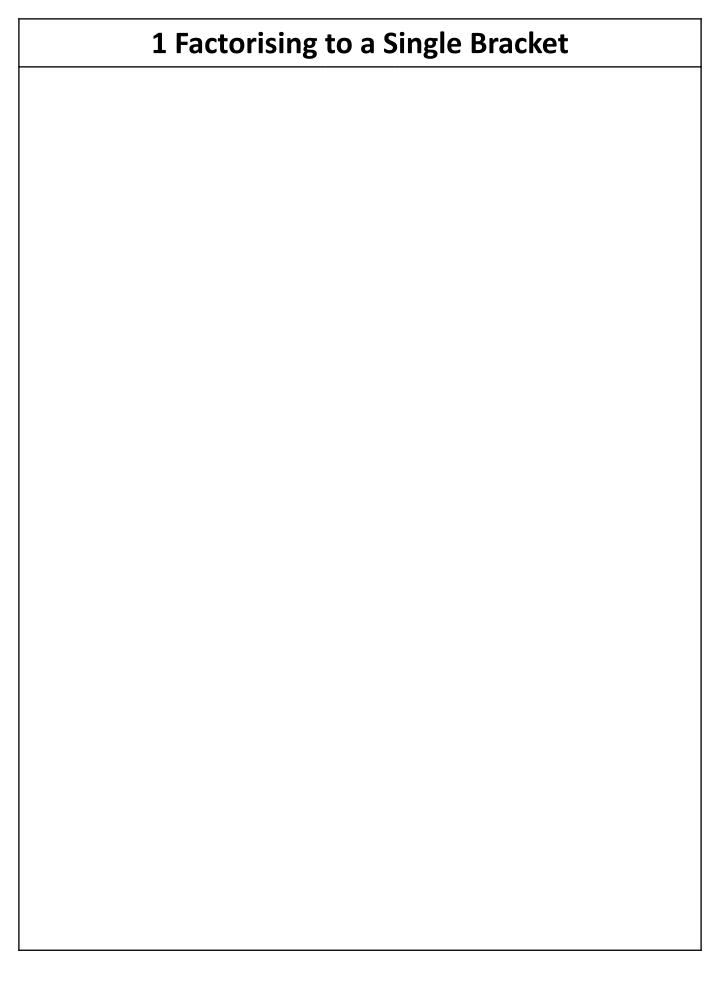
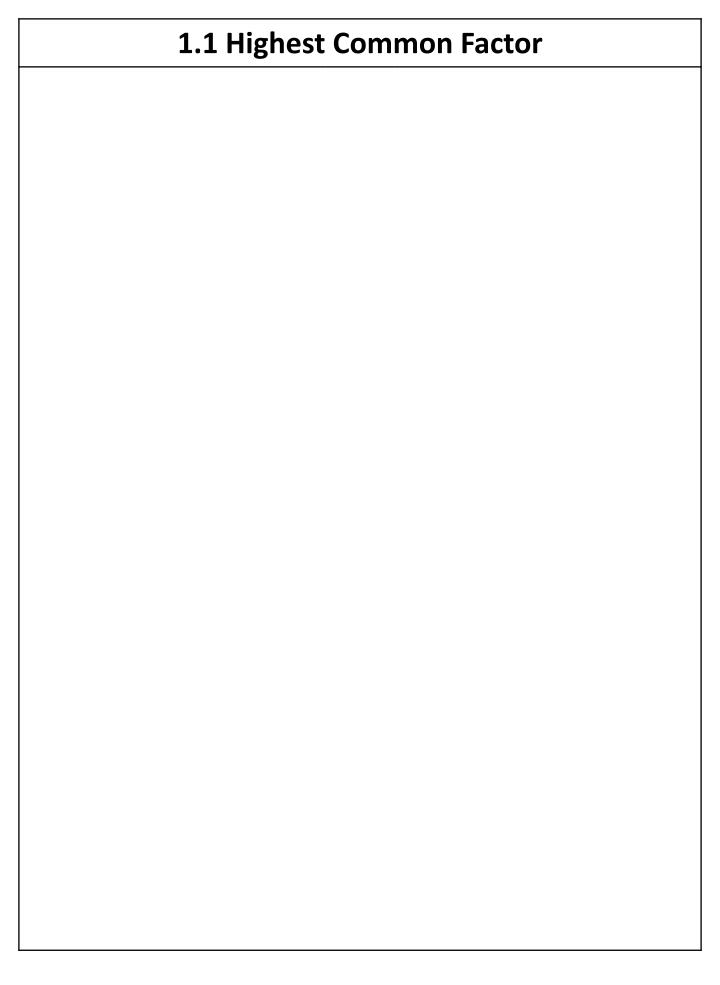


Year 8 2023 Mathematics 2024 Unit 8 Booklet

HGS Maths

Tasks


Dr Frost Course



Name:										

Class: _____

	Contents
1	Factorising to a Single Bracket
1.1 1.2 1.3 1.4	Highest Common Factor Factorising to a Single Bracket Factorising to a Single Bracket with Index Laws Finish Factorising
2	Solving Linear Equations 2
2.1 2.2 2.3 2.4 2.5	Brackets Both Sides Variable in the Denominator Cross Multiplication Forming and Solving Equations
3	Sequences
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10	Finding the Next Term Constant Differences Term to Term Rule Types of Sequences Position to Term Rule Generating Sequences Linear Sequences Patterns Fibonacci-Type Sequences Is a Term in the Sequence?

	Worked Example									Your Turn								
Write the following as a product of factors: a) $3a$ b) $6a$ c) $6a^2$ d) $6a^2b$								Write the following as a product of factors: a) $2b$ b) $12b$ c) $12b^2$ d) $12a^2b^2$								ct		

	Work		Your Turn											
Find of: a) 3 b) 6 c) 3 d) 4	Find the highest common factor of: a) $2b$ and $3b$ b) 6 and $12b$ c) $6b$ and $12b^2$ d) $8a^2b$ and $12a^2b^2$									or				

1.2 Factorising to a Single Bracket

Factorising means:

To turn an expression into a **product** of factors.

