one line of symmetry and an area of 8cm ²
Question 7:	Draw a shape that has two lines of symmetry and an area of 10cm ²
Question 8:	Jasmine says the area of this shape is 10cm. Explain her mistake.
Answe	ers

Click here Page 241

Scan here
Extension

Here are two methods for finding the area of a polygon.

Copy these shapes on to squared paper.

Choose one of the methods or your own to find the areas of these shapes.

Can you work out the area of these squares? Break them into rectangles and triangles to help.

Once you know the area, can you work out the exact edge length of each square?

Can you draw a square with an area of 10cm²? What about area 2cm²? 3cm²? Which areas can form a square and which areas cannot? Try out your ideas here:

These shapes are huge. What would be a quick way of counting the squares inside them?

These shapes are drawn on plain paper. They are not drawn accurately. Look at the side lengths—how many 1cm by 1cm squares would fit inside each shape?

Find the area of each of these shapes.

7 cm

6 *mm*

(b)

(d)

14 cm

3 cm

3 m

(a)

7

ст

(c)

4.5 mm

L cm

5 cm

L mm

A rectangle has an area of $42 \ cm^2$. Find as many possible pairs of lengths and widths as you can.

Workout

Fluency Practice

Extension

Sami worked out the area of the orange shape as $10 \times 4 + 8 \times 7 = 96 \text{ cm}^2$

Razina worked out the area as $12 \times 7 + 3 \times 4 = 96 \text{ cm}^2$

Lukas worked out the area as $10 \times 10 - 2 \times 2 = 96 \text{ cm}^2$

are you convinced by Sami, Razina or Lukas's reasoning?

explain your answer

Workout

Eluency Practi Scan here

Question 2: Work out the area of each of the parallelograms below. Include suitable units.

Question 3: A parallelogram has a base of 8cm and a perpendicular height of 6cm. Calculate the area of the parallelogram.

© CORBETTMATHS 2016

Find the missing measurements in each

0

(b) $Area = 67.5 \ cm^2$

9

ст

b cm

(a) $Area = 42 \ cm^2$

7 ст

h

ст

Find the area of each of the following parallelograms:

Gamma Exercise

Find the area of each of the following parallelograms:

Exam Questions

Exam-style question 1

Six identical parallelograms are tiled as shown to form one large parallelogram with a base of 8 metres, as shown in the diagram.

This large parallelogram has a total area of 32 m^2 .

Work out the height, h, of one tile, in metres.

Exam-style question 2

Keith draws a parallelogram whose base is twice its perpendicular height.

The area of the parallelogram is 72 cm^2 and the two sides which are not parallel to the base are 8 cm long.

Find the base and height of the parallelogram.

Exam-style question 3

Here is a grid made up of equilateral triangles. Each small triangle has an area of 5 cm^2 .

What is the area of the shaded parallelogram?

learn by heart

Area of Squares, Rectangles & Parallelograms: base × perpendicular height

<u>examples</u>

exercise 8f

1. Work out the area of each shape. Pay careful attention to the units.

Fluency Practice In these shapes, all lengths given are in centimetres. 3. Calculate the area, giving your answer as a decimal: 9 b) a) c) 1 3 5 $1\frac{2}{10}$ Explain why we can't work out 4. the area of this shape: 5cm 8cm This rectangle and parallelogram have 5. the same area. ? 3cm 4cm Can you work out the length marked ? 6cm 8cm 6. Which calculation works out the area of this parallelogram? c) 7 × 8 d) 5 × 7 a) 5 × 10 b) 10 × 8 10 7. The grid is made of 1cm by 1cm squares. Draw three different parallelograms with an area of 10cm² 8. This grid is made of 1cm by 1cm squares. Draw three squares with areas of 4 cm² , 9 cm² and 16 cm²

Fill in the Gaps

Question	Diagram	Base	Perpendicular Height	Calculation	Area
(a)	2cm 8cm	8 cm	2 cm	8 × 2	16 cm ²
(b)	4cm				
(c)	12cm 8cm				
(d)	5cm 9cm				
(e)	5cm 4.5cm				
(f)	ycm x				27 cm ²
(g)		5 cm			40 cm ²
(h)					48 mm²
(i)	× 8cm				
(j)					xy cm²

Fill in the Gaps

Workout

Fluency Pract Scan here

Question 2: Find the area of each triangle.