Year 8 Factorisation

$$2x^{2} + 4xz$$

$$\xrightarrow{\text{Factorise}} 2x(x+2z)$$

Year 9 Factorisation

$$x^2 + 3x + 2$$

$$\xrightarrow{\text{Factorise}} (x+1)(x+2)$$

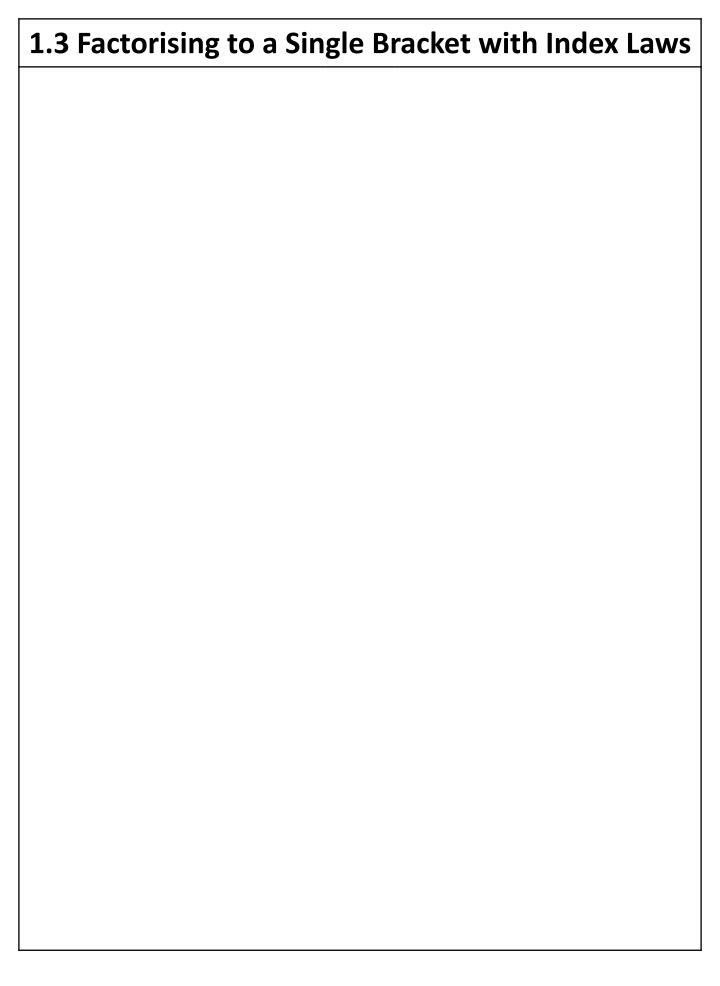
A Level Factorisation

$$2x^3 + 3x^2 - 11x - 6 \xrightarrow{\text{Factorise}} (2x+1)(x-2)(x+3)$$

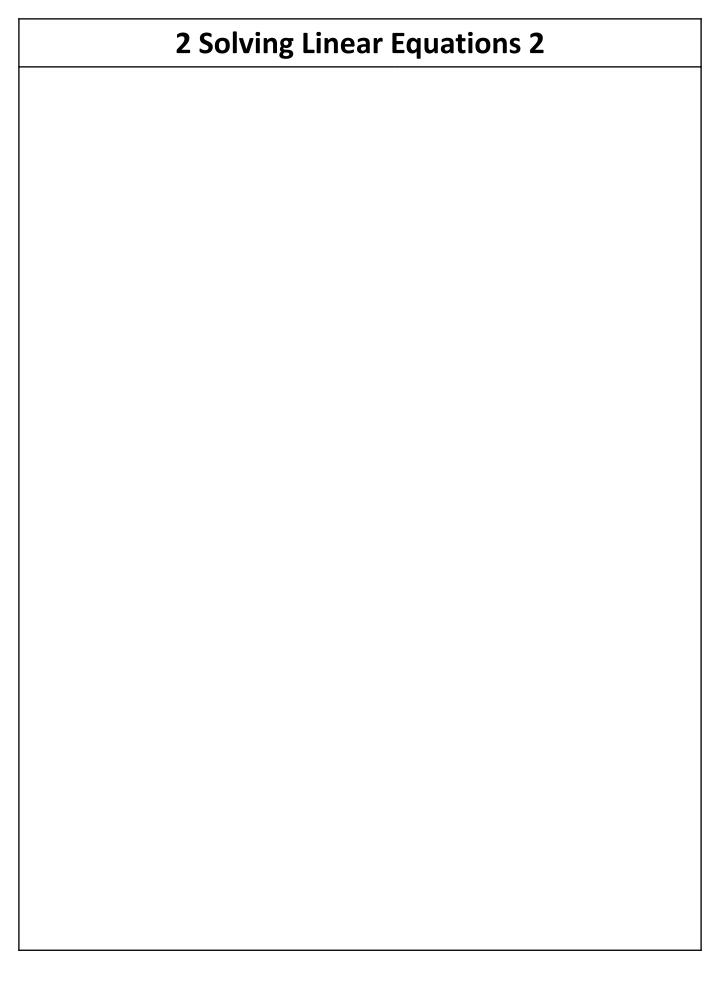
Factorising is the **reverse of expanding**.

When you have a sum of terms, just **identify the common factor**. i.e. Find the largest expression each of your terms is divisible by.

Worked Example	Your Turn
a) Factorise $12x + 18$ b) Factorise $12x + 18y$ c) Factorise $12x^2 + 18$	a) Factorise $12x - 20$ b) Factorise $12x - 20y$ c) Factorise $12x^3 - 20$


Your Turn								
a) Factorise $12x^2 - 20x$ b) Factorise $12x^2 - 20xy$ c) Factorise $12x^2y - 20xy^2$								

Fill in the Gaps


Expanded Expression	HCF of Numbers	HCF of Variables	Factorised Expression
7x + 14	7		7(x + 2)
20 + 30a	10		10(+)
15b - 5	5		
12x + 15			
30a - 12b			
8cd + de		d	d(+)
10a + ab			
x^2-5x		х	
$6x^2 + xy$			
4ab + 8b	4	b	4b(+)
10 <i>cd</i> – 25 <i>de</i>	5	d	
$4x^2 + 2x$			
$14xy - 21x^2$			
6x + 3 - 9y			
$5x^2 - 10xy + 20x$			
$24a^2b + 16abc$			
			(x-3z)
$12x + \boxed{ -16yz}$			$4(\boxed{}+2y-\boxed{})$
$35a^2b^2 + $			$(5a^2b + 2cd)$

	Work)				Yo	ur	Tu	rn						
a)	forise: x^4y^2 $10x^7$	$-x^3$	y^{5} $25x^{3}$	<i>y</i> ²		Factorise: a) $x^2y^5 - xy^3$ b) $20e^5f^2 - 12e^2f$									

1.4 Finish Factorising

	Worked	Example		•	Your	Turn						
a)	sh factorisi $4(10x + 4(30x +$	50)	a)	Finish factorising: a) $4(5x + 15)$ b) $4(25x + 15)$								

2.1 Brackets
To solve an equation means that we find the value of the variable(s).
Strategy: To get x on its own on one side of the equation, we gradually need to 'claw away' the things surrounding it.
Note: In algebra, we tend to give our answers as fractions rather than decimals (unless asked). And never recurring decimals. Don't round also (unless asked).

Worked Example Your Turn Solve the following equations: Solve the following equations: 4(x+8) = 506(x-8)=50a) a) b) 6(3x - 8) = 50b) 4(2x + 8) = 50

Worked Example Your Turn Solve the following equations: Solve the following equations: a) -4(2x + 8) = 50a) -6(3x + 8) = 50b) -4(2x - 8) = 50b) -6(3x - 8) = 50

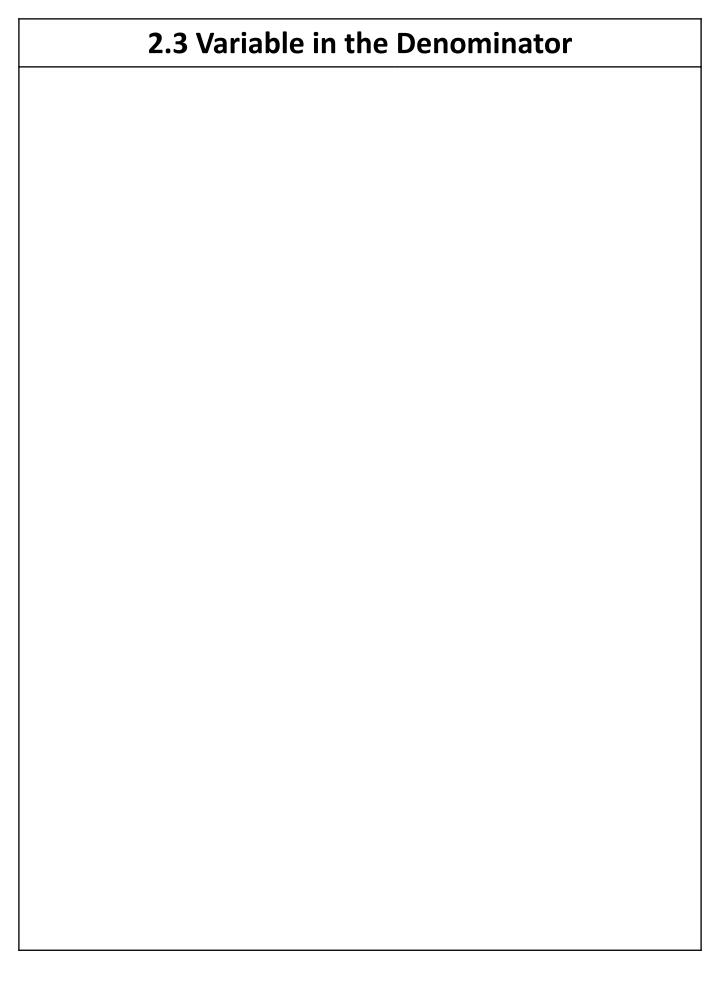
	Worked Example												Yo	ur	Tu	rn			
Sola) a) b)	8((x +	follo - 3) - 3)	+ 3	(2x)	+6) =	84		Solve the following equations: a) $3(x-3) + 4(2x-6) = 110$ b) $3(x-3) - 4(2x-6) = 110$									

	2.2 Both Sides												
•	Collect the variable terms (i.e. the terms involving x) on one side of the equation, and the 'constants' (i.e. the individual numbers) on the other side.												
•	Collect the variable terms on the side of the equation where there's more of them (and move constant terms to other side).												

Balancing

- We eliminate the variable from the side with the smaller number of the variable.
- We eliminate the variable by applying the inverse to both sides.

Which side do you eliminate the variable from? How would you balance both sides?


- 3x + 4 = 2x + 6
- 2x + 4 = 3x + 6
- 2x 4 = 3x 6
- 4 2x = 3x 6
- 4 2x = 6 3x

Worked Example Your Turn Solve the following equations: Solve the following equations: a) 5x + 7 = 3x + 23a) 5x + 7 = 2x + 31b) 2x - 23 = 7 - xb) 2x - 23 = 12 - 3x

Worked Example Your Turn Solve the following equations: Solve the following equations: 17x = 10x + 2110x = 13x - 21a) a) b) 13x = 10x - 21b) 10x = 17x + 21

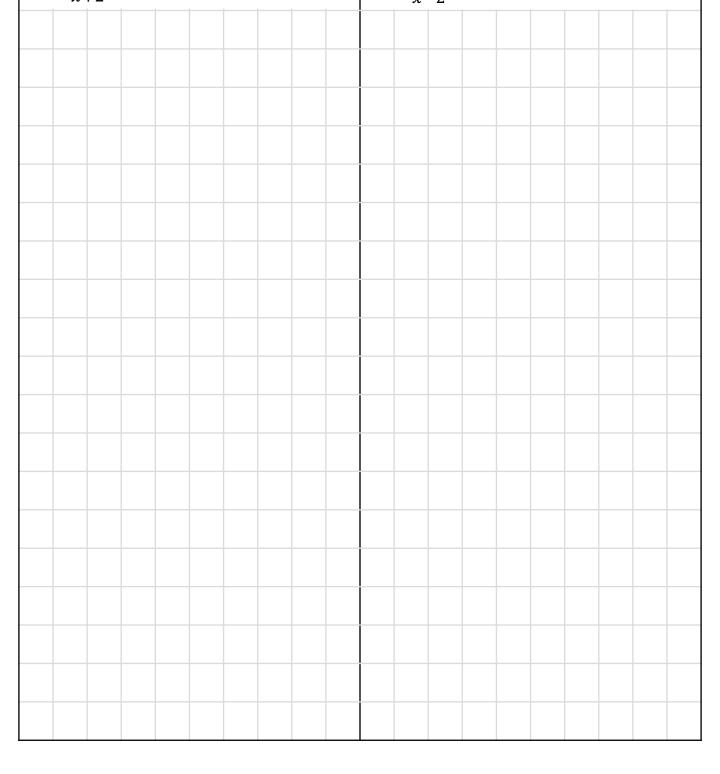
	V	Vo	rke	ed	Exa	am	ple	Your Turn											
a)	lve t 3(3(F 2)) =	2(x	: +	3)		Solve the following equations: a) $9(x-3) = 4(x+7)$ b) $7(x+6) - 7 = 4(x+2)$											
	3(x+5) - 7 = 2(x - 1)									-									

Worked Example											Your Turn											
Solve the following equation: $3(2w-1)-4=4(w+2)+1$											Solve the following equation: 2(2p-2)-4=2(p+3)-3											

Worked Example

Your Turn

Solve the following equation:


Solve the following equation:

a)
$$\frac{3}{x} + 2 = 6$$

a)
$$\frac{15}{x} - 2 = 6$$

b)
$$\frac{3}{x+2} = 6$$

b)
$$\frac{15}{x-2} = 6$$

Worked Example Your Turn Solve the following equation: Solve the following equation: $\frac{9x - 27}{---} = x + 7$ $\frac{3x+6}{}=x+3$ 4

Worked Example Your Turn Solve the following equation: Solve the following equation: $\frac{7x-21}{x+7}=2$ $\frac{3x+6}{x+3} = 2$

2.4 Cross Multiplication

You can cross multiply to solve equations which are in the form:

$$\frac{a}{b} = \frac{c}{d}$$

Are the following equations ready to be cross multiplied?

$$\bullet \quad \frac{2x}{3} = \frac{5}{9}$$

•
$$\frac{2x}{3} + 1 = \frac{5}{9}$$

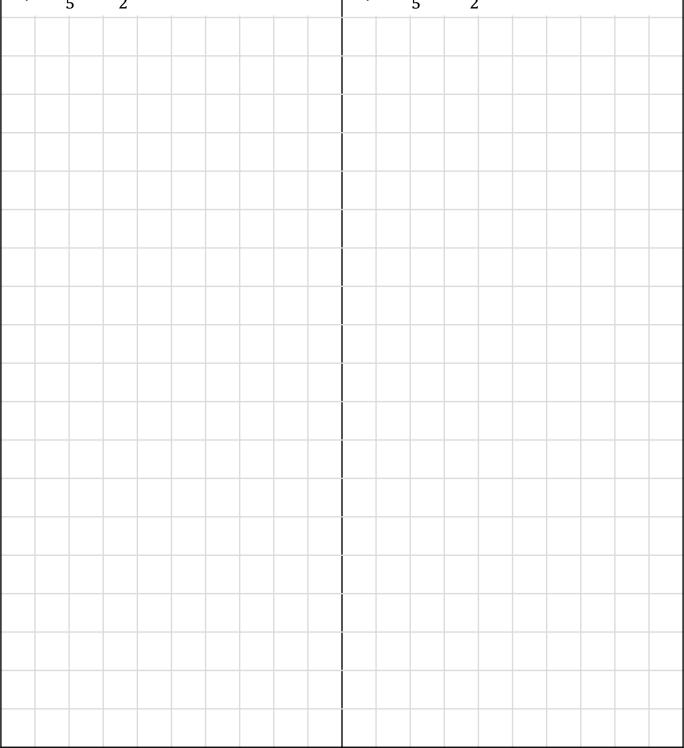
•
$$\frac{2x}{3} + 1 = 5$$

•
$$\frac{2x+1}{3} = 5$$

$$\bullet \quad \frac{3}{2x+1} = \frac{5}{x}$$

Worked Example

Your Turn


Solve the following equations:

a)
$$\frac{x}{5} = \frac{3}{2}$$

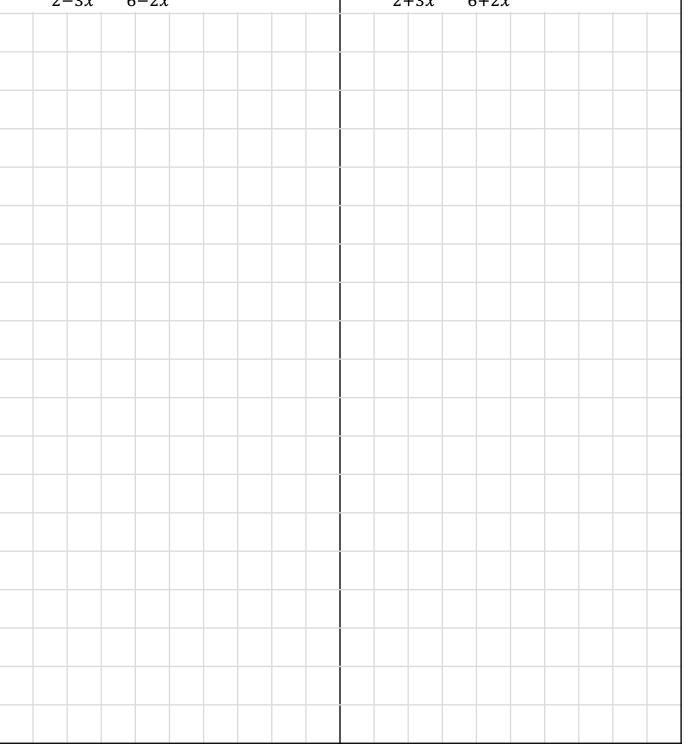
a)
$$\frac{2x}{5} = \frac{3}{2}$$

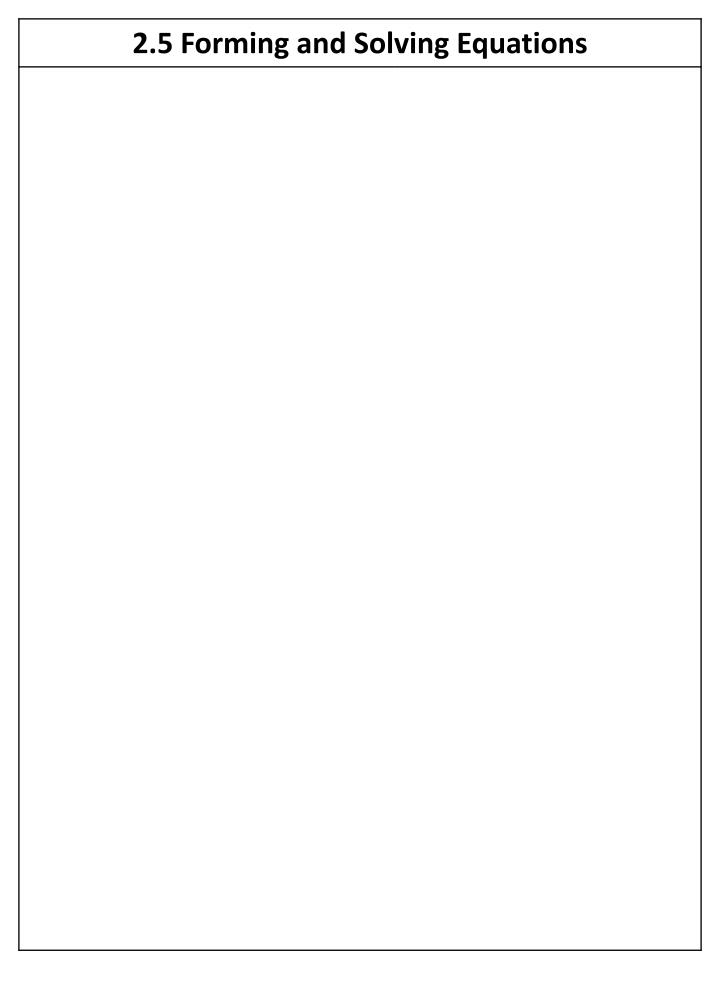
b)
$$\frac{x+1}{5} = \frac{3}{2}$$

b)
$$\frac{2x+1}{5} = \frac{3}{2}$$

Worked Example

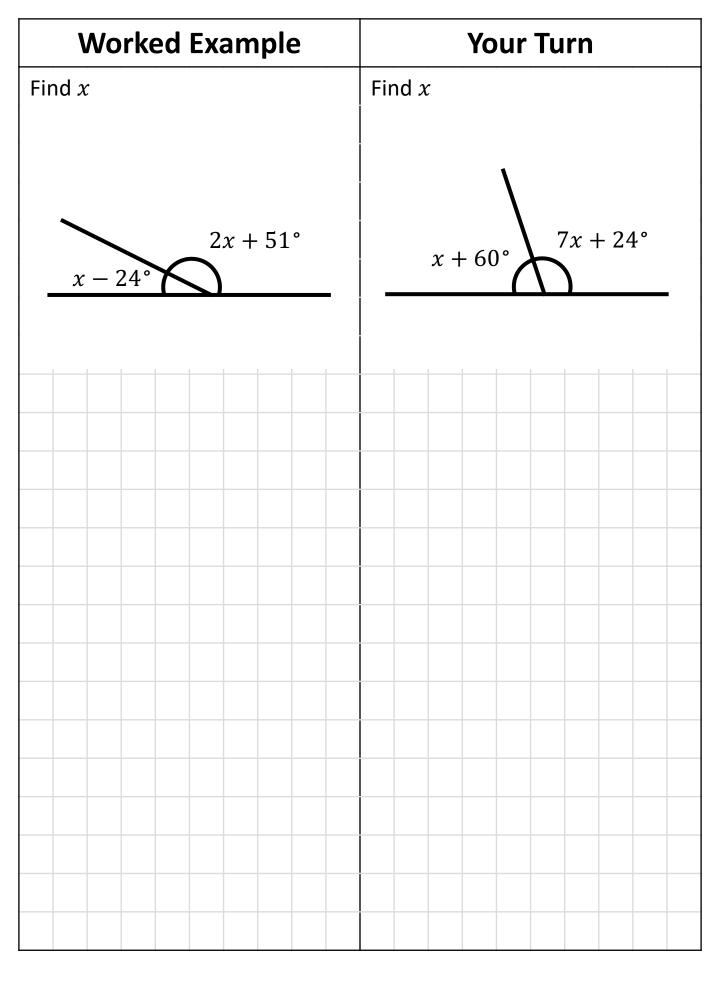
Your Turn

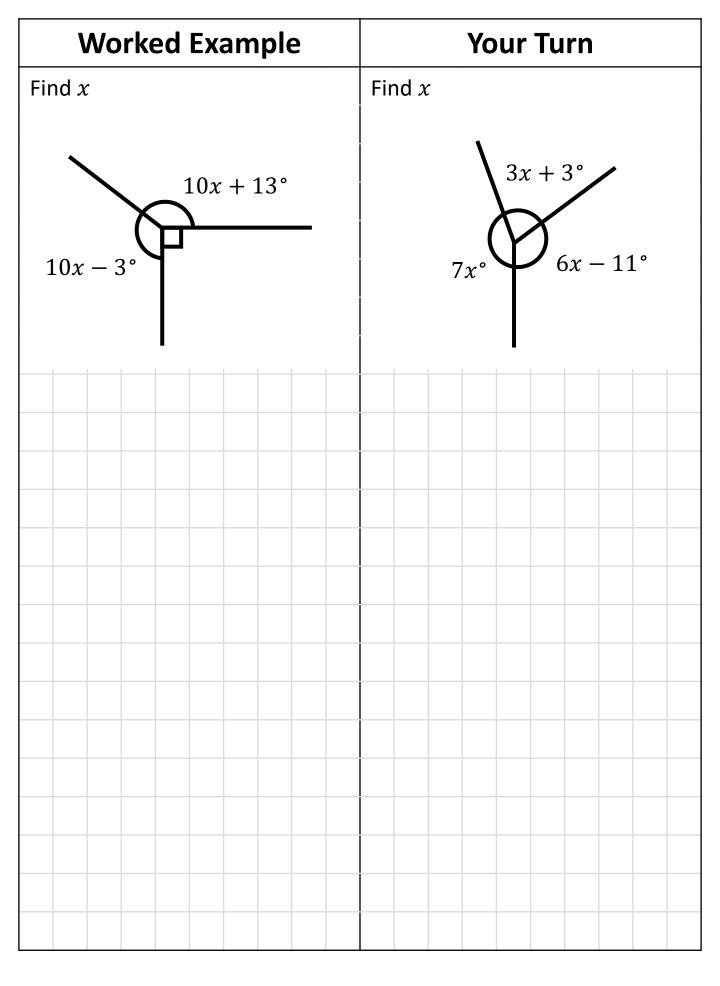

Solve the following equations:


a)
$$\frac{3x-4}{5} = \frac{x+4}{3}$$

a)
$$\frac{x+4}{7} = \frac{x-4}{3}$$

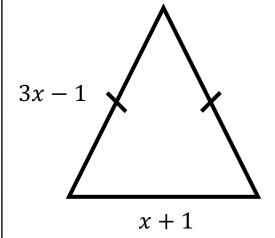
b)
$$\frac{4}{2-3x} = \frac{5}{6-2x}$$


b)
$$\frac{4}{2+3x} = \frac{5}{6+2x}$$

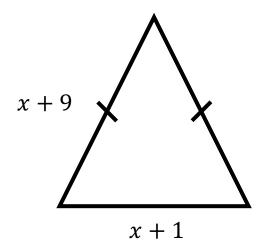


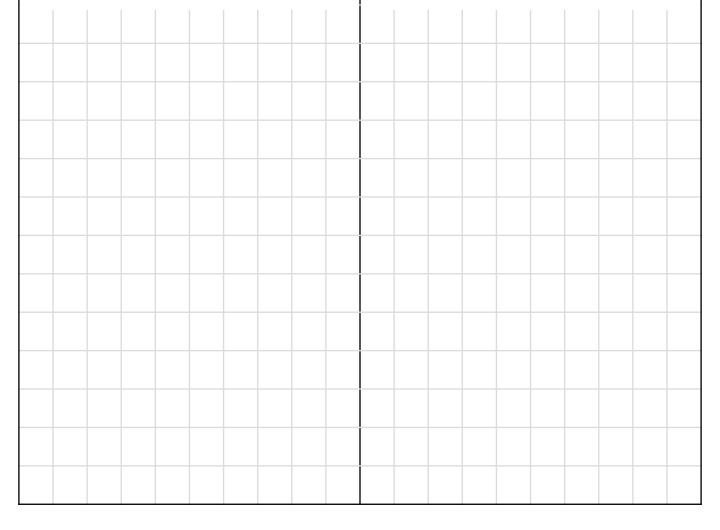
Worked Example	Your Turn I think of a number. I multiply the number by 4 then subtract 5. The result is 27. What was my original number?										
I think of a number. I multiply the number by 6 then subtract 3. The result is 15. What was my original number?											