Question 3: Find the area of each triangle.

Question 4: Find the area of the triangle with a base of 12cm and perpendicular height of 9cm.

Question 5: Find the area of the triangle with a base of 9cm and perpendicular height of 14cm.

Question 6: Find the area of the triangle with a base of 19cm and perpendicular height of 7cm.

Exam Questions

Exam-style question 1

Four identical triangles are tiled as shown to form one large triangle with a base of 12 metres, and a height of 10 metres, as shown in the diagram.

Work out the area of one tile.

Exam-style question 2

Tyler draws a triangle whose base is equal to its perpendicular height.

The area of the triangle is 18 cm², and one of the sides is 9 cm long.

Find the base and height of the triangle.

Exam-style question 3

Here is a grid made up of equilateral triangles. Each small triangle has an area of 5 cm^2 .

What is the area of the shaded triangle?

Purposeful Practice

5. Calculate the area of each triangle. Lengths are all measured in cm.

6. On the grid, draw two more triangles with the same area as the one given:

7. The area of the triangle is 3 times bigger than the area of the parallelogram. Work out x.

Fill in the Gaps

Question	Diagram	Base	Height	Calculation	Area
(a)	8cm 10cm 6cm	6 cm	8 cm	$\frac{6 \times 8}{2}$	24 cm ²
(b)	4cm 7cm				
(c)	12cm 5cm				
(d)	9cm 3cm				
(e)	9cm 13cm 6cm				
(f)		7 m	6 m	$\frac{7 \times 6}{2}$	
(g)				$\frac{3 \times 5}{2}$	
(h)		8 mm			12 mm ²
(i)					18 cm ²

Workout

Fluency Practice

Scan here

Find the area of each of these trapezia. Give units with your answer.

Calculate the area each of these trapezia.

(b)

9 mm

8 m

6 min

Give units with your answer.

7 cm

0

cm

.

(a)

8 Cm

9 cm

bcm

Gamma Exercise

Find the missing length in each trapezium, given its area:

(2)

(4)

10 cm

СIJ

Delta Exercise

The area of this trapezium is 8 cm^2 . You want to increase its area to 9 cm^2 by extending the length of one of the three indicated sides. You can do this in three ways:

5 cm

8 cm²

(a) Find the values of *p*, *q* and *r*.

(b) Which trapezium has the longest unlabelled edge?

Exam Questions

Exam-style question 1

The trapezium in the diagram has an area of 18 cm². Find its height.

Exam-style question 2

An 8×12 cm rectangle of paper has had a piece cut out of it, as shown in the diagram.

By calculating the area of the piece that was cut out, show that the remaining paper has an area of 76 cm².

learn by heart

<u>exercise 8h</u>

1. Calculate the area of each trapezium:

Fill in the Gaps

Example Calculate the area: Area of Rectangle = $50cm^2$ Area of triangle = $\frac{4 \times 10}{2} = 20cm^2$ Total Area = $70cm^2$ 10cm

<u>exercise 8j</u>

1. Calculate the area:

5cm

e)

2. Calculate the area of these shapes. All the lengths are measured in cm.

<u>example</u>

<u>exercise 8k</u>

1. Calculate the shaded area of each shape:

e)

f)

d)

h)

4cm

10cm

3cm

d)

b)

<u>challenge</u>

C)

Extension

Problem Solving

The shapes below have the same area. Fill in the gaps using only the numbers 1 to 10. You can only use each number once.

Instructions: Complete the remaining boxes with different rectangles by making the minimum change possible to the centre box. If there are boxes that cannot be filled in, say why.

Interwoven Maths