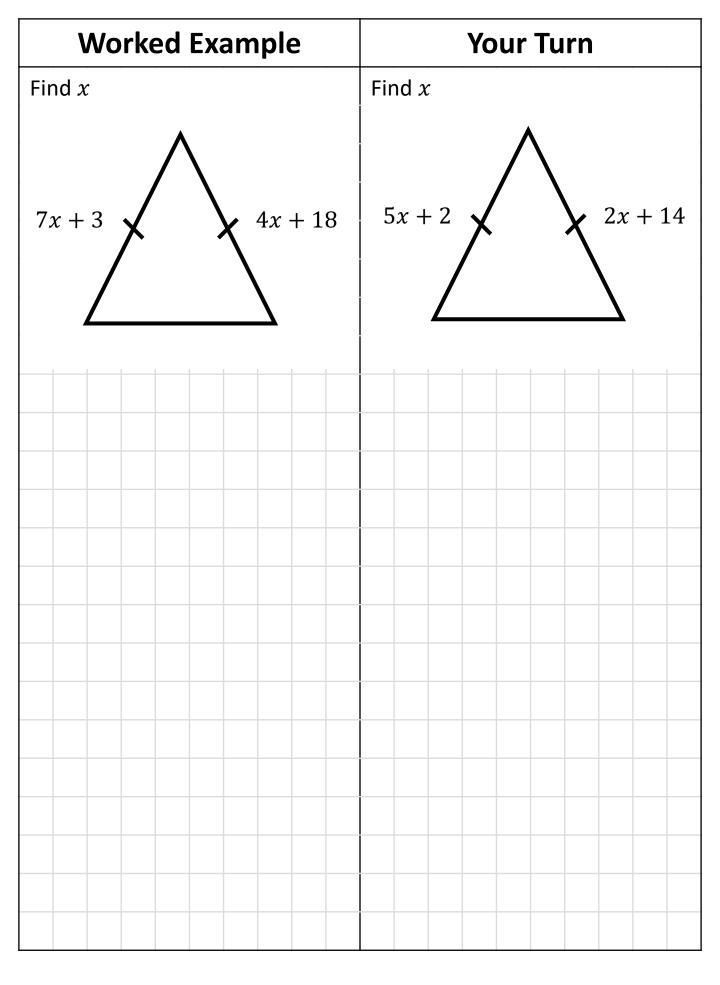
	Your Turn																		
 A is x years old. B is 3 years older than A. C is twice as old as A. The sum of the ages of A, B and C is 51. What are their ages? 									A is x years old. B is 3 years younger than A. C is three times as old as A. The sum of the ages of A, B and C is 57. What are their ages?										



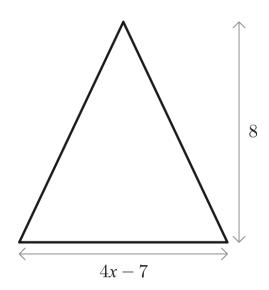
Worked Example Your Turn Find xFind x $5x - 70^{\circ}$ $8x + 13^{\circ} 10x + 3^{\circ}$


W	Your Turn																
	The perimeter of the rectangle is equal to 72 square units. Find x .									The perimeter of the rectangle is equal to 72 square units. Find x .							
		2x +	3								4 <i>x</i>	+ 6)				
				<i>λ</i>	C)	c		


The perimeter of the isosceles triangle is equal to 34 square units. Find x.

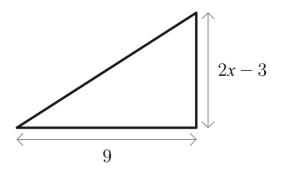

Your Turn

The perimeter of the isosceles triangle is equal to 34 square units. Find x.



Worked Example									Your Turn								
Find x	and y	,						Find x and y									
		2 <i>x</i>	– 1									4 <i>x</i> -	– 3		_		
y + 8					3	Ву -	- 4	3 <i>y</i>	- 8	3						<i>y</i> +	12
		5 <i>x</i>	– 7	,						_		2 <i>x</i> ·	+ 9				

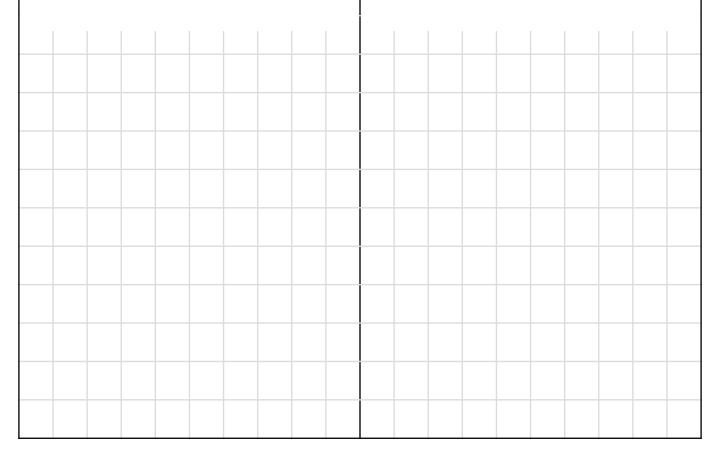
A triangle is shown in the diagram below.


All the measurements are in centimetres.

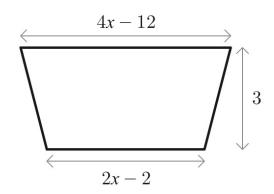
The area of the triangle is 28 cm^2 .

Find the value of x.

Your Turn


The diagram below shows a triangle.

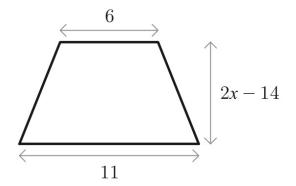
All the measurements are in centimetres.


The area of the triangle is $9\ \mathrm{cm}^2$.

Find the value of x.

Your Turn

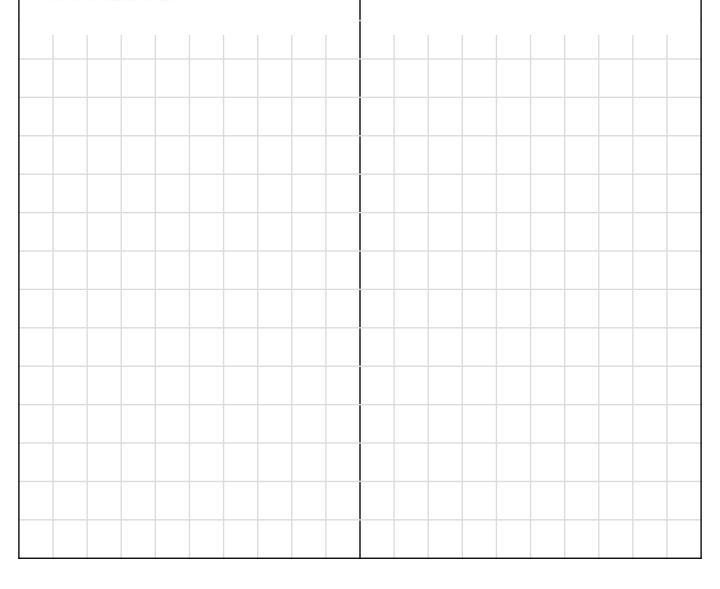
A is shown in the diagram below.



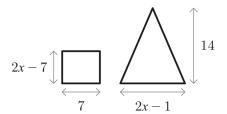
All the measurements are in centimetres.

The area of the trapezium is 42 cm^2 .

Find the value of x.


The diagram below shows a trapezium.

All the measurements are in centimetres.


The area of the trapezium is $34\ \mathrm{cm}^2.$

Find the value of x.

Your Turn

The diagram shows a rectangle and a triangle.

All the measurements are in centimetres.

The area of the rectangle is half the area of the triangle.

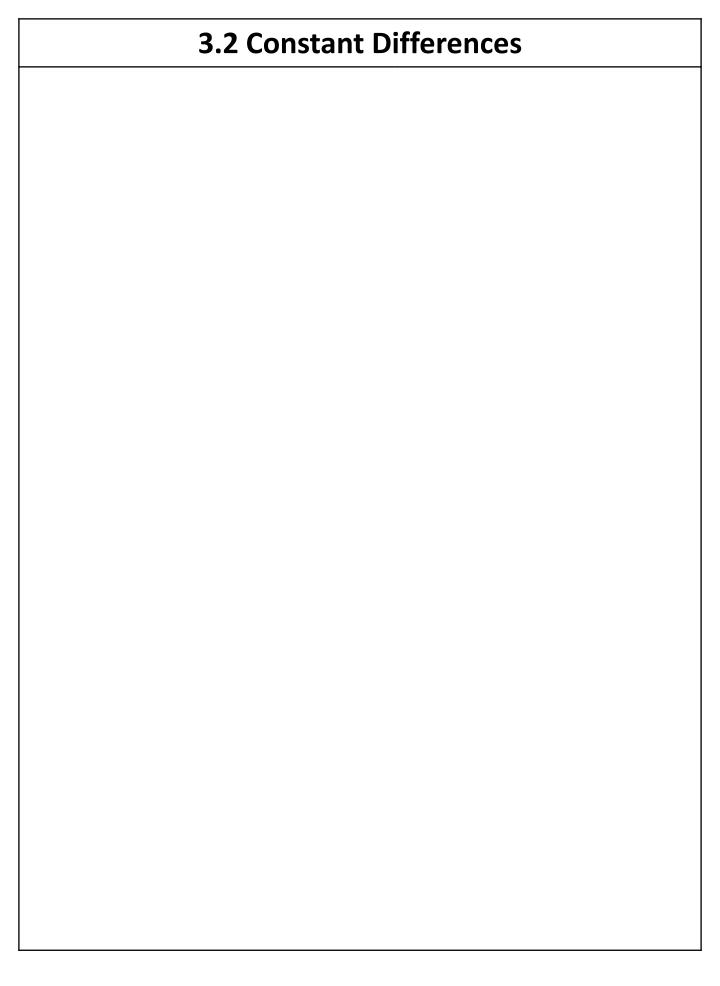
Work out the value of x.

The diagram shows a rectangle and a triangle.

All the measurements are in centimetres.

The area of the rectangle is twice the area of the triangle.

Work out the value of x.


3 Sequences								

3.1 Finding the Next Term
A sequence is simply an ordered list of items (possibly infinitely long), usually with some kind of pattern.
Each item in a sequence is called a term .

	Worked Example								 Your Turn								
24	seq 1, 29 ork	9, 34	4, 39	9					A sequence starts with: 41, 36, 31, 26 Work out the next 3 terms.								
																	-
																	ļ

	Worked Example									Your Turn								
A sec 2048 Worl	3,51	2, 1	28,	32					A sequence starts with: 7, 42, 252, 1512 Work out the next 3 terms.									
																	-	
																	-	
																	ŀ	
																	İ	
																	+	

Worked Example	Your Turn								
A sequence starts with: 5, 9, 14, 23, 37 Work out the next 3 terms.	A sequence starts with: 6, 10, 16, 26, 42 Work out the next 3 terms.								

Worked Example	Your Turn									
What is the constant difference in the sequence?	What is the constant difference in the sequence?									
The 10 th term is 52 and the 18 th term is 76	The 10^{th} term is 52 and the 22^{nc} term is 76									

Worked Example									Your Turn										
l	hat the					t di	ffer	enc	e	What is the constant difference in the sequence?									
	ie 1 rm i			n is	76	and	the	e 18	} th	The 10^{th} term is 76 and the 22^{nc} term is 52									

3.3 Term to Term Rule

Some sequences we can generate by stating a rule to say how to generate the next term given the previous term(s).

3, 7, 11, 15, 19 ...

What is the rule, in words, for this sequence? We add 4 each time.

The problem is that this also describes many other sequences. Can you think of another sequence that adds 4 every time?

We need to both state our rule and our starting term.

A better rule for this sequence would be: **Start with 3, add 4 each time.**

Fir	st Five	Terms of	Sequer	nce	Term-to-Term Rule
6	10	14			
5	3	1			
3		5			
1	3	9			
1.5	1.7		2.1		
	7	2	-3		
80	40	20			
	1		$1\frac{1}{2}$		
8					add 3
2					add 7
	4				subtract 2
		2.5			add 0.5
			5		subtract 2.5
	2				multiply by 2
100					divide by 10
-4					subtract 3

3.4 Types of Sequences

Arithmetic/Linear: The terms' first difference is constant.

e.g., 1, 3, 5, 7, ...

Geometric: The terms found by multiplying by the same number each time.

e.g., 2, 4, 8, 16, ...

Quadratic: The terms' second difference is constant.

e.g., 2, 5, 10, 17, ...

Fibonacci-Type: The terms found by adding the previous two terms together.

e.g., 1, 3, 4, 7, 11, ...

Frayer Model – Linear Sequences **Definition Characteristics Examples Non-Examples**

3.5 Position to Term Rule

It is sometimes more helpful to be able to generate a term of a formula based on its position in the sequence.

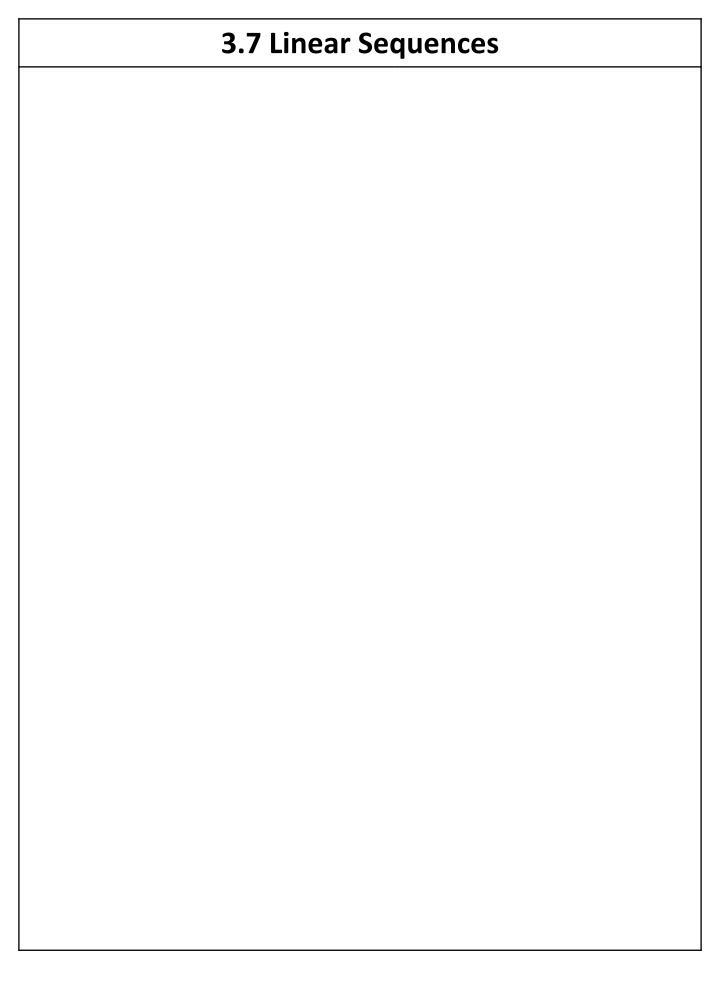
We could use it to say find the 300^{th} term of a sequence without having to write all the terms out!

We use \boldsymbol{n} to mean the **position in the sequence**. So, if we want the $3^{\rm rd}$ term, n=3.

The **position to term rule** is also called the n^{th} term rule.

This year, we will only look at how to work out the position to term rule for linear sequences. You will learn how to find the position to term rule for geometric and quadratic sequences in year 11.

Worked Example	Your Turn								
Find the n^{th} term rule:	Find the n^{th} term rule:								
8, 15, 22, 29, 36,	11, 18, 25, 32, 39,								
−6, 1, 8, 15, 22,	-3, 4, 11, 18, 25,								
36, 29, 22, 15, 8,	39, 32, 25, 18, 11,								


Worked Example	Your Turn
Find the n^{th} term rule:	Find the n^{th} term rule:
$\frac{1}{2}, \frac{7}{10}, \frac{9}{10}, 1\frac{1}{10}, \dots$	$\frac{1}{3}, \frac{7}{9}, 1\frac{2}{9}, 1\frac{2}{3}, \dots$

Worked Example	Your Turn
Find the n^{th} term rule:	Find the n^{th} term rule:
$\frac{5}{12}$, $\frac{7}{19}$, $\frac{9}{26}$, $\frac{11}{33}$,	$\frac{6}{13}$, $\frac{8}{20}$, $\frac{10}{27}$, $\frac{12}{34}$,

3.6 Generating Linear Sequences
To generate a term of a linear sequence, substitute n (the position number) into the $n^{\rm th}$ term rule.

	\	No	rke	ed	Exa	am	ple	e				Yo	ur	Tu	rn			
a)	5	n +	the 3 - 5 <i>n</i>		st 5	teri	ns (of	a)	6	ate n – – 6	3	e firs	st 5	teri	ns (of	

	Wo	rkec	Exa	amı	ple					Yo	ur	Tu	rn			
1)	The <i>n</i> is 5(– Work the se	-6n +	· 3) ne 50				1)	is W	4(- ork	-3 <i>n</i>	— 6 : the	5) e 50			ence	9
2)	The n is $4n^2$ Work the se	$^2 + 6r$	ı − 3 าe 50		-		2)	is W	$2n^2$ ork	2 —	4n the	+ 1 e 50		•	ence	9

Fill in the Gaps Sum of the First 5 Terms 35 nth Term <u> 19 – </u> 44 - 4n2n + 130th Term 20 10th Term 35 Term-to-Term subtract 2 Rule add 5 add 1

31

27,

24

28,

32,

36,

40,

 ∞

16,

19,

22,

25,

First Five Terms

16,

13,

10,

6

,

5

3,

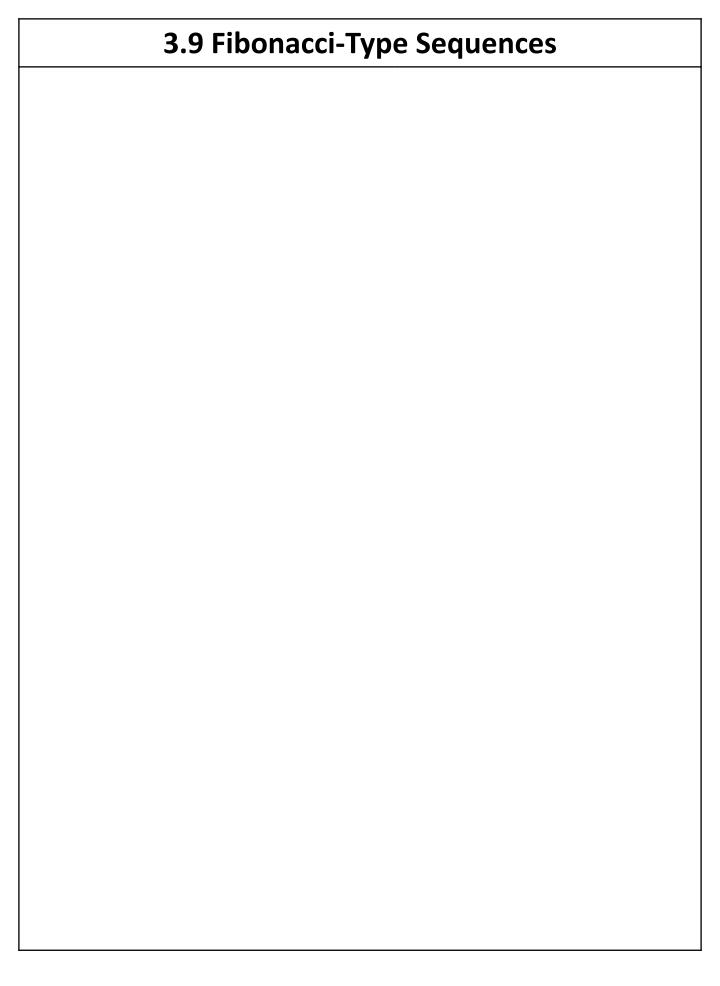
		Firs	t 5 te	rms		Term-to-term rule	0 th term	10 th term	Sum of first 5 terms	<i>n</i> th term rule
a.	5	8								
b.	5		9							
c.	5			8						
d.	5					Add 6				
e.	5						-2			
f.	5	3								
g.	10					Subtract 3				
h.	10						15			
i.	10							19		
j.		10			22					
k.			10				16			
l.				10	22					
m.						Add 3	4			
n.						Add 3		33		
0.						Add 3			30	
p.							6	26		
q.							26	6		
r.					21			36		
S.							2		25	
t.								40	60	

Work out the missing terms in each sequence, and then the n^{th} term. All sequences are decreasing arithmetic sequences.

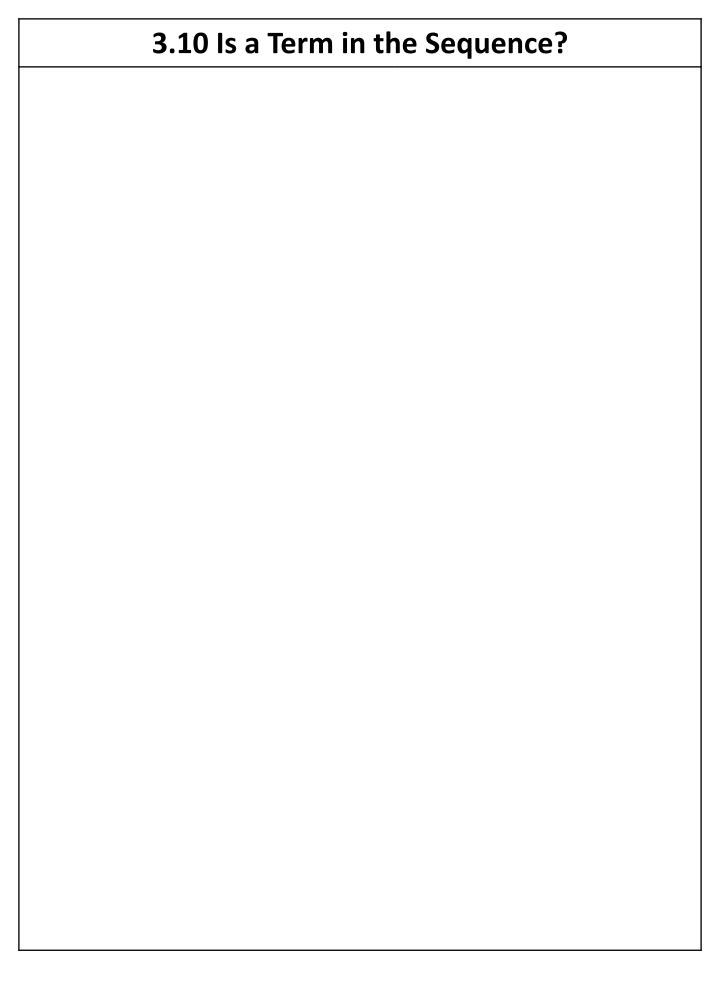
•											
	1st term	2 nd term	3 rd term	4 th term	5 th term	6 th term	7 th term	8 th term	9 th term	10 th term	n^{th} term
Q1		8		7							
Q2	15		6		3				-9		
Q3			11			-4					
Q4	23						11				
Q5		44				16					
Q6						82		74			
Q7	14						-4				
Q8	-1			<i>L</i> -							
Q9		-5				-21		-29			
Q10			-12						-42		

Work out the missing terms in each sequence, and then the n^{th} term. All sequences are decreasing arithmetic sequences.

	1st term	2 nd term	3 rd term	4 th term	5 th term	6 th term	7 th term	8 th term	9 th term	10 th term	n^{th} term
Q11		1.8		1.2							
Q12	2.9				0.5						
Q13	_				3.8					0.3	
Q14				9.8			2.3				
Q15	_				4.1		1.5				
Q16	_	2.7				2.5					
Q17	_	3.1			-4.4						
Q18	-4				-6.4						
Q19	-0.4						-8.8				
Q20				-7.2			-13.5				


Fill in the Gaps nth term difference common 15.5 **10**th **15**th 12^{th} **10**th -4 31 eth 6 11^{th} **6**2 Finding the nth term of a Linear Sequence **10**th 43 g t -38 21 æ **20**th 30 £ -54 **12**th **4**t 27 et P 댸 -25 **4** 14 4 -48 15^{th} 53 2nd 11 **1** 4 먑 ᇲ $\mathbf{1}^{\mathsf{st}}$

Fill in the Gaps 29th term -67.5 99 10th term -20-2052 26 28 1st term -1 2 ^ term to term rule9 + First 4 terms | nth term rule 4n + 35n - 38-2n8, 13, 18, 23, ... 5, 9, 13, 17, ... 7, 6, 5, 4, ... 9 Ħ 12 m 7 'n 9 œ 6


3.8 Patterns

Worked Example Pattern 1 Pattern 2 Pattern 3 a) Draw the next pattern. How many squares are in the $n^{\rm th}$ pattern? b) How many squares in the 50th pattern? c) Which pattern will use 145 squares? d)

Your Turn Pattern 1 Pattern 2 Pattern 3 a) Draw the next pattern. How many squares are in the $n^{\rm th}$ pattern? b) How many squares in the 50^{th} pattern? c) Which pattern will use 154 squares? d)

Wo	rked I	Exam	ple				Yo	ur	Tu	rn			
Find the r these Fibo				ļ						terr e se		n ence	:s:
2, 7, 9, 16	,			3,	11,	14,	25,						
$\frac{2}{3}, \frac{5}{6}, \frac{3}{2}, \frac{7}{3}$,					19 12'							
3a+4b,	a + 7b	,4a+	11 <i>b</i> ,	 3a	. —	4 <i>b</i> ,	2 <i>a</i>	– 5	<i>b</i> , 5	5a -	- 9 <i>k</i>),	

Worked Examp	ole		You	ır Tuı	rn	
Is 100 in the sequence		ls 100	in the s	equen	ce	
16, 20, 24, 28, 32,?		26,30	, 34, 38,	, 42,	?	

Worked Example	Your Turn
Is -100 in the sequence	Is -100 in the sequence
42, 38, 34, 30, 26?	32, 28, 24, 20, 16,?